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Preface

Cancer is a complex disease that has taken a significant toll on human life, adding
financial burdens and emotional distress. Chemotherapy is considered a mainstay of
treatment that has been employed for ‘waging a war on cancers’. Despite many suc-
cess stories of chemotherapeutic drugs, pitfalls exist. Recurrence and relapse
of aggressive metastatic secondary cancers pose challenges. Metastasis is the condi-
tion where cancer cells evade current treatment and spread via blood or to deposit
elsewhere and are often difficult to treat by traditional chemotherapy regimens.
The most pertinent and important question is whether we have taken a backseat
in treatment strategies or are we actively pursuing remedies for these metastatic
cancers, driving the therapeutic potency to maximum curative potential, at the same
time ensuring the safety profile. The fact is that, in recent years, astonishing break-
throughs have been taking place in the realm of cancer treatment involving innova-
tive gene therapies, targeted therapy, and immunotherapies that have revolutionized
the whole branches of oncology. With modern characterization techniques, and
high-resolution structural data from X-ray diffraction or NMR studies, we have
been able to understand and validate intricate details of interactions with targets.
Nevertheless, there are failures of new drug entities, NDEs in stages of R & D, and
clinical trials due to poor water solubility, systemic toxicity, and inherent drug resis-
tance that are seen as hurdles to the success of these chemotherapeutic regimens.
We have written this book very passionately on the topic Advances and Prospects
of 3d Metal-Based Anticancer Drug Candidates sincerely hoping to translate more
inorganic metal-based chemotherapeutic drugs in the pipeline to clinic, keeping in
mind that 3d metals are strikingly appealing for the search of efficacious chemo-
therapeutic anticancer drugs that will manifest better cytotoxic response over a
broad spectrum of phenotypes of cancers with much lower side effects. Metal-based
chemotherapeutic drug candidates exhibit interesting physicochemical properties of
luminescence, redox behavior, different oxidation states, and a wide range of geo-
metric preferences at the biological 3d space, exerting a distinct pathway of the
mechanism of action (MOA) of cell death, which ensures targeting specifically at
the intracellular levels in vivo and also prevents ‘off-target’ toxicity of different
organs. The metallodrugs are known to possess two main druggable components (1)
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tunable metal at the ‘core’ center and (2) the ligand ‘pharmacophore’ scaffold. Both
these components are necessary for the integrity of the metallodrugs, often remain
intact in solution, and act synergistically at the active site; however, each one has a
distinct role to play in executing cell death in cancer cells.

The recent advances for the development of metal-based complexes as anti-
cancer chemotherapeutics have appeared in many review articles, and a large
number of research articles in literature include combination agent therapies, drug
delivery system (DDS) based therapies, and polymeric interventions. We have
meticulously presented these advances in the form of chapters in pedological order,
which has indeed added value to this book. An exhaustive and elaborate section of
recent coherent references added after each chapter gives a ‘deep dive’ to readers
for further reading and comprehension of the subject.

We hope that we have done justice to the aspirations and hopes of cancer patients,
clinicians, medical practitioners, and researchers, who are desperately waiting for
some breakthrough or ‘magic bullet’ cure to treat cancers. The enlivening chapters
on the role of targeting intracellular organelles such as endoplasmic reticulum, bio-
chemical signaling mechanism, and other polymeric nanoconjugates will serve as a
roadmap for the future discovery of chemotherapeutic regimens based on 3d metal-
lodrugs anticancer drugs. A chapter on in silico computational techniques that
include databases, quantitative structure-activity relationships, pharmacophores,
homology models and other molecular modeling approaches, and data analysis
tools could be utilized to predict the hypothesis and validation of binding affinity
and modes of drug candidates, and to integrate experimental in vitro data for the
optimization of novel ‘lead’ therapeutics molecules.

We are grateful for the help, advice, and comments from colleagues, readers, and
Ph.D. scholars in our laboratory, who have contributed immensely to this field, par-
ticularly Dr Mala Chauhan, Dr Imtiyaz Yousuf, Dr Sabiha Parveen, Dr Rais Ahmad
Khan, Dr Mohammed Usman, Dr Surbhi Sharma, Dr Zeenat Afsan, Dr Siffeen
Zehra, Dr Salman Khursheed, Ms Robina Kouser, Mr Rijwan, Mr Salman Khan,
and Ms Suffora Akhter to name a few, and not the least, special thanks are due to Dr
Mohammed Fawad Ansari (UGC—Dr D.S. Kothari (PDF) fellow) who has edited
all chapters and figures very meticulously. The motivation to write this book stems
mainly from our 29 year research interest in ‘Design and synthesis of modulated
metal-based cancer chemotherapeutic agents’. The only reason the book exists is to
disseminate knowledge to students interested in pursuing their careers in medicinal
chemistry and developing new tailored metal-based drugs for the cure of this deadly
disease.

Aligarh, Uttar Pradesh, India Farukh Arjmand
Aligarh, Uttar Pradesh, India Sartaj Tabassum
Aligarh, Uttar Pradesh, India Huzaifa Yasir Khan
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Chapter 1
Introduction

1.1 Introduction

1.1.1 Overview of Metal-Based Chemotherapeutic Agents
in Cancer Oncology

Medicinal inorganic chemistry is a growing field within bioinorganic chemistry that
focuses on developing therapeutic and diagnostic compounds to address chronic
diseases such as respiratory disorders, Alzheimer’s, diabetes, HIV/AIDS, and can-
cer (Mjos and Orvig 2014; Thompson 2011; Farrell 1999). Among all the chronic
diseases, cancer still remains a serious concern in the public healthcare domain due
to the huge toll on mortality rates. The GLOBOCAN-2020 report by the International
Agency for Research on Cancer (Sung et al. 2021) projected 19.3 million new can-
cer cases and 10 million cancer-related deaths globally in 2020, which is expected
to exponentially rise (47%) to 28.4 million cases in 2040.

Cancer comprises a group of complex conditions characterized by the unregu-
lated growth of cells and forms lumps or masses known as tumors, and sometimes
these tumor cells may invade to nearby tissues or migrate to distant secondary loci
resulting in more aggressive ‘metastatic’ or secondary cancers (Fig. 1.1) (Hanahan
and Weinberg 2011; Jemal et al. 2011). There are more than 200 subgroups/pheno-
types of tumors derived from different origins of tissues that arise from intratumor
heterogeneity due to endless combinations of genetic/epigenetic alterations (Raatz
et al. 2021). In men, lung cancer stands as the primary cause of cancer-related ill-
nesses and fatalities, while among women it ranks third in terms of occurrence,
following breast and colorectal cancers (Sung et al. 2021). Consequently, there’s
been a widespread effort to enhance patient survival rates through extensive research
and development of rational treatment strategies/modalities for cancers.

There are many treatment strategies, for example, invasive method surgery, radio-
therapy, chemotherapy, modern immunotherapy, biologically targeted therapies, etc.

© The Author(s), under exclusive license to Springer Nature Singapore Pte 1
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Cytoplasm

Fig. 1.2 Images of cancer cells

However, chemotherapy is widely used as a standard therapy for the treatment of solid
cancers (Fig. 1.2) and is considered as the mainstay treatment option, either alone or
together with radiotherapy or invasive surgical interventions (Englinger et al. 2019;
Hellmann et al. 2016; van der Most et al. 2005).

In chemotherapy, cytostatic drugs are used to target the cell cycles that were
identified and isolated from various sources of plants/fungi or synthetically pre-
pared, broadly classified as alkylating agents, alkaloids, antibiotics, and antimetab-
olites. By 2000, approximately 57% of cancer drugs undergoing clinical trials were
either natural compounds or derived from them (Cragg and Newman 2005). Some
prominent noteworthy cytostatic drugs, viz., bleomycin, etoposide vinblastine,
doxorubicin, taxol under trade name paclitaxel®, topotecan, irinotecan, etc. These
drugs disrupt the growth of cancer cells by targeting cellular DNA or RNA (Demain
and Vaishnav 2011; Dholwani et al. 2008). The US National Cancer Institute (NCI)
has engaged in exploring cytostatic drugs, leading to a range of varied formulations
and research strategies designed for cancer treatment. World Health Organization
(WHO) has defined the criteria for the evaluation of the therapeutic potential of
cytostatic drugs as follows: (1) extent of tumor response/remission; (2) the determi-
nation of reemission time; (3) survival of patients; and (4) toxicity. Chemotherapy
demonstrates efficacy in managing several solid cancer types, yet in other similar



1.1 Introduction 3

carcinomas, its curative effects are limited. However, it can extend the overall sur-
vival (OS) of patients in these cases. WHO has also classified the side effects of
chemotherapeutic agents as grades 0—4 (Seeber and Schiitte 1993) and most of the
chemotherapeutic drugs have failed due to severe (side effects) toxicity, resistance
issues, and a narrow spectrum of activity, either in preclinical or clinical trials or at
R&D levels. This has led to extensive research for discovery of efficacious chemo-
therapeutic agents with better curative effects, exhibiting a broad spectrum of activ-
ity against most of the cancers (Schirrmacher 2019).

The accidental discovery of the archetypical inorganic compound cisplatin, cis-
diamminedichloro platinum(II) (cis-[Pt(NH;),Cl,]) as a potent antitumor agent
sparked a significant surge in medicinal inorganic chemistry research (Alderden
et al. 2006; Dasari and Bernard Tchounwou 2014; Kelland 2007; Monneret 2011).
It emerged as a pivotal treatment for various solid malignancies, including breast
(Decatris et al. 2004), cervical, ovarian, testicular, head and neck, bladder, prostate,
lung, stomach cancers, as well as sarcomas (Rosenberg and VanCamp 1970), neu-
roblastoma, melanoma, and multiple myeloma cancers (Rosenberg et al. 1965).

While initially synthesized by M. Peyrone in 1844 (Peyrone 1844), it was
B. Rosenberg in the 1960s who uncovered its anticancer properties. This led to
extensive investigation, patenting (Eisenstein and Resnick 2001; Rosenberg et al.
1979), and subsequent FDA approval of cisplatin as Platinol® by Bristol-Myers
Squibb in 1978.

Since then, cisplatin has been a pioneering metal-based drug globally used in
cancer treatment either alone or in combination with other therapies. It remains one
of the most successful and revenue-generating metallodrugs, contributing signifi-
cantly to the revenue of institutions like Michigan State University through licens-
ing royalties (Blumenstyk 1999).

Despite the success stories of cisplatin, there were some serious challenges to be
addressed for its therapeutic intervention, for example, systemic toxicity issues such
as neuro-nephro and/or renal-toxicity or decreased blood cell and platelet produc-
tion in bone marrow (myelosuppression) (Oun et al. 2018; Farrell 1989; Miller et al.
2010; Yao et al. 2007; More et al. 2010), hearing loss in younger patients, intrinsic
resistance (as observed in patients colorectal, prostate, lung or breast cancers) and
extrinsic or (acquired resistance during cycles of therapy with cisplatin) (Siddik
2003; Ishida et al. 2002). In addition to patience compliances such as nausea and
vomiting, loss of appetite, hair loss, etc., allergic reactions, decreased immunity to
infections, and poor oral bioavailability were also observed (McWhinney et al.
2009). The resistance of cisplatin was found to be involved in various biochemical
processes viz., diminished cellular absorption, increased expulsion of the drug,
increased detoxification, deactivation through sulfur-containing protein binding,
inhibition of apoptosis, and escalated repair of DNA damage (Sadler and Guo 1998;
Timmerbosscha et al. 1992; Shen et al. 2012). To overcome the aforementioned
drawbacks/challenges of cisplatin (Dhar et al. 2011; Florea and Biisselberg 2011),
numerous other second-generation alternative analogues such as carboplatin, satra-
platin, lobaplatin, picoplatin and oxaliplatin, and more recently the multinuclear
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Fig. 1.3 Structure of approved platinum anticancer drugs

platinum complex BBR3464 (triplatin), etc., were developed (Desoize 2002;
Rosenberg 1973, 1978) (Fig. 1.3).

Carboplatin, also known as cis-diammine (1,1-cyclobutanecarboxylato) platinum
(II), is a chemotherapeutic agent utilized in head, neck, lung, and ovarian cancers. Its
structure substitutes the two chloride ligands of cisplatin with a bidentate dicarboxyl-
ate (CBDCA) ligand. It demonstrates reduced reactivity and slower DNA binding
kinetics compared to cisplatin, yet forms similar reaction products in vitro at equiva-
lent doses. Oxaliplatin, marketed as Eloxatin® in Japan (Alcindor and Beauger 2011),
nedaplatin as Aqupla® in China (Shimada et al. 2013), and lobaplatin, is another plat-
inum-based drug containing an oxalate and diaminocyclohexane ligand (DACH). The
DACH ligand significantly influences its cytotoxicity response. Oxaliplatin is licensed
for combined therapy in colon cancer and nonsmall-cell lung cancer management
(Chan and Coward 2013). Its superior safety profile compared to cisplatin makes it
suitable for patients intolerant to cisplatin regimens. Satraplatin, referred to as
bis(acetato)-amminedichloro(cyclohexylamine)platinum(IV) or JM216, possesses
the unique characteristic of oral availability, administered in pill form, offering conve-
nience for patients. Unlike cisplatin, JIM216 comprises mononuclear Pt(IV), which is
converted in vivo by metallo-redox proteins into the active Pt(Il) complex (JM118)
(Bhargava and Vaishampayan 2009; Byun et al. 2005).

BBR3464 (CT-3610), also known as triplatin tetranitrate, represents an uncon-
ventional trinuclear platinum complex with a net charge of +4 (Brabec et al. 1999).
Despite entering phase II clinical trials (Fig. 1.4), its efficacy in lung cancer patients
was limited, showing minimal response while inducing notable side effects like
neutropenia and diarrhea. Consequently, further clinical advancement was halted
(Kasparkova et al. 2002; Jodrell et al. 2004). Presently, cisplatin, carboplatin, and
oxaliplatin are extensively utilized, encompassing about 50-70% of cancer treat-
ment protocols (Dyson and Sava 2006). Despite advances in platinum-based drug
design, many of these drugs have experienced reduced efficacy over time due to
acquired resistance.
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Fig. 1.4 Timeline diagram of platinum drugs for treatment of various cancers

The prevailing challenges, including systemic toxicity, drug resistance, and lim-
ited spectrum against various cancer types, have urged the exploration of alternative
strategies in drug design. These include (1) employing less toxic prodrugs selec-
tively activated within tumors, (2) using carrier groups for targeted tumor delivery,
and (3) investigating nonplatinum metals.

Platinum(IV) complexes are regarded as prodrugs of platinum(Il) analogs due to
their slow reactivity with cellular targets (Rosenberg et al. 1969; Hall et al. 2004;
Sigel and Sigel 2004; Hall and Hambley 2002). Physiologically, these Pt(IV) com-
plexes are reduced by biomolecules such as glutathione (GSH), methionine, cyste-
ine, metallothioneins, serum albumin, ascorbate, DNA nucleobases, nucleotides,
and analogs. The reduction potential determines whether this reduction occurs in
the bloodstream rather than within cells, leading to side-reactions that might induce
systemic toxicity (Fig. 1.5). Administering an inert complex in its oxidation state
could potentially reduce side effects by minimizing reactions with nontarget bio-
molecules (Rosenberg 1971). However, achieving precise molecular-level targeting
of such inert complexes remains a crucial challenge. For instance, Lippard et al.
incorporated estrogen-targeting groups via carboxylate linkages to the axial sites
and observed increased in vitro cytotoxicity (Barnes et al. 2004). Similarly, Dyson
et al. attached a glutathione-S-transferase targeting group and found the resulting
product to be an effective GST inhibitor (Wee et al. 2005). The mechanism of action
of these complexes in vivo and their retention at target sites remain areas for further
exploration.

Research by the Sadler and Bednarski groups utilized a distinct approach involv-
ing inert platinum(IV) complexes post-irradiation with light (Bednarski et al. 2006;
Mackay et al. 2006). This approach, potentially promising, aims to confine the plati-
num drug to the irradiated area, thereby reducing systemic toxicity. Certain
platinum(IV) complexes, such as cis, trans, cis- and trans, trans, trans-
[Pt(N3),(OH),(NH;),], considered prodrugs of cisplatin and transplatin, form
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Fig. 1.5 Intracellular biochemical pathway of resistance of platinum drugs

various DNA adducts upon light exposure, showing potential as chemotherapeutic
agents (Reedijk 2003; Mellor et al. 2005). This work underscores an advantage of
platinum(IV) prodrugs by stabilizing a highly reactive and toxic platinum(II) spe-
cies when used alone. Additionally, there’s a possibility that platinum(IV) com-
plexes selectively reduce in the hypoxic environments often present in solid tumors,
making them active in such conditions (Schreiber-Brynzak et al. 2016). Hence,
these complexes could potentially treat larger solid tumors effectively (Jain 1987;
Hicks et al. 1997; Tunggal et al. 1999).

The failure of anticancer drugs to reach all cells at cytotoxic concentrations
remains a significant concern in chemotherapy. For instance, doxorubicin can only
diffuse a limited distance from blood vessels, reaching a fraction of viable cells
within a solid tumor. The hypoxic regions, generally located farther from blood ves-
sels, often contain the most aggressive and drug-resistant cancer cell phenotypes
(Pallavicini et al. 1979; Graeber et al. 1996).

A large plethora of complexes from main group metals bismuth, antimony, gal-
lium, or tin to a range of transition metals viz., titanium, vanadium, gold, iron,
cobalt and copper, ruthenium or rthodium as well as cerium have been synthesized
and investigated for their cytotoxic anticancer effects (Ott and Gust 2007; Clarke
et al. 1999; Marzano et al. 2012). Exploration in preclinical and clinical studies has
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highlighted the emergence of novel nonplatinum metal-based chemotherapeutic
agents that exhibited different noncovalent modes of action as compared to classical
covalent binding modes of cisplatin. Various compounds containing ruthenium
(Ru), titanium (Ti), gallium (Ga), and gold (Au) have entered into clinical evalua-
tion phases (see www.clinicaltrials.gov for current studies) (Lazarevi¢ et al. 2017,
Liang et al. 2017; Chitambar 2017; Lentz et al. 2009).

Transition metal complexes are very appealing for chemotherapeutic drug design
owing to their unique physico-chemical properties viz., strong Lewis acid nature,
versatile coordination geometries beyond the sp, sp% and sp® hybridization of pure
organic molecules, enabling a broader spectrum of stereoisomeric conformations,
accommodating diverse oxidation states present in vivo as active redox pairs, capa-
ble of undergoing ligand exchange reactions to establish covalent bonds with
nucleophilic donor atoms within the amenable sites of therapeutic biomolecules
DNA, RNAs or proteins (Ott and Gust 2007; Ndagi et al. 2017; Jungwirth et al.
2011). Moreover, redox reactions of transition metals are known to elevate the reac-
tive oxygen species (ROS) level, which show the capability to induce apoptosis, i.e.,
programmed cell death in which drug candidates specifically harm the malignant
tissues, leaving the normal cells unaffected (Ma et al. 2019; Elmore 2007; Jakupec
et al. 2008). These attributes enable precise adjustment of the metallodrug candi-
dates to demonstrate potent, targeted biological interactions and a unique pharma-
cological reaction concerning organ distribution and penetration of tumor cell
membranes.

The biological characteristics of transition metal complexes can be tuned by
incorporating multifunctional bioactive ligand frameworks, crucial in reducing
drug-induced toxicity and enhancing the selectivity of metallodrugs by targeting
specific therapeutic areas (Storr et al. 2006). This modulation often involves
‘Chelation,” the process of binding a ligand to a metal ion (derived from the word
‘chela,” resembling a pincer-like claw), which fine-tunes metal properties by intro-
ducing ligands that act as active pharmaceutical agents with binding atoms (Morphy
and Rankovic 2005; Gao et al. 2005; Ma et al. 2005; Boros et al. 2020). Ligands
play a role in mitigating metal-ion overload effects, inhibiting specific metalloen-
zymes, redistributing metal ions, altering reactivity and lipophilicity, stabilizing
particular oxidation states, and contributing to substitution inertness (Top et al.
2003; Heuer-Jungemann et al. 2019).

This approach enables the development of a single chemical entity capable of
concurrently modulating multiple targets, potentially offering superior efficacy
against complex diseases. To enhance the efficacy and safety of chemotherapeutic
drugs, researchers, including our group, have modified metal complex structures by
integrating suitable bioactive ligand functionalities such as chiral auxiliaries/recog-
nition (Ma and Waxman 2008; Arjmand et al. 2023; Zhang and Lu 2021; Khursheed
et al. 2022; Zehra et al. 2019, 2021).

Gold has been recognized for its medicinal potential since ancient times. In the
nineteenth century, gold was considered a ‘panacea’ for diseases. Alchemists knew
that metallic gold could dissolve in aqua regia and revert to metallic form as stable
colloid solutions (Kostova 2006a; Best and Sadler 1996). Neutralized gold
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solutions, known as ‘aurum potabile’ or drinkable gold, were widely used in ther-
apy, yet their specific therapeutic potential for diseases remained unclear. The clini-
cal application of Gold(I) complexes to treat rheumatoid arthritis was
well-established, while Gold(I) and gold(IIT) complexes, being isostructural and
isoelectronic with platinum(Il) complexes (d® system), were known as anticancer
agents and extensively reviewed (Ott 2009; Berners-Price and Filipovska 2011;
Bertrand and Casini 2014). Gold(III) typically forms square planar complexes in
solution. Since the geometry of Pt(I) cisplatin drug is square planar, an important
criterion for its action as an anticancer drug, Au(III) compounds could also be used
as anticancer agents based on the same rationale with decreased toxicity profile.
Auranofin, a gold-based drug clinically used to treat rheumatoid arthritis, was
observed to induce apoptosis in cisplatin-resistant cell lines (Fig. 1.6) (Nardon et al.
2014; Lima and Rodriguez 2011; Nobili et al. 2010). Extensive studies into the
mechanism of auranofin identified several enzymatic targets for its in vivo mode of
action at the molecular level (Abdalbari and Telleria 2021; Marzano et al. 2007;
Milacic et al. 2008). Auranofin inhibited DNA, RNA, and protein synthesis at cyto-
toxic concentrations but did not directly interact with DNA, unlike other gold com-
plexes. The cellular association, cytotoxic activity, and efflux were found to be
dose-, time-, and temperature-dependent. Studies suggested that among a series of
gold(I) complexes, those containing a phosphine ligand showed in vitro cytotoxicity
(Mirabelli et al. 1986). Chloro(triethylphosphine)gold(I), an analog to auranofin
wherein the thiosugar was replaced by chlorine, also exhibited potent cytotoxicity
(Gamberi et al. 2015). Investigations into the mode of action indicated mitochondria
as the target for auranofin and other gold complexes (Rush et al. 1987; Hoke et al.
1989; Huang et al. 2011; Park et al. 2014).
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Fig. 1.6 Notable gold complexes with anticancer properties
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Ruthenium holds a prominent position among metal-based chemotherapeutic
anticancer agents, following platinum and gold (Clarke 2002). Ruthenium(III) com-
plexes, namely  imidazolium  frans-[tetrachlorido(dimethyl  sulfoxide)
imidazoleruthenate(Ill)] (NAMI-A) and indazolium trans-[tetrachloridobis(1H-
indazole)ruthenate(II)] (KP1019) along with its sodium analog KP1339, have
undergone investigation in phase I and phase II clinical trials (Keppler and Rupp
1986; Mestroni et al. 1994). These compounds—NAMI and NAMI-A—feature a
pseudo-octahedral ruthenium(III) center with distinct ligand configurations con-
taining various axial ligands. In NAMI, one ligand is bonded in a sulfur (S)-donor
mode, specifically dimethyl sulfoxide (DMSO-S), whereas in NAMI-A, an imidaz-
ole ligand occupies an axial position. The negative charge in both NAMI and
NAMI-A is counterbalanced by different cations, with NAMI neutralized by a
sodium ion (Na*) and NAMI-A by an imidazolium cation. While NAMI-A exhibits
exceptional stability in the solid state, it undergoes relatively rapid hydrolytic pro-
cesses in aqueous solutions, with the rate strongly dependent on pH (Mestroni et al.
1994; Alessio et al. 2004; Bouma et al. 2002; Bacac et al. 2004). Intriguingly,
NAMI-A-type complexes bearing azole ligands like pyrazole and thiazole were
observed to be less basic than imidazole-bearing complexes and showed greater
stability than NAMI-A in slightly acidic aqueous solutions, following a dissociative
aquation mechanism (Bergamo et al. 2012).

Despite their structural similarity, NAMI-A & KP1019 (Fig. 1.7) exhibit notably
different cytotoxic responses. While KP1339 (clinically termed IT-139) demon-
strates activity against primary cancers and significantly curtails tumor growth in
various in vivo models, including chemo-resistant tumors like colorectal cancers
(Kostova 2006b), NAMI-A is effective against secondary tumor cells or metastatic
cancers formed after migration of cancer cells from the primary site to different
organs via blood or lymph (Sava et al. 2003). In vivo evaluations of NAMI-A across
multiple models have shown its ability to impede the development and growth of
pulmonary metastases in various solid tumors, including Lewis lung carcinoma
(Sava et al. 1998), MCa mammary carcinoma (Meier-Menches et al. 2018), TS/A
mammary adenocarcinoma (Alessio and Messori 2019), and human tumors in mice.
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Fig. 1.7 Structure of prominent Ruthenium anticancer agents
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Hence, understanding the precise mechanisms behind the anticancer activity of
metallodrugs is imperative to support the clinical development of drugs and circum-
vent failures in later stages of research and clinical trials.

Recently, there has been an increasing interest in ruthenium(II)-arene complexes
as a promising group of anticancer agents. RAPTA type complexes represented by
the general formula [Ru(n®-arene)Cl, (PTA)] (PTA = 1,3,5-triaza~7—phosphaada-
mantane), particularly, [Ru(n® —p—cymene)Cl,(PTA)] have exhibited substantial
potency in vitro, showcasing high ICs, values (Yan et al. 2005), (Scolaro et al. 2007;
Anuja et al. 2022; Sandland et al. 2020). In vivo studies, on the other hand, demon-
strated high activity towards metastatic tumors but with reduced systemic toxicity.
They impede cell growth by instigating G2/M phase arrest and inducing apoptosis
in cancer cells. Previous studies have also highlighted the pH-dependent selectivity
of RAPTA-type complexes toward cancer cells. Tumor environments, often charac-
terized by hypoxia and relying on glycolysis for energy, produce lactic acid, result-
ing in an overall reduction in cellular pH. Reports indicate tumor cell environments
with pH as low as 5.5, compared to healthy cells with pH values around 7.2, sup-
porting this hypothesis (Scolaro et al. 2005).

Titanium(IV) complexes (Fig. 1.8) have attracted significant attention due to
their applications in cancer treatment, notably after two groundbreaking com-
plexes—titanocene dichloride and budotitane—entered phase I clinical trials.
Titanocene dichloride, Ti(n>-CsH;),Cl,, exhibited remarkable antitumor activity
and progressed to phase I clinical trials. However, in phase II trials involving patients
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Fig. 1.8 Structures of titanium anticancer compounds
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with metastatic renal-cell carcinoma or metastatic breast cancer, Cp,TiCl, demon-
strated inadequate efficacy (Kopf-Maier 1994; Cristododoulou et al. 1998).
Titanocene dichloride was found to inhibit DNA synthesis, covalently binding to
DNA and inducing apoptosis (Guo et al. 2001). Moreover, its DNA binding was
mediated through the phosphate backbone rather than the nucleobases, as observed
with cisplatin.

The structure of titanocene complexes showed a direct relationship with their
cytotoxic effectiveness, but the mechanistic insights of cytotoxicity induced by
titanocene(IV) complexes are still underway. Previous literature reports indicated
that titanium ions enter cancer cells with the help of the primary iron transport pro-
tein called ‘transferrin’ (Kopf-Maier 1994; Cristododoulou et al. 1998; Guo et al.
2001; Tinoco et al. 2016) and move into the nucleus through active transport, facili-
tated by ATP. Ultimately, the binding of titanium ions to DNA triggers cell death
(Kopf-Maier and Krahl 1983; Kopf-Maier 1990) (Scheme 1.1). Recent progress has
unveiled the interactions between a ligand-bound Ti(IV) complex and various pro-
teins or enzymes (Tinoco et al. 2007, 2008; Pavlaki et al. 2009), suggesting an
alternative mechanism for cell death.

ﬁu

Ti

/f’
% N
Transferrin (sTf)

Tiy-sT
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Nucleus

Lysosome Apoptosis

Scheme 1.1 Suggested mechanism of action for ‘titanocene’ derivatives
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Copper, a coinage trace element, assumes a vital role in numerous biochemical
processes, serving as a pivotal component for various metalloenzymes and proteins
like cytochrome oxidase, superoxide dismutase (SOD), ascorbate oxidase, cerulo-
plasmin, and tyrosinase, acting either as a structural or catalytic cofactor. Positioned
as the 29th element on Mendeleev’s periodic table, copper is present in three oxida-
tion states—Cu(III), Cu(Il), and Cu(I)—with Cu(II) being the most favorable state
due to its d° electronic configuration, capable of transiting to the Cu(I) state in vivo.
The redox chemistry of copper holds critical significance in cell physiology, func-
tioning as a catalytic cofactor in mitochondrial respiration, iron absorption, free
radical scavenging, and elastin cross-linking processes. The accessible biological
redox pairs of Cu(II)/Cu(I) bear significant implications for metallo-nuclease reac-
tions by involving reactive oxygen species (ROS), directly produced through the
interaction of copper with molecular oxygen.

Sigman et al. introduced the first copper nuclease complex, paving the way for
novel research avenues exploring the interactions of copper complexes with nucleic
acids (Sigman et al. 1979, 1993). Copper complexes induce DNA cleavage through
hydrolysis of DNA phosphate esters and nucleobases, or oxidation of deoxyribose
sugar. Additionally, they can bind to DNA/RNA through various noncovalent inter-
actions (Fig. 1.9).

The toxicity induced by copper complexes stems from the involvement of free
copper ions in generating reactive oxygen species (ROS). The proposed mechanism
suggests that under certain conditions, Cu(Il) can be reduced to Cu(I) in the pres-
ence of superoxide (‘O,") or reducing agents like ascorbic acid or glutathione (GSH).
Cu(I) can then catalyze the formation of hydroxyl radicals (OH") from hydrogen
peroxide (H,0,) via reactions like the Haber—Weiss reaction (Kehrer 2000):

Fig. 1.9 Prominent anticancer copper-based chemotherapeutic agents
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Cu(I1)+0;" — Cu(1)+0,
Cu(I)+H,0, > Cu(II)+OH" +OH"
0, +H,0, >0, +0H +O0H"

These highly reactive hydroxyl radicals could interact with biological molecules,
leading to oxidative modifications in cellular components like lipids, proteins, and
DNA. This process disrupts the cell’s redox balance and may interfere with redox-
related cellular signaling pathways (Gupte and Mumper 2009; Theophanides and
Anastassopoulou 2002). Copper has been shown to induce DNA damage and base
oxidation by generating ROS. GSH has been observed to inhibit free radical forma-
tion by copper ions when in the presence of hydrogen peroxide, ascorbate, and
DNA. This protective effect is attributed to GSH’s ability to stabilize Cu(I), prevent-
ing redox cycling and the generation of free radicals. Additionally, copper(Il) also
forms thiyl radicals, RS’, and other ions upon interaction with molecules like cyste-
ine and methionine, which may contribute to cellular damage (Galaris and
Evangelou 2002):

RSH +Cu(Il) > RS +Cu(I)+H"*

Although intracellular free copper availability is limited, suggesting efficient
copper chelation in cells, copper’s affinity for binding to DNA exceeds that of other
divalent cations, promoting DNA oxidation (Valko et al. 2005).

Copper ion binding in specific sites can alter the conformational structures of
biomacromolecules like DNA/RNA or proteins, (Burkitt 1994; Kagawa et al. 1991).
This binding property has been harnessed in developing various medicinal com-
pounds with applications in antibacterial, anticancer, and anti-HIV AIDS therapies.

Copper complexes have emerged as promising anticancer agents due to their
diverse potency in vitro and in vivo against a wide range of human cancer cells.
Previous research suggests that cancerous tissues typically exhibit higher copper
levels compared to normal cells, influencing various aspects of tumor growth, pro-
gression, and metastasis (Park 2016; Balsano et al. 2018).

Derived from a range of ligands such as Schiff bases (Kuwabara et al. 1986; Gou
et al. 2017; Nunes et al. 2022; Tabassum et al. 2013; Niu et al. 2016; Kartalou and
Essigmann 2001), amino acids (Zehra et al. 2019; Parveen et al. 2020; Zhang et al.
2004; Ramakrishnan et al. 2009), peptides (Arjmand et al. 2020; Fu et al. 2014,
2015), azoles (Morier-Teissier et al. 1993; Hu et al. 2018; Steiner et al. 2014,
Devereux et al. 2007), terpyridines (Godlewska et al. 2013; Rajalakshmi et al. 2012;
Abdi et al. 2012), polypyridyls (Kumar et al. 2011; Abosede et al. 2016; Ng et al.
2016), thiosemicarbazones (Angel et al. 2017; Palanimuthu et al. 2013; Gu et al.
2019; Balakrishnan et al. 2020), and various naturally occurring bioactive com-
pounds like coumarins (Deng et al. 2018; Pivetta et al. 2017; Usman et al. 2017),
and chromones (Das et al. 2015; Kalaiarasi et al. 2018; Yousuf et al. 2015), copper-
based anticancer drugs have demonstrated significant efficacy through diverse bio-
chemical mechanisms. These mechanisms include interfering with angiogenesis,
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Fig. 1.10 The quantity of articles published in the Web of Science regarding ‘copper and antican-
cer’ between 2000 and 2020

proteasome activity inhibition, modulation of intracellular ROS levels, and induc-
tion of apoptosis by targeting specific cellular components (Mejia et al. 2018; Wang
et al. 2010; Almond and Cohen 2002; Yang et al. 2013; Fulda 2009). As evident
from the rising number of publications since 2000 (Fig. 1.10), interest in copper
complexes as potential anticancer drugs has grown significantly over the past decade.

Although there has been an enormous advancement in the development of novel
nonplatinum metallodrugs, there are only a handful of inorganic anticancer drugs
that have crossed R&D stages, and finally reached clinical trials and were approved
as drugs by the FDA. Copper-based compounds have attracted a lot of attention
among metallodrugs, as they are proven to improve therapeutic potency signifi-
cantly, reduce systemic toxicity, and show a broad spectrum of activity against vari-
ous phenotypes of cancers including resistant cancerous cells (Santini et al. 2014;
Wehbe et al. 2017). Lena Ruiz-Azuara et al. have synthesized patented mixed che-
late copper(IT) complexes that were registered as Casiopeinas® Casiopeinas® repre-
sent a collection of over 100 copper-based compounds characterized by a general
formula [Cu(N-N)(O-0)]NO; and [Cu(N-N)(N-O)]NO;, where O-0O: acetylaceto-
nate or salicylaldehyde, N-O: a-L-aminoacidates or peptides and N-N is aromatic
substituted 1,10-phenanthrolines or 2,2’-bipyridines (Ruiz-Azuara 1992, 1993,
1996, 1997) (Fig. 1.11). These compounds have undergone cytotoxicity assess-
ments across various tumor cell lines such as colorectal (Carvallo-Chaigneau et al.
2008), neuroblastoma (Hernandez-Lemus et al. 2013), medulloblastoma (Mejia and
Ruiz-Azuara 2008) and breast demonstrating differential toxicity among the ana-
logs (Ruiz-Azuara and Bravo-Gémez 2010; De Vizcaya-Ruiz et al. 2000; Gracia-
Mora et al. 2001).

Casiopeina Ill-ia is the first copper-based anticancer chemotherapeutic agent that
has entered phase I clinical trials as it exhibits significantly low cytotoxicity in com-
parison with phenanthroline subgroup (Alvarez et al. 2018a) Consequently, it ranks
among the most extensively researched molecules within this category. Heterocyclic
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Fig. 1.11 Structure of Casiopeinas. (a) Cas Ilgly; (b) CasllI —ia; (¢) Cas IIIEa copper complexes
that have entered clinical trials

aromatic ligands viz., substituted 1,10-phenanthrolines (phen) and 2,2’-bipyridines
(bpy) and possessing nitrogen-donor atoms exhibited relatively high affinity for
copper (Zehra et al. 2021; Alvarez et al. 2018b; Eremina et al. 2020) while the
extended aromatic ring offers a high binding propensity to DNA by intercalative
mode usually by synergistic approach along the metal center. The amino acid ligand
acts as an ancillary secondary ligand which is biocompatible with biomacromole-
cules DNA, dictating the Cas III molecule to acquire distorted square planar geom-
etry. These studies concluded that the nature, quantity, and positioning of substituents
on diimine ligands, as well as modifications involving L-amino acids or O—O donors,
significantly influence the selectivity or biological activity exhibited by copper(II)
complexes with ternary or mixed ligands.

Cobalt stands as an essential biocompatible trace element present in all animals,
vital for numerous biologically significant processes. It is predominantly found in
the form of vitamin B12, cobalamin, where cobalt exists primarily in the +1 oxida-
tion state (capable of oxidation to the +2 and +3 states) and adopts an octahedral
geometry (Munteanu and Suntharalingam 2015; Renfrew et al. 2018). The various
forms of cobalamin play critical roles in red blood cell formation, DNA synthesis,
and regulation, as well as the maintenance of normal brain and nerve function. The
first biological investigation of cobalt complexes, conducted by Dwyer et al. in 1952
(Dwyer et al. 1952, 1957), focused on assessing the toxicity of several cobalt com-
plexes (Fig. 1.12) through intraperitoneal administration in mice. These complexes
included tris-acetylacetone cobalt(Ill), racemic or optical isomers of tris-
ethylenediamine cobalt(IIl) nitrate, 1;8-bis(salicylideneamino)-3;6-dithiaoctane
cobalt(IIT) chloride, 10-bis(salicylideneamino) 7-dithiadecane cobalt(Ill) iodide,
and tris-glycine cobalt(III) (Fig. 1.13).

The findings from the experiments showcased that the doses needed to induce
lethality for the various cobalt complexes tested were notably high, ranging between
75 and 165 mg/kg, emphasizing the minimal systemic toxicity associated with
cobalt. While the initial investigations with cobalt complexes didn’t directly lead to
the development of cobalt-based anticancer treatments, they did pave the way for
researchers to delve into the biological capabilities of compounds containing cobalt.
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Fig. 1.13 Chemical structures of cobalt(Ill) complexes employed in early biological
investigations

Consequently, several therapeutic cobalt compounds have been synthesized, exhib-
iting properties with antifungal, antiprotozoal, and antibacterial effects.

The primary breakthrough in cobalt compound medical applications is high-
lighted by the clinical advancement of Doxovir (CTC-96), specifically developed
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for Herpes labialis or herpes simplex virus 1 (Schwartz et al. 2001). Doxovir, a
cobalt(IIT) complex comprising bis(acetylacetone)ethylenediimine (acacen) with
two axially coordinated 2-methylimidazole ligands, demonstrates potent microbici-
dal effects against drug-resistant strains of the herpes virus. Notably, it has recently
completed phase II clinical trials. Meade et al. delineated therapeutically promising
Co(IIl) Schiff base bioconjugates that targeted histidine residues in (zinc-finger)
proteins with precision, inhibiting various transcription factors linked to cancer pro-
gression and metastasis (Harney et al. 2009, 2012; Hurtado et al. 2012).

Schiff bases, formed by the condensation of a primary amine with a carbonyl
compound, notably offer flexible scaffolds in Schiff base metal complexes, suitable
for structural modifications catering to diverse biological applications. Recent
reports highlight simple cobalt(Il) and cobalt(IIT) Schiff base complexes exhibiting
reasonable anticancer activity. For instance, the cobalt(II) Schiff base complex,
incorporating a 4-(4-aminophenyl)morpholine derivative, displayed limited activity
against hepatocellular carcinoma cells (HepG2), with an ICs, value in the milli-
molar range (Dhahagani et al. 2014). Conversely, cobalt(II) complexes featuring
2,6-bis(2,6-diethylphenyliminomethyl)pyridine exhibited improved cytotoxicity
against colorectal adenocarcinoma (HCT-15) and cervix adenocarcinoma (HeLa)
cells, with ICs, values ranging from 45 to 100 pM (Martinez-Bulit et al. 2015).
Another cobalt(IIl) complex, containing the tridentate Schiff base ligand derived
from the reaction of salicylaldehyde and ethylenediamine, displayed moderate
activity (ICsy < 100 pM) against human breast cancer cells (MCE-7).

Zinc, an essential element and the second most abundant trace metal in the
human body, plays a pivotal role in numerous enzymatic processes, acting as a
structural and catalytic component. Its involvement in vital biochemical processes
such as DNA synthesis and repair, transcription factor function, and genetic mes-
sage translation is crucial for cell survival, tissue protection, cellular proliferation,
differentiation, apoptosis, immunity, and reproduction (Jarosz et al. 2017). Zinc’s
distinct chemico-physical properties differentiate it from other first-row transition
metals. The dicationic Zn*" element, being redox inactive with a d'° configuration
and diamagnetic nature, exhibits strong Lewis acidity, allowing stabilization of vari-
ous coordination geometries and rapid ligand exchange. Despite these advantageous
properties, the lack of color in zinc complexes limits their characterization through
conventional spectroscopic techniques, making them ‘spectroscopically silent’ in
biological contexts (Penner-Hahn 2005). However, their high coordination geome-
try flexibility offers a range of arrangements, with the tetrahedral arrangement being
prevalent in proteins.

Zinc complexes are known to exhibit a wide range of biological activities, such
as anti-inflammatory, antimicrobial, anticonvulsant, antidiabetic, antioxidant, antip-
roliferative, antitumor, and anti-Alzheimer agents, generally exhibiting fewer side
effects and much lower toxicity as compared to other transition metals or metallo-
drugs in medicine. The antitumor activity of Zinc complexes has been attributed to
the ligand scaffold coordinated to the metal center. In this connection, a large num-
ber of Schiff bases complexes with N, O, and S donor atoms, non-Schiff base com-
plexes such as thiosemicarbazone, amino acids, flavonoids or curcumins and



