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Preface to the Second Edition 

The study of structural dynamics is best achieved if it is based on comprehensive 
knowledge of the theory of mechanics of materials, a subject on which there are 
several textbooks available: among others, my recently published book “Structural 
Mechanics” on Springer Verlag, 2019 (ref. [46]). In that book, it was possible to 
devote space for more general developments of stress-strain relationships as well as 
differential equations and virtual work relations than that which was possible in the 
first edition of “Structural dynamics”, a book which naturally was primarily devoted 
to dynamics rather than basic structural mechanics. Hence, it seemed natural to 
update “Structural dynamics”, and issue a second edition where it has been possible 
to make references to my recent book on structural mechanics, i.e., to leave out 
much of the basic structural mechanics theory that for the sake of completeness 
had to be included in the first edition. For the same reason, it has been possible 
to include more comprehensive and applicable solutions, e.g., with respect to the 
effects of cross-sectional asymmetry and time-invariant stress resultants. Regarding 
damping, additional information has been included about material and structural 
damping properties. The theory of the suspension bridge as well as the theory of the 
tuned mass damper have been allocated to separate new chapters. MATLAB routines 
behind key examples may be made available on request. 

Trondheim, Norway 
December 2023 

Einar N. Strømmen
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Preface to the First Edition 

This textbook is intended for studies in the theory of structural dynamics, with focus 
on civil engineering structures that may be described by line-like beam or beam-
column type of systems, or by a system of rectangular plates. Throughout this book, 
the mathematical presentation contains a classical analytical description as well as 
a description in a discrete finite element format, covering the mathematical devel-
opment from basic assumptions to the final equations ready for practical dynamic 
response predictions. Solutions are presented in time domain as well as in frequency 
domain. It has been my intention to start off at a basic level and step by step bring the 
reader up to a level where the necessary safety considerations to wind or horizontal 
ground motion-induced dynamic design problems can be performed, i.e., to a level 
where dynamic displacements and corresponding cross-sectional forces can actually 
be calculated. However, this is not a textbook in wind or earthquake engineering, and 
hence, relevant load descriptions are only included in so far as it has been necessary 
for the performance of illustrative examples. For more comprehensive descriptions 
of wind and earthquake-induced dynamic load and load effects, the reader should 
consult the literature, e.g., refs. [15] and [16]. Less attention has been given to other 
load cases, e.g., to any kind of shock or impact loading. Also, a comprehensive 
description of structural damping properties is beyond the scope of this book, but 
again, for the sake of completeness, a chapter covering the most important theo-
ries behind structural damping has been included. The special theory of the tuned 
mass damper has been given a comprehensive treatment, as this is a theory not fully 
covered elsewhere. For the same reason, a chapter on the problem of moving loads 
on beams has been included. 

The reading of this book will require some knowledge of structural mechanics, i.e., 
the basic theory of elasticity. Also, readers unfamiliar with the theory of stochastic 
processes and time domain simulations should commence their studies by reading 
Appendices A and B, or another suitable textbook.
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x Preface to the First Edition

Anne Gaarden has prepared the drawings. Thanks to her and all others who have 
contributed to the writing of this book. 

Trondheim, Norway 
September 2012 

Einar N. Strømmen



Notation 

Matrices and Vectors 

Matrices are in general bold upper-case Latin or Greek letters, e.g., K or Φ. 
Vectors are in general bold lower-case Latin or Greek letters, e.g., q or ϕ. 
diag[·] is a diagonal matrix whose content is written within the brackets. 
det(·) is the determinant of the matrix within the brackets. 
tr  (·) is the trace of a matrix.
 x is the norm of vector x, i.e.,  x = √

xT x. 

Imaginary Quantities 

i is the imaginary unit (i.e., i = 
√−1). Re(·) and Im(·) are the real and imaginary 

parts of the variable within the brackets, respectively. 

Superscripts and Bars Above Symbols 

Super-script T indicates the transposed of a vector or a matrix. 
Super-script * indicates the complex conjugate of a quantity. 
Dots above symbols (e.g., ṙ , r̈) indicates the time derivatives, i.e., d/dt , d2/dt2. 
Prime on a variable (e.g., C  

L or φ
 ) indicates the first derivative, e.g., φ = dφ/dx , 

two primes are the second derivative (e.g., φ  = d2φ/dx2), and so on. 

Bar (−) above a variable (e.g., 
− 
r ) indicates its time-invariant average value. 

Tilde (~) above a symbol (e.g., M̃n) indicates a modal quantity. 
Hat (∧) above a symbol (e.g., H

 

η) indicates a normalised quantity.
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xii Notation

The Use of Indices and Superscript 

Index x, y or z refers to structural axis. i and j are general indices on variables. 
n and m are mode shapes or element numbers. p and k are node numbers. 

Abbreviations 

CC and SC are short for the centre of cross-sectional neutral axis and the shear centre. 
tot  is short for total. max, min are short for maximum and minimum. 
Lor

 
A means integration over the entire length or the area of the system. 

Latin Letters 

A, A j Area, cross-sectional area, coefficient associated with variable j 
A∗
1 − A∗

6 Aerodynamic derivatives associated with the motion in torsion 
A, Am, An Connectivity matrix (associated with element m or n) 
a, ai Distance, coefficient, amplitude 
ax , ay, az Vector components associated with motion in x, y, z directions 
B Cross-sectional width 
b, bi Coefficient, bandwidth parameter 
bc Distance between cable planes is a suspension bridge 
bq Buffeting dynamic load coefficient matrix at cross-sectional level 
C , C Damping coefficient, matrix containing damping coefficients 
Cae, Cae Aerodynamic damping, aerodynamic damping matrix 
c, ci Coefficient, damping coefficient at cross-sectional level 
c, cae Damping matrix at element level, aerodynamic damping matrix 
Co, Co Co-spectral density, co-spectral density matrix 
Cov j Covariance matrix associated with variable j 
D, d Cross-sectional depth, coefficient 
d, di , dk Element displacement vector, element end displacement component 
E, Ei Modulus of elasticity, impedance function (i = 1, 2, . . .  ) 
E0 Matrix containing cross-sectional elastic constants 
e, ec Exponential number (≈ 2.718281828), cable sag 
F, F, Fn Force, force vector, element force vector 
f, fn Frequency [Hz], eigenfrequency associated with mode n 
f (·) Function of variable within brackets 
G Modulus of elasticity in shear 
G0 Matrix containing cross-sectional time invariant stress resultants 
g(·), g Function of variable within brackets, gravity constant 
H (t), H̄ Horizontal cable force component, its mean value



Notation xiii

H∗
1 − H∗

6 Aerodynamic derivatives associated with the across-wind motion 
Hn , Hr Frequency response function, frequency response matrix
 Hη,  Hη Modal frequency response functions, matrix containing  Hηn 

hc, hm Length of suspension bridge hangers, hanger length at mid-span 
hr Vertical distance between shear centre and hanger attachment 
h0 Height (above girder) of suspension bridge tower 
It , Iw St Venant torsion and warping constants 
Iy , Iz Moment of inertia with respect to bending about y or z axis 
I j Turbulence intensity of flow components j = u, v or w 
I Identity matrix 
i The imaginary unit (i.e., i = 

√−1) 
J, J Joint acceptance function, joint acceptance matrix 
j Index variable 
K , K Stiffness, stiffness matrix 
Kae, K ae Aerodynamic stiffness, aerodynamic stiffness matrix 
k Index variable, node, or sample number 
kp Peak factor 
k, kae Stiffness matrix at element level, aerodynamic stiffness matrix 
L , L(t, r, ṙ) Length (of structural system), Lagrange function 
m Ln Integral length scales (m = x, y or z, n = u, v or w)
 e Effective length 
M, Mg, Mg Mass, concentrated mass, mass matrix containing Mg 

Mn Cross-sectional bending moment (n = y or z) 
Mx , Mθ Cross-sectional torsion moment, external torsion moment 
m Index variable 
mx , my, mz Mass per unit length associated with motion in x, y, z directions 
M Mass matrix
 mn Modally equivalent and evenly distributed mass (n = x, y or z) 
m0, m Mass matrix at a cross-sectional level, mass matrix at element level 
N , Nr Number, number of elements, number of degrees of freedom 
N , Nx , Ny Normal force, normal force in x or y directions 
n Index variable 
P, PF , Pq External load energy 
P∗
1 − P∗

6 Aerodynamic derivatives associated with the along-wind motion 
p, p() Index variable, node or sample number, probability of occurrence 
q, qn, q Distributed load, load vector at cross-sectional level, n = y, z or θ 
R, R External load, reaction force, external load vector at system level
 R, R Modal load, Modal load vector 
r, ri , r Displacement or rotation, displacement vector, i = 1, 2, . . .  
rel (x), rel Element cross-sectional displacement, displacement vector 
St Strouhal number 
S, S, S j Auto or cross-spectral density, cross-spectral density matrix 
s Cross-sectional surface coordinate, relative time variable 
TM , Tm Motion energy of system body masses 
t, T Time, total length of time window



xiv Notation

U Instantaneous wind velocity in the main flow direction 
U, UM , Um Strain energy stored in the material fibres of the system 
u Infinitesimal element displacement in x direction, fluctuating along-

wind component 
V ,VR Volume, mean wind velocity, resonance mean wind velocity 
Vy, Vz Shear forces 
v Infinitesimal element displacement in y direction, fluctuating across-

wind horizontal component 
w Infinitesimal element displacement in z direction, fluctuating across-

wind vertical component 
X, Y, Z Cartesian structural global axis 
x, y, z Cartesian structural element cross-sectional main neutral axis (with 

origo in the shear centre, x in span-wise direction and z vertical) 
xr Chosen span-wise position for response calculation 

Greek Letters 

α, β Coefficient, phase angle 
β
 
xp

 
Matrix containing mode shape values (1 · · · 6) at node position xp 

γ, γz, γθ Shear strain, shear strain associated with shear force or torsion 
δ, δ() Virtual displacement operator 
∂ Derivative operator 
ε, ε, ε j Strain, strain vector, strain component ( j = x, y or z) 
ζ, ζ Damping ratio, damping ratio matrix 
η, η Generalised coordinate, vector containing Nmod η components 
θ Cross-sectional rotation (about shear centre) 
κ Coefficient 
ν Poisson ratio 
λ, λn Wavelength, normalised eigenvalue 
μ Coefficient, friction coefficient 
Π Total energy 
ϑ Coefficient 
ρ, ρ j Density, density of air, density of component associated with j 
σ, σ2 Standard deviation, variance 
σn, τmn Normal stress, shear stress, m and n = x, y or z 
τ Time lag, dummy time variable 
φy, φz, φθ Mode shape components in y, z and θ directions 
ϕ(x, y) Plate mode shape functions 
Φ(x) 3 by  Nmod matrix containing all mode shapes ϕn 

Φ̂, ˆ̂Φ Matrices containing first and second-order derivatives of Φ 
Φr (xr ) 3 by  Nmod matrix containing the content of Φ at x = xr 
ϕn Mode shape number n



Notation xv

ψ, ψ, ψn Chosen approximate shape function, shape function matrix 

ψ̂, ˆ̂ψ Contains first and second-order derivatives of ψ 
Ω Coefficient 
ω Circular frequency (rad/s), sector coordinate 
ωn Eigenfrequency associated with mode shape n 
ωn(V ) Resonance frequency assoc. with mode n at mean wind velocity V 
ω0 Sector coordinate, ω0 =

 
Ards  

Symbols with Both Latin and Greek Letters

 f, ω Frequency segment
 t Time step
 s Spatial separation (s = x, y or z) 
δΠ Change of energy
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Chapter 1 
Basic Theory 

Contents 

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
1.2 d’Alambert’s Principle of Instantaneous Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 
1.3 The Principle of Energy Conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 
1.4 The Rayleigh–Ritz Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 
1.5 The Principle of Hamilton and Euler–Lagrange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 
1.6 The Principle of Virtual Displacements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 
1.7 Galerkin’s Method of Weighted Residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 

1.1 Introduction 

This textbook focuses on the prediction of dynamic response of slender line-like or 
flat plate type of civil engineering structures. It is a general assumption that structural 
behaviour is linear elastic and that any non-linear part of the relationship between 
load and structural displacements may be disregarded. It is taken for granted that the 
load direction throughout the entire span of the structure is perpendicular to the axis 
in the direction of its span, as shown in Fig. 1.2a. 

As shown in Figs. 1.1 and 1.2, a line-like beam type of structural element is 
described in Cartesian coordinate system (x, y, z), with its origo at the shear centre 
(SC) of the cross section, x in direction of its span and with y and z parallel to main 
neutral structural axes (i.e. the neutral axes with respect to cross sectional bending 
according to Hook’s law and Navier’s hypothesis), whose origo CC is defined by:

 
A

 
yc 
zc

 
d A  =

 
0 
0

 
where

 
yc 
zc

 
=
 
y − ey 
z − ez

 
(1.1)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
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2 1 Basic Theory

Fig. 1.1 Structural axes and displacement components 

Fig. 1.2 Basic axis and vector definitions
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Table 1.1 Approximate properties of materials [48] 

Material Density, 

ρ103 kg/m3 

Elastic modulus, 
E 109 N/m2 

Shear modulus, G 
109 N/m2 

Poisson ratio, υ 

Aluminium 2.7 70 27 0.34 

Brass 8.5 95 36 0.33 

Copper 8.9 125 46 0.35 

Concretea 2.4 ~30 12.5 0.2 

Glass 2.5 50–90 20–30 0.2–0.3 

Gold 19.3 80 28 0.423 

Iron 7.8 200 77 0.3 

Lead 11.3 17 6 0.43 

Magnesium 1.74 43 17 0.29 

Nickel 8.9 205 77 0.3 

Silver 10.5 80 29 0.37 

Steel 7.8 210 77 0.31 

Tin 7.3 4.4 1.6 0.39 

Wood, along grain 0.3–0.6 7–15 3–5 ≈ 0.4 
a In compression

If material density does not change over the area of the cross section, then main 
neutral axis (CC) will coincide with the mass centre, as defined by: 

 
A 
ρ

 
yc 
zc

 
d A  =

 
0 
0

 
(1.2) 

Basic properties of some engineering materials are shown in Table 1.1. Units 
throughout the book adhere to ISO definitions: 

• Displacement, rotation: meter (m), radians (rad) 
• time: second (s) 
• mass: kilogram (kg) 
• force: Newton (N = kg · m/s2, [1, 2]). 

The mean value (static part) of any load is assumed constant such that structural 
response can be predicted as the sum of a mean value and a fluctuating part, as 
indicated for the y-direction in Fig. 1.1a. Response displacements ry , rz , rθ and 
load components Fy , Fz , qy , qz and qθ are referred to shear centre (SC). Response 
displacement rx and load component Fx are referred to origo of main neutral axis. 
Similarly, cross sectional stress resultants Vy , Vz , Mx are referred to shear centre, 
while bending moments My and Mz , as well as axial stress resultant N, are referred 
to origin of main neutral axis. All forces, moments, stresses, and stress resultants 
are vectors in (x, y, z) coordinates. If the load (concentrated or evenly distributed) 
is stationary, it may always be split into mean time invariant and a fluctuating part:
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Ftot  = F + F(t) = 

⎡ 

⎢⎣ 
Fx 

F y 
F z 

⎤ 

⎥⎦ + 

⎡ 

⎢⎣ 
Fx (t) 
Fy (t) 
Fz (t) 

⎤ 

⎥⎦, qtot  = q + q = 

⎡ 

⎢⎣ 
q y (x) 
qz (x) 
qθ (x) 

⎤ 

⎥⎦ + 

⎡ 

⎢⎣ 
qy (x, t) 
qz (x, t) 
qθ (x, t) 

⎤ 

⎥⎦ (1.3) 

Structural response displacements as well as corresponding cross-sectional stress 
resultants will then also be stationary, comprising mean and fluctuating parts: 

r + r = 

⎡ 

⎣ r x (x) 
r z(x) 
r θ (x) 

⎤ 

⎦ + 

⎡ 

⎣ 
ry(x, t) 
rz(x, t) 
rθ (x, t) 

⎤ 

⎦ (1.4) 

and, as shown below, they may independently be obtained by satisfying the relevant 
static and dynamic equilibrium requirements of the system. 

1.2 d’Alambert’s Principle of Instantaneous Equilibrium 

In statics the equilibrium conditions of a system subject to a set of time-invariant 
forces Fi (with unit N) and moments M j (with unit Nm), is defined by:

 
i 

⎡ 

⎣ 
Fx 

Fy 

Fz 

⎤ 

⎦ 

i 

= 

⎡ 

⎣ 
0 
0 
0 

⎤ 

⎦ and
 

j 

⎡ 

⎣ 
Mx 

My 

Mz 

⎤ 

⎦ 

j 

= 

⎡ 

⎣ 
0 
0 
0 

⎤ 

⎦ (1.5) 

Given a body with volume V, translatory mass M =  V ρdV  , and rotational mass 
Mθn =

 
V ρa

2 
ndV  about axis n = x, y or z, where an is distance from mass centre 

to volume element dV. If the body is in rectilinear acceleration r̈n(t) or rotational 
acceleration r̈θn (t); then Newton’s second law states:

 
i 

⎡ 

⎣ Fx 

Fy 

Fz 

⎤ 

⎦ 

i 

= M 

⎡ 

⎣ 
r̈x 
r̈y 
r̈z 

⎤ 

⎦ and
 

j 

⎡ 

⎣ 
Mx 

My 

Mz 

⎤ 

⎦ 

j 

= 

⎡ 

⎣ 
Mθx r̈θx 
Mθy r̈θy 
Mθz r̈θz 

⎤ 

⎦ (1.6) 

where r̈n and r̈θn (n = x, y, z) have units m/s2 and rad/s2. Static equilibrium, as 
given in Eq. 1.5, follows from the condition that the system is at rest or at a constant 
translatory and rotational velocity, i.e., that: 

⎡ 

⎣ 
r̈x 
r̈y 
r̈z 

⎤ 

⎦ = 

⎡ 

⎣ 
0 
0 
0 

⎤ 

⎦ and 

⎡ 

⎣ 
r̈θx 
r̈θy 
r̈θz 

⎤ 

⎦ = 

⎡ 

⎣0 
0 
0 

⎤ 

⎦ (1.7)
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In dynamics (where Eq. 1.7 is not fulfilled) equilibrium considerations will have to 
include the motion of the system. This is done by adopting the principle of d’Alambert 
(first published by Lagrange [3]) that equilibrium of a system in motion can be estab-
lished by considering the system at an arbitrary instantaneous (frozen) position in 
space and time, where accelerations can be interpreted as inertia forces in accor-

dance with Newton’s second law, i.e.: as forces M 

⎡ 

⎣ 
r̈x 
r̈y 
r̈z 

⎤ 

⎦ and moments 

⎡ 

⎣ 
Mθx r̈θx 
Mθy r̈θy 
Mθz r̈θz 

⎤ 

⎦ 

that resist acceleration. 

Discrete Systems 

A simple example is illustrated in Fig. 1.3. A mass  M is suspended from a linear 
elastic spring with stiffness K. At left hand side the system is shown in its unloaded 
position. 

Fig. 1.3 Simple spring-mass system
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Let the system first be subject to gravity Mg (where g is gravity acceleration 
constant) and a time invariant (static) force F . The system is then at rest in a static 
position, it has been displaced a distance r . As shown in Fig. 1.3b, the equilibrium 
requirement is that K r = Mg + F , from which r may be calculated if all other 
quantities are known. Let the system be subject to an additional dynamic force F(t). 
Then, at arbitrary position rtot  = r + r(t), where r (t) is the dynamic displacement, 
the equilibrium condition is defined by the sum of external forces Mg + F + F(t) 
being equal to elastic spring force Krtot , plus a motion resistance (inertia) force 
M r̈tot  in accordance with Newton’s second law, i.e.: 

M r̈tot  + Krtot  = Mg + F + F(t) (1.8) 

Introducing rtot  = r + r (t), then: 

M r̈ + K (r + r ) = Mg + F + F(t) (1.9) 

and, since the static equilibrium condition is defined by K r = Mg + F , it is seen  
that Eq. 1.9 may be reduced into a purely dynamic equilibrium condition: 

M r̈ + Kr  = F(t) (1.10) 

Thus, it may be concluded that the equilibrium condition for such a linear elastic 
system may be split into two: a static time invariant equilibrium condition where only 
static loads are included (K r = Mg + F), and a dynamic equilibrium condition, 
where only dynamic loads are included [M r̈ + Kr  = F(t)], where forces due to 
instantaneous acceleration of the system is represented by inertia forces in opposite 
direction of the motion. For the system in Fig. 1.3, let us first assume that F(t) = 0, 
but that the mass has been set into an oscillating motion by imposing an initial 
displacement r (0) and corresponding velocity ṙ(0). Then Eq. 1.10 is reduced into 
M r̈ + Kr  = 0, and it is seen that its solution must be such that r is congruent to r̈ , 
which is obtained by: 

r (t) = b sin(ωnt) + c cos(ωnt) (1.11) 

where b and c are coefficients to match the position and velocity conditions at t = 0, 
from which it is seen that r (0) = c and ṙ (0) = ωnb. The frequency of motion ωn 

may then be obtained by introducing Eq. 1.11 into Eq. 1.10, from which:

 
K − ω2 

n M
 
r(t) = 0 (1.12) 

It is seen that non-trivial solution r (t)  = 0 can only be obtained if K − ω2 
n M = 0. 

Thus, the frequency of free unloaded and oscillatory motion is given by ωn = √
K /M . The motion is harmonic because it contains only a single and stationary 

frequency. This is what we call the eigenfrequency of the system. It has the unit
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Fig. 1.4 Unloaded and undamped motion of single degree of freedom system 

rad/s. In some cases, it may be convenient to convert it into fn = ωn/(2π ) with 
unit Hz  = 1/s, while yet another option is to introduce the period of the motion 
Tn = 1/ fn . A plot of a typical version of r (t) is shown in Fig. 1.4. 

As we shall see later, the only reason why there is a phase (time lag) between load 
and response in dynamics is the presence of damping, and therefore, it is a convenient 
mathematical simplification to convert the version of r(t) = b sin(ωnt)+c cos(ωnt) 
in Eq. 1.11 into a complex format: 

r (t) = Re
 
aei ωt

 
(1.13) 

by using the trigonometric property of two arbitrary angles α1 and α2 : sin α1 · 
sin α2 + cos α1 · cos α2 = cos(α1 − α2). Recalling that c = r(0) and b = ṙ (0)/ωn , 
it is seen that r(t) in Eq. 1.11 may then be written: 

r (t) = a · cos(ωt − β) where : 
⎧⎨ 

⎩ 
a = √b2 + c2 = 

 
[r (0)]2 +

 
ṙ (0) 
ωn

 2 
tan  β = b/c = ṙ (0)/[ωnr (0)] 

(1.14) 

Response r(t) may be expressed in a complex format by defining: a = c − ib  = 
|a|e−iβ = (a∗a)1/2 e−iβ , where i is the complex unit (i = 

√−1), i.e.: 

r (t) = Re
 
aeiωt

 = Re
 
(c − ib)ei ωt

 = Re
 |a|e−iβ eiωt

 
= |a|Re ei(ωt−β) = |a| cos(ωt − β) (1.15) 

Example 1.1: Two Parallel Springs 

A single mass with two parallel springs is shown on the left-hand side in Fig. 1.5.Next,  
it has been given an arbitrary harmonic motion r (t) = Re

 
aei ωt

 
. Equilibrium will 

require (see right hand side free body diagram): M r̈ + (K1 + K2)r = 0. Introducing 
r (t) = Re

 
aei ωt

 
, then:
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Fig. 1.5 Single mass with two parallel springs 

−ω2 M + (K1 + K2) = 0 ⇒ ωn = 
 
(K1 + K2)/M 

from which it may be concluded that stiffness contributions in parallel are additive. 

Example 1.2: Two Springs in Sequence 

A single mass with two springs in sequence is shown on the left-hand side of Fig. 1.6. 
Next, it has been given arbitrary harmonic displacement r2(t) = Re

 
a2eiωt

 
. During  

this motion the connection between the two springs has undergone a harmonic 
displacement r1(t) = Re

 
a1ei ωt

 
. Resisting force in upper spring is Fk1 = K 1r1, 

while resisting force in lower spring is Fk2 = K2(r2 − r1). The force throughout the 
sequence of springs must be unchanged. I.e., Fk1 = Fk2 . Thus: 

K1r1 = K2(r2 − r1) ⇒ r1 = 
K2 

K1 + K2 
r2 ⇒ Fk1 = Fk2 = Fk = K1r1 

= K1K2 

K1 + K2 
r2

Fig. 1.6 Single mass with two springs in sequence 
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Fig. 1.7 Single mass with springs on either side 

Equilibrium of the mass (see right hand side of Fig. 1.6) will then require: 
M r̈2 + [K1K2/(K1 + K2)]r2 = 0, which, with r2(t) = Re

 
a2eiωt

 
, the following is 

obtained: 

−ω2 M + K1K2 

K1 + K2 
= 0 and thus: ωn =

 
Ktot  

M 
where Ktot  =

 
1 

K1 
+ 

1 

K2

 −1 

It may be concluded that stiffness contributions in sequence are inversely additive. 

Example 1.3: Springs on Either Side of a Single Mass 

A mass with springs on either side is shown at left-hand side of Fig. 1.7. The springs 
have been pre-stretched by a constant time invariant normal force N , such that prior 
to any displacement the system is in a state of equilibrium. It is assumed that displace-
ments are never smaller than that which will cause the springs to slacken. The mass 
has been set into harmonic motion r(t) = Re

 
aeiωt

 
. At far right is shown free body 

diagram of forces acting on the mass. Equilibrium will require: 

M r̈ +  N + K1r
 −  N − K2r

 = 0. 

Introducing r (t) = Re
 
aeiωt

 
, the following is obtained: 

−ω2 M + K1 + K2 = 0 and thus: ωn =
 
(K1 + K2)/Mωn =

 
(K1 + K2)/M 

from which it may be concluded that stiffness contributions are additive.
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Fig. 1.8 Small displacement pendulum 

Example 1.4: The Pendulum 

The case of a simple pendulum is shown in Fig. 1.8. For simplicity, the mass of 
the rod is assumed negligible. At arbitrary rotation θ (t) = Re

 
aθ eiωt

 
, a free body 

diagram of the system is shown to the right. In this situation the mass M is subject 
to gravity force Mg, tangential acceleration d(θ L)/dt2 and corresponding restoring 
inertia force Md(θ L)/dt2 = ML  θ̈ . Instantaneous moment equilibrium about point 
p will then require: 

(ML  θ̈ )L + MgL sin  θ = 0 ⇒ θ̈ + (g/L) sin θ = 0 

which cannot be analytically solved unless we assume θ small, such that sin θ ≈ θ , 
in which case θ̈ + (g/L)θ = 0. Thus, by introducing θ = Re

 
aθ eiωt

 
, the following 

is obtained: g/L − ω2 = 0, from which the eigenfrequency is given by: 

ωn =
 
g/L 

The system in Fig. 1.3, as well as all the examples above, contains only one 
unknown displacement component. We say such systems have one degree of freedom. 
A more complex system is illustrated at left hand side of Fig. 1.9, showing two masses 
M1 and M2 subject to forces F1 and F2. This system has two degrees of freedom, r1 
and r2, i.e.: 

• the number of degrees of freedom in a system is equal to the number of unknown 
displacement components that are necessary to enable a complete depiction of 
the position of the system at all times.
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Fig. 1.9 Spring mass system with two degrees of freedom 

The equilibrium requirements (see free body diagram of M1 and M2 at right hand 
side of Fig. 1.9) are then given by: 

K1r1 + M1 r̈1 − F1 − K2(r2 − r1) = 0 
K2(r2 − r1) + M2 r̈2 − F2 = 0

 
(1.16) 

This may more conveniently be written in a matrix–vector format:

 
M1 0 
0 M2

  
r̈1 
r̈2

 
+
 
K1 + K2 −K2 

−K2 K2

  
r1 
r2

 
=
 
F1 

F2

 
(1.17) 

which, by defining: 

r =
 
r1 
r2

 
, M =

 
M1 0 
0 M2

 
, K =

 
K1 + K2 −K2 

−K2 K2

 
and F =

 
F1 

F2

 

(1.18) 

may be reduced into the following compact format: 

Mr̈ + K r  = F (1.19) 

If F = 0, then the solution is a harmonic motion, which may be described by: 

r = Re
 
ϕeiωt

 
where: ϕ =

 
a1 
a2

 
(1.20)
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By introducing this into Eq. 1.19, then the following requirement is obtained:

 
K − ω2 M

 
ϕ = 0 (1.21) 

A non-trivial solution r  = 0 can only be obtained if ϕ  = 0, i.e., only if: 

det
 
K − ω2 M

 = det
 
(K1 + K2) − ω2 M1 −K2 

−K2 K2 − ω2 M2

 

=  K1 + K2 − ω2 M1
  
K2 − ω2 M2

 − K 2 2 = 0 (1.22) 

which may be further developed into the polynomial: 

ω4 − [(K1 + K2)/M1 + K2/M2]ω
2 + (K1/M1)(K2/M2) = 0 (1.23) 

Its roots are:  

ω2 
1,2 = 

1 

2

 
K1 + K2 

M1 
+ 

K2 

M2

 
∓ 

 
1 

4

 
K1 + K2 

M1 
+ 

K2 

M2

 2 

− 
K1 

M1 

K2 

M2 
(1.24) 

Equation 1.21 is an eigenvalue problem whose solution is given by ω1 and ω2. 
They are the eigenfrequencies of the system. The number of eigenfrequencies will 
always be the same as the number of degrees of freedom in the system. They are 
usually presented in ascending order because in almost all practical cases it is a few 
of the lowest that are of primary interest. For each eigenfrequency ωn there is a 
corresponding eigenvector ϕn . Introducing ω1 and ω2, back into Eq. 1.21, one after 
the other, we obtain: 

ϕ1 = a1
 

1 
K1 + K2 − ω2 

1 M1
 
/K2

 
(1.25) 

ϕ2 = a1
 

1 
K1 + K2 − ω2 

2 M1
 
/K2

 
(1.26) 

It is seen that ϕ1 and ϕ2 may be arbitrarily scaled (e.g., by setting a1 = 1). Thus, 
they do not represent the actual displacements of the system, only its shape. 

We call them the mode shapes of the system. (A displacement response can only 
be quantified if we have a forcing action or an initial displacement on the system.) 
Let K1 = K2 = 2 · 107 Nm and M1 = M2 = 106 kg. Then ω1 = 2.76 rad/s and 
ϕ1 = a1

 
1 1.618

 T 
, while ω2 = 7.24 rad/s and ϕ2 = a1

 
1 −0.618  T . The motion 

represented by ω1 and ϕ1 is shown in the upper diagram in Fig. 1.10. The motion 
represented by ω2 and ϕ2 is shown in the lower diagram in Fig. 1.10. In both cases 
r1(t = 0) = 0.5 and ṙ1(t = 0) = 0.5. Note that at ω1 the two masses are moving 
in harmony, while at ω2 they are moving in opposite direction to each other, in 
compliance with the two eigenmodes.
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Fig. 1.10 Harmonic motion of two degree of freedom system 

Example 1.5: Two Degrees of Freedom Rigid Beam 

A beam on flexible supports K1 and K2 is  shown in Fig.  1.11. For simplicity, it is 
assumed infinitely rigid, i.e., its bending stiffness is large. The free body diagram at 
arbitrary displacements r1(t) = Re

 
a1ei ωt

 
and r2(t) = Re

 
a2eiωt

 
is illustrated at 

right-hand side of Fig. 1.11. In this case it is necessary to demand vertical as well as 
moment equilibrium. First it is seen that: 

• the beam displacement is given by r (x, t) = r1 + (r2 − r1)x/L 
• while the support forces R1 = K1r1 and R2 = K2r2

Fig. 1.11 Rigid beam on flexible supports 
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Thus, vertical equilibrium will require: R1 + R2 +
 L 
0 m r̈dx  = 0, i.e., that: 

K1r1 + K2r2 + m
 L 

0

 
r̈1 + (r̈2 − r̈1) 

x 

L

 
dx  = K1r1 + K2r2 + (r̈1 + r̈2) 

mL  

2 
= 0 

while moment equilibrium about the beam end p will require: R2L +
 L 
0 m r̈dx  = 0, 

i.e.: 

K2r2L + m
 L 

0

 
r̈1 + (r̈2 − r̈1) 

x 

L

 
xdx  = K2r2L +

 
r̈1 
6 
+ 

r̈2 
3

 
mL2 = 0 

Introducing r1(t) = Re
 
a1eiωt

 
and r2(t) = Re

 
a2ei ωt

 
, then these equations turn 

into: 

K1a1 + K2a2 − ω2 (a1 + a2) 
mL  

2 
= 0 and K2a2 − ω2

 a1 
6 
+ 

a2 
3

 
mL  = 0 

which may be written:

  
K1 − ω2mL/2

  
K2 − ω2mL/2

 
−ω2mL/6

 
K2 − ω2mL/3

 
  

a1 
a2

 
=
 
0 
0

 

Again, this is an eigenvalue problem, whose solution is defined by setting the deter-
minant to the coefficient matrix equal to zero, from which the following is obtained:

 
K1 − ω2mL/2

  
K2 − ω2mL/3

 −  −ω2mL/6
  
K2 − ω2mL/2

 
= ω4 − 4

 K1 
mL  + K2 

mL

 
ω2 + 12

 K1 
mL

  K2 
mL

 = 0 

Thus, the two eigen frequencies (in ascending order) are given by: 

ω1,2 =

     2 

⎡ 

⎣ K1 

mL  
+ 

K2 

mL  
∓
  

K1 

mL

 2 

− 
K1 

mL  

K2 

mL  
+
 
K2 

mL

 2 
⎤ 

⎦ 

If, for instance, K1 = K2 = K , then ω1 = 
√
2K /(mL) and ω2 = √6K /(mL). 

Introducing ω = ω1 = √2K /(mL) into the second row of the matrix–vector 
relationship above, the following is obtained: 

−ω2 
1(mL/6)a1 +

 
K − ω2 

1(mL/3)
 
a2 = 0 ⇒ a1 = a2 

I.e., the beam displacement is a rigid body motion purely in vertical direction. 
Introducing ω = ω2 = √6K /(mL) into the second row of the matrix–vector 
relationship, the following is obtained: 

−ω2 
2(mL/6)a1 +

 
K − ω2 

2(mL/3)
 
a2 = 0 ⇒ a1 = −a2 

I.e., the beam displacement is a rigid body rotation about its mid-span.
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Continuous Systems 

A continuous line-like beam subject to a distributed dynamic load qz(x, t) (with 
unit N /m) is illustrated in Fig. 1.12a. For such a system the relevant equilibrium 
requirement is most conveniently established in the form of one or several differential 
equations. If the system is symmetric about the z-axis, then the response motion is 
only taking place in the vertical z direction. Since the system is continuous, so is the 
displacement function rz(x, t), and therefore, we shall resort to calculus. As shown 
in Fig. 1.12.b, an incremental element dx will require moment equilibrium (taken 
about mid-point c, discarding higher order terms): 

dMy − Vzdx  = 0 ⇒ Vz = M  y (1.27)

as well as force equilibrium in z direction: 

qzdx  − (mzdx)r̈z + dVz = 0 ⇒ V  z = −qz + mz · r̈z (1.28) 

where mz is mass per unit length (kg/m) of the beam. Thus: 

M   y = −qz + mz · r̈z (1.29) 

Since dynamic motion exclusively takes place in the direction of z, the beam 
cross section is subject to pure bending about the y axis, i.e., My  = 0 and Vz  = 0, 
while all other cross sectional stress resultants are equal to zero. The cross-sectional 
neutral axis is defined by the axis through zero strain (see Strømmen [46]). Adopting 
Navier’s hypothesis [4, 5] that a cross section perpendicular to the system neutral 
axis prior to bending remains perpendicular to the neutral axis after bending, then 
the linear bending strain distribution (see Fig. 1.12c) is given by: 

εx = 
αzc − (α + dα)zc 

dx
= −dα 

dx  
zc (1.30) 

where zc is the distance from the neutral axis (CC) to an arbitrary cross-sectional 
element dA. 

Let us assume linear elasticity and take it for granted that displacements are small 
such that α ≈ r  z . Then εx = −α zc = −r   z zc, and thus: 

σx = Eεx = E
 −r   z zc ⇒

 
N =  A σx d A  = −r   z E

 
A zc d A  

My =
 
A zcσx d A  = −r   z E

 
A z

2 
c d A  

(1.31) 

Requirement N = 0 implies that
 
A zc d A  = 0, which determines the position of 

the neutral axis (see Eq. 1.1), while Iy =
 
A z

2 
cd A  is the cross sectional second area 

moment. Thus, Eq. 1.29 turns into:
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Fig. 1.12 Line-like continuous beam subject to distributed dynamic load

d2 

dx2
 −r   z E Iy

 = −qz + mz · r̈z (1.32) 

which, provided E Iy is constant along the span, may be simplified into: 

mz r̈z + E Iyr
    
z = qz (1.33)


