Sixth Edition

Textbook of Digital Distribution of the second seco

Edited by Richard I.G. Holt • Allan Flyvbjerg

WILEY Blackwell

Textbook of Diabetes

We dedicate this book to all people living with diabetes and the healthcare professionals who look after them. We would also like to dedicate this book to our families, without whose support and encouragement the book would never have been finished.

Textbook of Diabetes

EDITED BY

RICHARD I.G. HOLT MA, MB BChir, PhD, FRCP, FHEA

Professor in Diabetes & Endocrinology Human Development and Health Faculty of Medicine, University of Southampton Southampton, UK Honorary Consultant Physician Southampton National Institute for Health Research Biomedical Research Centre University Hospital Southampton NHS Foundation Trust Southampton, UK

ALLAN FLYVBJERG MD, DMSc

Former CEO at Steno Diabetes Center Copenhagen (SDCC) The Capital Region of Denmark Professor of Clinical Endocrinology Faculty of Health and Medical Sciences University of Copenhagen Copenhagen, Denmark

SIXTH EDITION

WILEY Blackwell

This sixth edition first published 2024 © 2024 John Wiley & Sons Ltd.

Edition History

Blackwell Publishing Ltd (1e, 1991; 2e, 1997; 3e, 2003); John Wiley & Sons, Ltd (4e, 2010; 5e 2017)

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

The right of Richard I.G. Holt and Allan Flyvbjerg to be identified as the authors of the editorial material in this work has been asserted in accordance with law.

Registered Offices

John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial Office 9600 Garsington Road, Oxford, OX4 2DO, UK

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty

The contents of this work are intended to further general scientific research, understanding, and discussion only and are not intended and should not be relied upon as recommending or promoting scientific method, diagnosis, or treatment by physicians for any particular patient. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of medicines, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each medicine, equipment, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data

Names: Holt, Richard I. G., editor. |Flyvbjerg, Allan, editor. Title: Textbook of diabetes / edited by Richard I.G. Holt, Allan Flyvbjerg. Other titles: Textbook of diabetes (Pickup) Description: Sixth edition. | Hoboken, NJ : Wiley-Blackwell 2024. | Includes bibliographical references and index. Identifiers: LCCN 2022049550 (print) | LCCN 2022049551 (ebook) | ISBN 9781119697428 (hardback) | ISBN 9781119697435 (adobe pdf) | ISBN

9781119697411 (epub)

Subjects: MESH: Diabetes Mellitus

Classification: LCC RC660.4 (print) | LCC RC660.4 (ebook) | NLM WK 810 | DDC 616.4/62-dc23/eng/20230125

LC record available at https://lccn.loc.gov/2022049550

LC ebook record available at https://lccn.loc.gov/2022049551

Cover Design: Wiley

Cover Images: Courtesy of Olaniru, Jones & Persaud, King's College London

Set in 9.25/11pt MinionPro by Straive, Pondicherry, India

Contents

List of Contributors, viii

Preface, xv

List of Abbreviations, xvi

Part 1 Diabetes in its Historical and Social Context

- 1 The History of Diabetes Mellitus, 3 Robert B. Tattersall and David R. Matthews
- 2 Classification and Diagnosis of Diabetes, 22 Ambady Ramachandran, Chamukuttan Snehalatha, Arun Raghavan, and Arun Nanditha
- 3 The Global Burden of Diabetes, 28 *Jessica L. Harding, Mary Beth Weber, and Jonathan E. Shaw*
- 4 Epidemiology of Type 1 Diabetes, 41 Lars C. Stene and Jaakko Tuomilehto
- 5 Epidemiology of Type 2 Diabetes, 55 Ronald C.W. Ma and Peter C.Y. Tong

Part 2 Normal Physiology

- 6 Overview of Glucose Metabolism, 77 *Richard I.G. Holt*
- 7 Islet Function and Insulin Secretion, 84 Peter M. Jones and Shanta J. Persaud
- 8 Glucagon in Islet and Metabolic Regulation, 99 Jonathan E. Campbell and David A. D'Alessio
- 9 Mechanism of Insulin Action, 111 Morris F. White
- 10 Central Control of Glucose Homeostasis, 128 Kimberly M. Alonge, Kendra L. Francis, Nicole E. Richardson, and Michael W. Schwartz
- Control of Body Weight: How and Why Do We Gain Weight Easier Than We Lose It?, 142
 Janine Makaronidis and Rachel L. Batterham

Part 3 Pathogenesis of Diabetes

- 12 The Genetics of Diabetes, 157 *Rashmi B. Prasad*
- 13 Genetics of Obesity, 197 I. Sadaf Farooqi
- 14 Autoimmune Type 1 Diabetes, 203 Omar Akel and Åke Lernmark
- 15 Other Disorders with Type 1 Diabetes and Atypical Phenotypes, 216 Alice P.S. Kong, Elaine Y.K. Chow, Andrea O.Y. Luk, and Juliana C.N. Chan
- Abnormalities of Insulin Secretion and β-Cell Defects in Type 2 Diabetes, 225
 Stefano Del Prato, Cristina Bianchi, and Giuseppe Daniele
- 17 Insulin Resistance in Type 2 Diabetes, 238 Michael Roden, Kitt Falk Petersen, and Gerald I. Shulman
- 18 Obesity and Diabetes, 250 Nick Finer
- 19 The Microbiome and Diabetes, 261 Amanda J. Cox, Nicholas P. West, and Allan W. Cripps

Part 4 Other Types of Diabetes

- 20 Monogenic Causes of Diabetes, 275 Brittany L. Resnick, Maggie H. Shepherd, and Andrew T. Hattersley
- 21 Drug-Induced Diabetes, 295 Charles D. Ponte and Devra K. Dang
- 22 Diabetes in Hypersecreting Endocrine Disorders, 304 Allan A. Vaag, Neil A. Hanley, and Caroline M. Kistorp
- 23 Pancreatic Disease and Diabetes, 319 Ranjit Unnikrishnan and Viswanathan Mohan
- 24 Clinical Presentations of Diabetes, 330 *Ee Lin Lim and Roy Taylor*

Part 5 Managing the Person with Diabetes

- 25 The Aims of Diabetes Care, 343 *Katharine D. Barnard-Kelly and Richard I.G. Holt*
- 26 Education to Empower the Person with Diabetes, 354 Ingrid Willaing and Michael Vallis
- 27 Dietary Management of Diabetes, 368 *Nicola Guess*
- 28 Physical Activities and Diabetes, 382 Emma J. Cockcroft and Robert C. Andrews
- 29 Monitoring Diabetes, 404 Emma English
- 30 Biomarkers and Precision Medicine in Diabetes, 414 Sok Cin Tye, Michele Provenzano, and Hiddo J.L. Heerspink

Part 6 Treatment of Diabetes

- 31 Insulin and Insulin Treatment, 431 Roman Vangoitsenhoven, Parth Narendran, and Chantal Mathieu
- 32 New Technologies for Glucose Monitoring, 444 Thomas Danne and Olga Kordonouri
- 33 New Technologies for Insulin Administration, 459 Hannah Forde and Pratik Choudhary
- 34 Whole Pancreas and Islet Cell Transplantation, 473 Braulio A. Marfil-Garza, Peter A. Senior, and A.M. James Shapiro
- 35 Oral Glucose-Lowering Agents, 492 Clifford J. Bailey and Andrew J. Krentz
- 36 Non-insulin Parenteral Therapies, 520 Tina Vilsbøll, Mikkel Christensen, Andreas Andersen, and Filip K. Knop
- 37 How to Use Type 2 Diabetes Treatments in Clinical Practice, 534 Thomas Karagiannis, Aris Liakos, and Apostolos Tsapas
- 38 Weight Management and Metabolic Surgery, 551 Alexis Sudlow, Dimitri J. Pournaras, and Carel W. le Roux
- 39 In-Hospital Treatment and Surgery in People with Diabetes, 559 *Ketan Dhatariya, Philip Newland-Jones, and Mayank Patel*
- 40 Hypoglycaemia in Diabetes, 579 Ahmed Iqbal, Elaine Y.K. Chow, Timothy W. Jones, and Simon R. Heller
- 41 Acute Metabolic Complications of Diabetes: Diabetic Ketoacidosis and the Hyperosmolar Hyperglycaemic State in Adults, 602 *Philip Newland-Jones, Mayank Patel, and Ketan Dhatariya*

Part 7 Microvascular Complications in Diabetes

- 42 Pathogenesis of Microvascular Complications, 615 Allan Flyvbjerg
- 43 Diabetic Retinopathy, 629 *Toke Bek*

- 44 Diabetic Nephropathy, 640 Peter Rossing and Allan Flyvbjerg
- 45 Diabetic Neuropathy, 655 Shazli Azmi, Uazman Alam, and Rayaz A. Malik

Part 8 Macrovascular Complications in Diabetes

- 46 Pathogenesis of Macrovascular Complications in Diabetes, 681 Jakob A. Østergaard, Tomasz J. Block, Sophia Dahm, Waheed Khan, and Karin A.M. Jandeleit-Dahm
- 47 Hypertension and Diabetes, 700 *Peter M. Nilsson*
- 48 Dyslipidaemia and Diabetes, 713 Adie Viljoen, Ahmed Handhle, and Anthony S. Wierzbicki
- 49 Ischaemic Heart Disease in Diabetes, 724 Michael Lehrke and Nikolaus Marx
- 50 Heart Failure and Diabetes, 732 Ambarish Pandey, Kershaw V. Patel, and Subodh Verma
- 51 Cerebrovascular Disease and Diabetes, 745 Colum F. Amory, Jesse Weinberger, and Travis S. Smith
- 52 Peripheral Vascular Disease, 755 Henrik H. Sillesen

Part 9 Other Complications of Diabetes

- 53 Foot Problems in People with Diabetes, 771 Frank L. Bowling, Keeley J. Foley, and Andrew J.M. Boulton
- 54 Sexual Function in Men and Women with Diabetes, 780 *Kirsty Winkley, Camilla Kristensen, Jackie Fosbury, and David Price*
- 55 Gastrointestinal Manifestations of Diabetes, 796 Michael Camilleri and Adil E. Bharucha
- 56 Diabetes and Oral Health, 810 Palle Holmstrup, Christian Damgaard, and Allan Flyvbjerg
- 57 Diabetes and Non-alcoholic Fatty Liver Disease, 820 Alessandro Mantovani, Giovanni Targher, and Christopher D. Byrne
- 58 The Skin in Diabetes, 838 Paul Devakar Yesudian
- 59 Bone and Rheumatic Disorders in Diabetes, 853 Andrew Grey and Nicola Dalbeth
- 60 Diabetes and Cancer: Risk, Outcomes, and Clinical Implications, 867 Ellena Badrick, Emily J. Gallagher, and Andrew G. Renehan
- 61 Diabetes and Infections, 878 Andrea O.Y. Luk and Clive S. Cockram
- 62 Sleep and Diabetes, 897 Sonya Deschênes, Amy McInerney, and Norbert Schmitz

vi

Part 10 Psychosocial Aspects of Diabetes

- 63 Psychosocial and Behavioural Aspects of Diabetes, 907 Frans Pouwer and Jane Speight
- 64 Role of Cognitive Function in Managing People with Diabetes, 922 Tamsin Santos, Chelsea Baird, Sally Eastwood, Kerrie Shiell, and Joseph E. Ibrahim
- 65 Mental Disorders and Diabetes, 933 Najma Siddiqi, Marietta Stadler, and Richard I.G. Holt
- 66 Social Aspects of Diabetes, 956 Brian M. Frier and Mark W.J. Strachan
- 67 Social Determinants of Diabetes, 973 Keri F. Kirk, Gerald McKinley, Briana Mezuk, and Erica Spears

Part 11 Diabetes in Special Groups

- 68 Ethnic, Cultural, and Religious Aspects to the Management of Diabetes, 987 Wasim Hanif, Sarah N. Ali, and Vinod Patel
- 69 Diabetes in Childhood, 999 Jennifer M. Ikle, Ananta Addala, and David M. Maahs
- 70 Adolescence and Emerging Adulthood: Diabetes in Transition, 1019 Charlotte W. Chen and Lori M.B. Laffel
- 71 Diabetes in Pregnancy, 1034 David R. McCance and Laura Cassidy

- 72 Diabetes in Old Age, 1072 Ahmed H. Abdelhafiz and Alan J. Sinclair
- 73 Diabetes at the End of Life, 1085 *Trisha Dunning and June James*

Part 12 Delivery and Organization of Diabetes Care

- 74 The Role of the Multidisciplinary Team across Primary and Secondary Care, 1097 Samuel Seidu and Kamlesh Khunti
- 75 Models of Diabetes Care in Low- and Middle-Income Countries, 1107 David Beran, Sigiriya Aebischer Perone, and Maria Lazo-Porras

Part 13 Future Directions

- 76 Immunotherapies for Type 1 Diabetes, 1125 Jesper Johannesen and Flemming Pociot
- 77 Stem Cell Therapy in Diabetes, 1137 Angelo Avogaro and Gian Paolo Fadini
- 78 Gene Therapy for Diabetes, 1144 Veronica Jimenez and Fatima Bosch
- 79 Future Drug Treatments for Type 2 Diabetes, 1154 *Clifford J. Bailey*

Index, 1167

Ahmed H. Abdelhafiz

Department of Elderly Medicine Rotherham General Hospital Rotherham, UK

Ananta Addala

Division of Endocrinology, Department of Pediatrics Stanford University Stanford, CA, USA

Omar Akel

Department of Clinical Sciences, Lund University CRC Skåne University Hospital Malmö, Sweden

Uazman Alam

Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK

Sarah N. Ali

Department of Diabetes and Endocrinology Royal Free London NHS Foundation Trust London, UK

Kimberly M. Alonge

UW Medicine Diabetes Institute, Department of Medicine University of Washington Seattle, WA, USA

Colum F. Amory

Albany Medical College Albany, NY, USA

Andreas Andersen

University of Copenhagen Copenhagen, Denmark

Robert C. Andrews

Faculty of Health & Life Science, Clinical and Biomedical Sciences, University of Exeter, Exeter, UK Department of Diabetes, Taunton and Somerset NHS Foundation Trust, Taunton, UK

Angelo Avogaro

Department of Medicine University of Padova Padua, Italy

Shazli Azmi

Faculty of Biology, Medicine and Health University of Manchester Manchester, UK

Ellena Badrick

Division of Cancer Sciences University of Manchester Manchester, UK

Clifford J. Bailey

School of Life and Health Sciences Aston University Birmingham, UK

Chelsea Baird

Queen Elizabeth Centre, Ballarat Health Service and Department of Forensic Medicine, Monash University Melbourne, Australia

Katharine D. Barnard-Kelly

Southern Health NHS Foundation Trust Southampton, UK

Rachel L. Batterham

Centre for Obesity Research, Rayne Institute Department of Medicine, University College London University College London Hospital (UCLH) Bariatric Centre for Weight Management and Metabolic Surgery National Institute of Health Research, UCLH Biomedical Research Centre London, UK

Toke Bek

Department of Ophthalmology Aarhus University Hospital Department of Clinical Medicine, Faculty of Health Aarhus University Aarhus, Denmark

David Beran

Division of Tropical and Humanitarian Medicine University of Geneva and Geneva University Hospitals Faculty Diabetes Centre, Faculty of Medicine University of Geneva Geneva, Switzerland

Adil E. Bharucha

Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER) Division of Gastroenterology and Hepatology, Mayo Clinic Rochester, MN, USA

Cristina Bianchi

Department of Clinical and Experimental Medicine University of Pisa Pisa, Italy

Tomasz J. Block

Department of Diabetes, Central Clinical School Monash University Melbourne, Australia

Fatima Bosch

Center of Animal Biotechnology and Gene Therapy, Department of Biochemistry and Molecular Biology University Autònoma de Barcelona Barcelona, Spain Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Madrid, Spain

Andrew J.M. Boulton

Department of Medicine, University of Manchester and Manchester Royal Infirmary Manchester, UK Miller School of Medicine University of Miami Miami, FL, USA

Frank L. Bowling

Department of Medicine, University of Manchester and Manchester Royal Infirmary Manchester, UK Miller School of Medicine University of Miami Miami, FL, USA

Christopher D. Byrne

Nutrition and Metabolism, Faculty of Medicine University of Southampton Southampton National Institute for Health and Care Research Biomedical Research Centre University Hospital Southampton, Southampton General Hospital Southampton, UK

Michael Camilleri

Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER) Division of Gastroenterology and Hepatology, Mayo Clinic Rochester, MN, USA

Jonathan E. Campbell

Department of Medicine, Division of Endocrinology Duke University Durham, NC, USA

Laura Cassidy

Regional Centre for Endocrinology and Diabetes Royal Victoria Hospital Belfast, Northern Ireland

Juliana C.N. Chan

Department of Medicine and Therapeutics Hong Kong Institute of Diabetes and Obesity Li Ka Shing Institute of Health Sciences The Chinese University of Hong Kong Prince of Wales Hospital Hong Kong, SAR, China

Charlotte W. Chen

Pediatric, Adolescent and Youth Adult Section Joslin Diabetes Center, and Harvard Medical School Boston, MA, USA

Pratik Choudhary

Leicester Diabetes Centre Leicester, UK

Elaine Y.K. Chow

Department of Medicine and Therapeutics Hong Kong Institute of Diabetes and Obesity Li Ka Shing Institute of Health Sciences Phase 1 Clinical Trial Centre The Chinese University of Hong Kong Prince of Wales Hospital Hong Kong, SAR, China

Mikkel Christensen

University of Copenhagen Copenhagen, Denmark

Emma J. Cockcroft

Faculty of Health & Life Science Department of Health and Community Sciences University of Exeter Exeter, UK

Clive S. Cockram

The Chinese University of Hong Kong Hong Kong SAR, China

Amanda J. Cox

Menzies Health Institute Queensland and School of Pharmacy and Medical Sciences Griffith University Southport, QLD, Australia

Allan W. Cripps

Menzies Health Institute Queensland and School of Medicine Griffith University Southport, QLD, Australia

Nicola Dalbeth

Department of Primary Care Health Sciences University of Oxford Oxford, UK

David A. D'Alessio

Department of Medicine, Division of Endocrinology Duke University Durham, NC, USA

Sophia Dahm

Department of Diabetes, Central Clinical School Monash University Melbourne, Victoria, Australia

Christian Damgaard

Department of Odontology, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen, Denmark

Devra K. Dang

University of Connecticut School of Pharmacy Storrs, CT, USA

Giuseppe Daniele

Department of Clinical and Experimental Medicine University of Pisa Pisa, Italy

Thomas Danne

Diabetes Center, Children's Hospital AUF DER BULT Hannover Medical School Hannover, Germany

Stefano Del Prato

Department of Clinical and Experimental Medicine University of Pisa Pisa, Italy

Sonya Deschênes

School of Psychology University College Dublin Dublin, Ireland

Ketan Dhatariya

Norfolk and Norwich University Hospitals NHS Foundation Trust University of East Anglia Norwich, UK

Trisha Dunning

Formerly of Deakin University Geelong, Victoria, Australia

Sally Eastwood

Queen Elizabeth Centre, Ballarat Health Service and Department of Forensic Medicine, Monash University Melbourne, Australia

Emma English

Faculty of Medicine and Health University of East Anglia Department of Clinical Biochemistry Norfolk and Norwich University Hospital Trust Norwich, UK

Gian Paolo Fadini

Department of Medicine University of Padova Padova, Italy

Sadaf Farooqi

Wellcome-MRC Institute of Metabolic Science Addenbrooke's Hospital Cambridge, UK

Nick Finer

National Centre for Cardiovascular Prevention and Outcomes UCL Institute of Cardiovascular Science London, UK

Allan Flyvbjerg

Steno Diabetes Center Copenhagen and Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark

Keeley J. Foley

Department of Medicine, University of Manchester Manchester Royal Infirmary Manchester, UK Miller School of Medicine University of Miami Miami, FL, USA

Hannah Forde Leicester Diabetes Centre Leicester, UK

Jackie Fosbury Sussex Community NHS Foundation Trust Brighton, UK

Kendra L. Francis

UW Medicine Diabetes Institute, Department of Medicine University of Washington Seattle, WA, USA

Brian M. Frier Centre for Cardiovascular Science, The Queen's Medical Research Institute University of Edinburgh Edinburgh, UK

Emily J. Gallagher Division of Endocrinology, Department of Medicine Icahn School of Medicine at Mount Sinai New York, NY, USA

Andrew Grey Department of Medicine University of Auckland Auckland, New Zealand

Nicola Guess

Department of Primary Care Health Sciences University of Oxford Oxford, UK

Ahmed Handhle

East Hertfordshire Hospitals Trust Lister Hospital Stevenage, UK Department of Clinical Biochemistry Addenbrooke's Hospital Cambridge, UK

Wasim Hanif

University Hospitals Birmingham NHS Foundation Trust Birmingham, UK

Neil A. Hanley

Centre for Endocrinology and Diabetes University of Manchester Manchester, UK

Jessica L. Harding

Departments of Medicine and Surgery, School of Medicine Department of Epidemiology, Rollins School of Public Health Emory University Atlanta, GA, USA

Andrew T. Hattersley

Institute of Biomedical and Clinical Science University of Exeter Medical School Exeter, UK

Hiddo J.L. Heerspink

Department of Clinical Pharmacy and Pharmacology, University of Groningen University Medical Center Groningen Groningen, The Netherlands

Simon R. Heller

Department of Oncology and Metabolism, The Medical School University of Sheffield Sheffield, UK

Palle Holmstrup

Department of Odontology, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen, Denmark

Richard I.G. Holt

Professor in Diabetes & Endocrinology, Human Development and Health, University of Southampton, Faculty of Medicine and Honorary Consultant Physician, Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK

Joseph E. Ibrahim

Queen Elizabeth Centre, Ballarat Health Service Department of Forensic Medicine, Monash University Melbourne, Australia

Jennifer M. Ikle

Division of Endocrinology, Department of Pediatrics Stanford University Stanford, CA, USA

Ahmed Iqbal

Department of Oncology and Metabolism, The Medical School University of Sheffield Sheffield, UK

June James

Leicester Diabetes Centre Leicester, UK

Karin A.M. Jandeleit-Dahm

Department of Diabetes, Central Clinical School Monash University Melbourne, Victoria, Australia German Diabetes Centre (DDZ) Institute for Clinical Diabetology Leibniz Centre for Diabetes Research at Heinrich Heine University Düsseldorf, Germany

Veronica Jimenez

Center of Animal Biotechnology and Gene Therapy, Department of Biochemistry and Molecular Biology University Autònoma de Barcelona Barcelona, Spain Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Madrid, Spain

Jesper Johannesen

Department of Paediatrics and Adolescent Medicine Herlev and Gentofte Hospital Steno Diabetes Center Copenhagen Department of Clinical Medicine, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen, Denmark

Peter M. Jones

Department of Diabetes King's College London London, UK

Timothy W. Jones

Department of Endocrinology and Diabetes Perth Children's Hospital and Telethon Kids Institute Perth, Western Australia, Australia

Thomas Karagiannis

Diabetes Centre and Clinical Research and Evidence-Based Medicine Unit Second Medical Department, Aristotle University of Thessaloniki Thessaloniki, Greece

Waheed Khan

Department of Diabetes, Central Clinical School Monash University Melbourne, Victoria, Australia

Kamlesh Khunti

Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester, UK

Keri F. Kirk

Department of Family Medicine and Psychiatry, Georgetown University School of Medicine MedStar-Georgetown University Hospital Washington, DC, USA

Caroline M. Kistorp

Steno Diabetes Center Copenhagen Rigshospitalet Copenhagen, Denmark

Filip K. Knop

University of Copenhagen Copenhagen, Denmark

Alice P.S. Kong

Department of Medicine and Therapeutics Hong Kong Institute of Diabetes and Obesity Li Ka Shing Institute of Health Sciences The Chinese University of Hong Kong Prince of Wales Hospital Hong Kong, SAR, China

Olga Kordonouri

Diabetes Center, Children's Hospital AUF DER BULT Hannover Medical School Hannover, Germany

Andrew J. Krentz

Institute for Cardiovascular and Metabolic Research University of Reading Reading, UK Department of Population Health Sciences King's College London London, UK

Camilla Kristensen

King's College London London, UK

Lori M.B. Laffel

Boston Children's Hospital, Division of Endocrinology Mass General Hospital for Children, Boston and Harvard Medical School Boston, MA, USA

Maria Lazo-Porras

Division of Tropical and Humanitarian Medicine University of Geneva Geneva, Switzerland CRONICAS Centre of Excellence in Chronic Diseases Universidad Peruana Cayetano Heredia Lima, Peru

Michael Lehrke

Department of Internal Medicine I (Cardiology), University Hospital RWTH Aachen University Aachen, Germany

Åke Lernmark

Department of Clinical Sciences, Lund University CRC Skåne University Hospital Malmö, Sweden

Carel W. le Roux

Diabetes Complications Research Centre University College Dublin Dublin, Ireland

Aris Liakos

Diabetes Centre and Clinical Research and Evidence-Based Medicine Unit Second Medical Department, Aristotle University of Thessaloniki Thessaloniki, Greece

Ee Lin Lim

Royal Preston Hospital Preston, UK

Andrea O.Y. Luk

Department of Medicine and Therapeutics Hong Kong Institute of Diabetes and Obesity Li Ka Shing Institute of Health Sciences Phase 1 Clinical Trial Centre The Chinese University of Hong Kong Prince of Wales Hospital Hong Kong, SAR, China

Ronald C.W. Ma

Division of Endocrinology and Diabetes, Department of Medicine and Therapeutics Li Ka Shing Institute of Health Sciences Hong Kong Institute of Diabetes and Obesity The Chinese University of Hong Kong Prince of Wales Hospital Hong Kong, SAR, China

David M. Maahs

Division of Endocrinology, Department of Pediatrics Stanford University Stanford, CA, USA

Janine Makaronidis

Centre for Obesity Research, Rayne Institute Department of Medicine, University College London University College London Hospital (UCLH) Bariatric Centre for Weight Management and Metabolic Surgery National Institute of Health Research, UCLH Biomedical Research Centre London, UK

Rayaz A. Malik

Department of Medicine Weill Cornell Medicine-Qatar Doha, Qatar

Alessandro Mantovani

Section of Endocrinology, Diabetes and Metabolism, Department of Medicine University of Verona Verona, Italy

Braulio A. Marfil-Garza

Department of Surgery University of Alberta Edmonton, Alberta, Canada

Nikolaus Marx

Department of Internal Medicine I (Cardiology), University Hospital RWTH Aachen University Aachen, Germany

Chantal Mathieu

Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism KU Leuven and University Hospitals Leuven, Belgium

David R. Matthews

University of Oxford Oxford, UK

David R. McCance

Regional Centre for Endocrinology and Diabetes Royal Victoria Hospital Belfast, Northern Ireland

Dayna E. McGill

Boston Children's Hospital, Division of Endocrinology Mass General Hospital for Children, Boston and Harvard Medical School Boston, MA, USA

Amy McInerney

School of Psychology University College Dublin Dublin, Ireland

Gerald McKinley

Department of Pathology and Laboratory Medicine, Schulich Interfaculty Program in Public Health Schulich School of Medicine and Dentistry, Western University London, ON, Canada

Briana Mezuk

Center for Social Epidemiology and Population Health University of Michigan School of Public Health Ann Arbor, MI, USA

Viswanathan Mohan

Dr. Mohan's Diabetes Specialities Centre IDF Centre of Excellence in Diabetes Care Madras Diabetes Research Foundation ICMR Center for Advanced Research on Diabetes Chennai, India

Arun Nanditha

Dr. A. Ramachandran's Diabetes Hospitals India Diabetes Research Foundation Chennai, India

Parth Narendran

Institute of Biomedical Research, The Medical School University of Birmingham and The Queen Elizabeth Hospital Birmingham, UK

Philip Newland-Jones

University Hospitals Southampton NHS Foundation Trust Southampton, UK

Peter M. Nilsson

Lund University Skåne University Hospital Malmö, Sweden

Jakob A. Østergaard

Department of Diabetes, Central Clinical School Monash University Melbourne, Victoria, Australia Steno Diabetes Center Aarhus and Department of Endocrinology & Internal Medicine, Aarhus University Hospital Aarhus, Denmark

Ambarish Pandey

Division of Cardiology, Department of Internal Medicine UT Southwestern Medical Center Dallas, TX, USA

Kershaw V. Patel

Department of Cardiology Houston Methodist DeBakey Heart and Vascular Center Houston, Texas, USA

Mayank Patel

University Hospitals Southampton NHS Foundation Trust Southampton, UK

Vinod Patel

Warwick Medical School University of Warwick Coventry, UK Acute Medicine, Medical Obstetrics, Diabetes and Endocrinology Centre, George Eliot Hospital NHS Trust, Nuneaton, UK

Sigiriya Aebischer Perone

Division of Tropical and Humanitarian Medicine Geneva University Hospitals Geneva, Switzerland

Shanta J. Persaud

Department of Diabetes King's College London London, UK

Kitt Falk Petersen

Department of Internal Medicine and Yale Diabetes Research Center Yale School of Medicine New Haven, CT, USA

Flemming Pociot

Steno Diabetes Center Copenhagen Department of Clinical Medicine, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen, Denmark

Charles D. Ponte

Robert C. Byrd Health Sciences Center, West Virginia University – Schools of Pharmacy and Medicine, One Medical Center Drive, Morgantown, WV, USA

Dimitri J. Pournaras

Department of Bariatric Surgery Southmead Hospital Bristol, UK

Frans Pouwer

Department of Psychology, University of Southern Denmark and Steno Diabetes Center Odense (SDCO) Odense, Denmark School of Psychology, Deakin University Geelong, Victoria, Australia

Rashmi B. Prasad

Lund University Diabetes Centre, Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Malmö, Sweden Institute for Molecular Medicine Finland (FIMM) Helsinki University Helsinki, Finland

David Price

Morriston Hospital Swansea, UK

Michele Provenzano

Nephrology, Dialysis and Renal Transplant Unit S'Orsola Hospital - IRCCS - Alma Mater Studiorum University of Bologna, Italy

Arun Raghavan

Dr. A. Ramachandran's Diabetes Hospitals India Diabetes Research Foundation Chennai, India

Ambady Ramachandran

Dr. A. Ramachandran's Diabetes Hospitals India Diabetes Research Foundation Chennai, India

Andrew G. Renehan

Division of Cancer Sciences University of Manchester Manchester, UK

Brittany L. Resnick

Exeter NIHR Clinical Research Facility Royal Devon University Healthcare NHS Foundation Trust Exeter, UK

Nicole E. Richardson

UW Medicine Diabetes Institute, Department of Medicine University of Washington Seattle, WA, USA

Michael Roden

Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research Heinrich-Heine University Düsseldorf Düsseldorf, Germany German Center for Diabetes Research, Partner Düsseldorf München-Neuherberg, Germany

Peter Rossing

Steno Diabetes Center Copenhagen Department of Clinical Medicine, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen, Denmark

Tamsin Santos

Queen Elizabeth Centre, Ballarat Health Service and Department of Forensic Medicine, Monash University Melbourne, VIC, Australia

Norbert Schmitz

Department of Psychiatry, McGill University Douglas Mental Health University Institute Montreal, Canada Department of Population-Based Medicine University of Tübingen Tübingen, Germany

Michael W. Schwartz

UW Medicine Diabetes Institute, Department of Medicine University of Washington Seattle, WA, USA

Samuel Seidu

Diabetes Research Centre University of Leicester, Leicester General Hospital Leicester, UK

Peter A. Senior

Department of Medicine and Clinical Islet Transplant Program University of Alberta Edmonton, Alberta, Canada

A.M. James Shapiro

Department of Medicine University of Alberta Edmonton, Alberta, Canada

Jonathan E. Shaw

Clinical and Population Health, Baker Institute School of Life Sciences, La Trobe University School of Public Health and Preventive Medicine, Monash University Melbourne, Australia

Maggie H. Shepherd

Exeter NIHR Clinical Research Facility, Royal Devon and Exeter NHS Foundation Trust Institute of Biomedical and Clinical Science, University of Exeter Medical School Exeter, UK

Kerrie Shiell

Queen Elizabeth Centre, Ballarat Health Service Department of Forensic Medicine, Monash University Melbourne, Australia

Gerald I. Shulman

Departments of Internal Medicine and Cellular & Molecular Physiology, and Yale Diabetes Research Center Yale School of Medicine New Haven, CT, USA

Najma Siddiqi

Department of Health Sciences University of York and Hull York Medical School York, UK Bradford District Care NHS Foundation Trust Bradford, UK

Henrik H. Sillesen

Department of Vascular Surgery, Rigshospitalet University of Copenhagen Copenhagen, Denmark

Alan J. Sinclair Foundation for Diabetes Research in Older People (DROP) King's College London London, UK

Travis S. Smith

Albany Medical College Albany, NY, USA

Chamukuttan Snehalatha

Dr. A. Ramachandran's Diabetes Hospitals India Diabetes Research Foundation Chennai, India

Erica Spears

Louisiana Public Health Institute New Orleans, LA, USA

Jane Speight

Department of Psychology, University of Southern Denmark, Odense, Denmark Department of Medical Psychology Amsterdam UMC, Amsterdam, The Netherlands Australian Centre for Behavioural Research in Diabetes, Diabetes Victoria Melbourne, Victoria, Australia

Marietta Stadler

Department of Diabetes, School of Cardiovascular and Metabolic Medicine and Sciences Faculty of Live Sciences and Medicine King's College London London, UK

Lars C. Stene

Department of Chronic Diseases, Norwegian Institute of Public Health Oslo Diabetes Research Centre, Oslo University Hospital Oslo, Norway

Mark W.J. Strachan

Metabolic Unit Western General Hospital Edinburgh, UK

Alexis Sudlow

Department of Bariatric Surgery Southmead Hospital Bristol, UK

Giovanni Targher

Section of Endocrinology, Diabetes and Metabolism, Department of Medicine University of Verona Verona, Italy

Robert B. Tattersall

University of Nottingham Nottingham, UK

Roy Taylor

Diabetes Research Group, Institute of Translational and Clinical Research Newcastle University Newcastle upon Tyne, UK

Peter C.Y. Tong

The Jockey Club School of Public Health and Primary Care The Chinese University of Hong Kong Hong Kong SAR, China

Apostolos Tsapas

Diabetes Centre and Clinical Research and Evidence-Based Medicine Unit Second Medical Department, Aristotle University of Thessaloniki Thessaloniki, Greece Harris Manchester College University of Oxford Oxford, UK

Jaakko Tuomilehto

Department of Public Health, University of Helsinki Helsinki, Finland National School of Public Health Madrid, Spain Diabetes Research Group, King Abdulaziz University Jeddah, Saudi Arabia

Sok Cin Tye

Department of Clinical Pharmacy and Pharmacology, University of Groningen University Medical Center Groningen Groningen, The Netherlands

Ranjit Unnikrishnan

Dr. Mohan's Diabetes Specialities Centre IDF Centre of Excellence in Diabetes Care Madras Diabetes Research Foundation ICMR Center for Advanced Research on Diabetes Chennai, India

Allan A. Vaag

Steno Diabetes Center Copenhagen Rigshospitalet Copenhagen, Denmark

Michael Vallis

Department of Family Medicine Dalhousie University Halifax, NS, Canada

Roman Vangoitsenhoven

Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism KU Leuven and University Hospitals Leuven, Belgium

Subodh Verma

Division of Cardiac Surgery, St Michael's Hospital University of Toronto Toronto, ON, Canada

Adie Viljoen

East Hertfordshire Hospitals Trust Lister Hospital Stevenage, UK Department of Clinical Biochemistry Addenbrooke's Hospital Cambridge, UK

Tina Vilsbøll

University of Copenhagen Copenhagen, Denmark

Mary Beth Weber

Global Diabetes Research Center and Hubert Department of Global Health Rollins School of Public Health Emory University Atlanta, GA, USA

Jesse Weinberger

Mount Sinai School of Medicine New York, NY, USA

Nicholas P. West

Menzies Health Institute Queensland and School of Pharmacy and Medical Sciences Griffith University Southport, QLD, Australia

Morris F. White

Division of Endocrinology, Children's Hospital Boston Harvard Medical School Boston, MA, USA

Anthony S. Wierzbicki

Guy's & St Thomas Hospitals London, UK

Ingrid Willaing

Steno Diabetes Center Copenhagan Copenhagen, Denmark and Department of Health Services Research, Institute of Public Health University of Copenhagen Copenhagen, Denmark

Kirsty Winkley

King's College London London, UK

Paul Devakar Yesudian

Department of Dermatology, Wrexham Maelor Hospital Betsi Cadwaladr University Health Board Wrexham, UK

Preface

It is nearly seven years since the last edition of the *Textbook of Diabetes* was published, during which time there have been many exciting developments in our understanding of diabetes and novel treatments that have improved the lives of those living with diabetes. Despite our ability to alleviate the risk of its long-term complications, the global burden of diabetes continues to rise as the prevalence inexorably increases. According to the International Diabetes Federation, diabetes now affects 537 million adults, compared with 415 million when the last edition was published. Over three-quarters of people with diabetes live in low- and middle-income countries and diabetes causes 6.7 million deaths a year, approximately one every five seconds. The cost of treating diabetes has reached almost US\$1 trillion per annum, a threefold increase over the last 15 years. The need for accurate and up-to-date information to help healthcare professionals support people with diabetes has never been greater.

Ironically, as the volume of information and diversity of digital resources have increased, many are finding it overwhelming to keep abreast of the new advances. It is particularly challenging to determine the validity of many source materials. In this textbook we aim to bring together a series of chapters from internationally leading diabetes experts who provide accurate and clinically relevant information to both academic and practising diabetes healthcare professionals.

We have retained the structure from the previous edition, with a similar length and number of chapters. The centenary of the discovery of insulin has just passed and the book begins with a history of diabetes that provides many valuable insights from the past. We then move through the epidemiology of diabetes, the physiology of glucose metabolism, and the pathogenesis of diabetes, before sections on clinical management. A discussion of the microvascular and macrovascular complications then follows, after which there are sections on the psychosocial aspects of diabetes, the management of diabetes in special groups, and models of care, before a final section to glimpse into the future. New chapters include an overview of glucose homeostasis and the central control of glucose metabolism, as well as chapters on the genetics and management of obesity to recognize the close relationship between obesity and type 2 diabetes. There is a new chapter on the emerging topic of biomarkers and precision medicine, while the rapid advance in

diabetes technology has necessitated a split into separate chapters on glucose monitoring and insulin delivery. Transplantation has moved from future treatments to current management to acknowledge its current place in clinical care. In the macrovascular section, we have added a new chapter on heart failure, which has come to the fore as a result of the sodium–glucose cotransporter 2 (SGLT-2) inhibitor cardiovascular outcome trials. Oral health and sleep are added to the list of other areas of diabetes complications, while the importance of social determinants of health and ethnicity, culture, and religion is now included in the psychosocial aspects of diabetes section. The final new chapter describes managing diabetes in lowto middle-income countries, where the majority of people with diabetes live.

As editors, we are only too aware of the hard work that goes into the production of a comprehensive and up-to-date book such as this. For this edition the pressures of the Covid-19 pandemic added to the challenges of bringing the book to fruition. Our thanks go to each and every chapter author who, despite busy academic, clinical, and professional lives, was prepared to devote the time, energy, and expertise to provide their essential contributions to the text. Thank you for your forbearance of our nagging e-mails!

We are also grateful for the support we have received from our publisher, Wiley-Blackwell. Our commissioning editor Jennifer Seward, who took over from Priyanka Gibbons during the book's development, has provided guidance and encouragement. Our thanks also go to Rajalaxmi Rajendrasingh, Sally Osborn, and the rest of the Wiley-Blackwell team. The book looks even better than the last edition! We would like to pay tribute to Clive Cockram and Barry Goldstein, our editing colleagues for the fourth and fifth editions. You were missed this time round.

We hope you enjoy reading the book, whether it be dipping in or reading from cover to cover, as much as we did editing it. We have taken away useful, novel information that will aid in our daily professional lives and hope that this book will help you to support the people with diabetes you know in the widest sense of this meaning.

> Richard I.G. Holt Allan Flyvbjerg *February 2023*

List of Abbreviations

AACE	American Association of Clinical Endocrinologists
AAV	adeno-associated vectors
ABP	ankle blood pressure
ACCORD	Action to Control Cardiovascular Risk in Diabetes
ACE	angiotensin-converting enzyme
ACHOIS	Australian Carbohydrate Intolerance Study in
	Pregnant Women
ACR	albumin : creatinine ratio
ADA	American Diabetes Association
ADP	adenosine diphosphate
AICAR	5-aminoimidazole-4-carboxamide-1β-D-
	ribofuranoside
AMDCC	Animal Models for Diabetes Complications
	Consortium
AMP	adenosine monophosphate
Аро	apolipoprotein
aPWV	aortic pulse wave velocity
Arx	aristaless-related homeobox
ATP	adenosine triphosphate
AUC	area under the curve
BCAA	branched-chain amino acid
BMD	bone mineral density
BMI	body mass index
BM-MNC	mononuclear bone marrow-derived stem cell
BPH	benign prostatic hyperplasia
bpm	beats per minute
BTX-A	botulinum toxin type A
CABG	coronary artery bypass grafting
CA-MRSA	community-associated methicillin-resistant
	Staphylococcus aureus
CAPD	continuous ambulatory peritoneal dialysis
CBG	capillary blood glucose
CBT	cognitive-behavioral therapy
CCM	corneal confocal microscopy
CDA	Canadian Diabetes Association
CDC	cardiosphere-derived stem cell
CDC	Centers for Disease Control and Prevention
CDE	Certified Diabetes Educator
CEMACH	Confidential Enquiry into Maternal and Child Health
CETP	cholesteryl ester transfer protein
CGM	continuous glucose monitoring
CI	confidence interval
CKD	chronic kidney disease

CML	carboxymethyllysine
CNS	central nervous system
COC	combination oral contraceptive
COX	cyclooxygenase
CPC	cardiac progenitor cell
CRP	C-reactive protein
CSII	continuous subcutaneous insulin infusion
CT	computed tomography
CV	coefficient of variation
CVD	cardiovascular disease
DAWN	Diabetes Attitudes, Wishes, and Needs study
DCCT	Diabetes Control and Complications Trial
DKA	diabetic ketoacidosis
DPP	dipeptidyl peptidase
DSN	diabetes specialist nurse
DVLA	Driver and Vehicle Licensing Agency
EASD	European Association for the Study of Diabetes
ECG	electrocardiography/electrocardiogram
eGFR	estimated glomerular filtration rate
EMA	European Medicines Agency
ER	endoplasmic reticulum
ERCP	endoscopic retrograde cholangiopancreatography
ERK	extracellular signal-regulated kinase
ERM	ezrin-radixin-moesin
ESC	embryonic stem cell
ESRD	end-stage renal disease
ESRF	end-stage renal failure
FDA	Food and Drug Administration (USA)
FDC	fixed-dose combination
FDKP	fumaryldiketopiperazine
FFA	free fatty acid
FGF	fibroblast growth factor
FHWA	Federal Highways Administration
FMD	flow-mediated endothelium-dependent arterial dilation
FOXO	forkhead box O
FXR	farnesoid-X receptor
G6P	glucose-6-phosphatase
G-6-P	glucose-6-phosphate
G6PD	glucose-6-phosphate dehydrogenase
GAD	glutamine acid decarboxylase
GCGR	glucagon receptor
GCK	glucokinase
G-CSF	granulocyte colony-stimulating factor

GDF	growth differentiation factor	LV	left ventricular
GDM	gestational diabetes mellitus	LVEF	left ventricular ejection fraction
CF	cystic fibrosis	MAOI	monoamine oxidase inhibitor
GI	gastrointestinal	MDI	multiple daily injection
GLO	glyoxalase	MDRD	Modification of Diet in Renal Disease
GLP-1RA	GLP-1 receptor agonist	MG53	mitsugumin 53
GLUT	glucose transporter	mGDP	mitochondrial glycerolphosphate dehydrogenase
GPR	G-protein-coupled receptor	MGO	methylglyoxal
GRPP	glicentin-related pancreatic polypeptide	MI	myocardial infarction
GWA	genome-wide association	MIBG	<i>m</i> -iodobenzylguanidine
GWAS	genome-wide association studies	MIRKO	muscle-specific InsR knockout
HAPO	Hyperglycemia and Adverse Pregnancy Outcomes	MODY	maturity-onset diabetes of the young
HbA _{1c}	hemoglobin A _{1c}	MPGF	major proglucagon fragment
HBV	hepatitis B virus	MPO	myeloperoxidase
HCV	hepatitis C virus	MRI	magnetic resonance imaging
HDL	high-density lipoprotein	MSC	mesenchymal stem cell
HGF	hepatocyte growth factor	MS	mass spectrometry
hGH	human recombinant growth hormone	mTOR	mammalian or mechanistic target of rapamycin
HHS	hyperosmolar non-ketotic hyperglycemic state	mTORC1	mechanistic target of rapamycin complex 1
HR	hazard ratio	MTPI	microsomal transfer protein inhibitor
HRT	hormone replacement therapy	NAD	nicotinamide adenine dinucleotide
HRV	heart rate variability	NaDIA	National Diabetes Inpatient Audit
HSC	hematopoietic stem cell	NAFLD	non-alcoholic fatty liver disease
hsCRP	high-sensitivity C-reactive protein	NANC	non-adrenergic, non-cholinergic
IADPSG	International Association of Diabetes Pregnancy	NCV	nerve conduction velocity
	Study Groups	NEFA	non-esterified fatty acid
IAsp	insulin aspart	MFMU	Maternal–Fetal Medicine Units Network
IAUC	incremental area under the blood glucose curve	NEP	neutral endopeptidase
ICA	islet cell antibody	NFκB	nuclear factor KB
ICU	intensive care unit	Ngn3	neurogenin 3
i.d.	intradermal	NHANES	National Health and Nutrition Examination
IDDM	insulin-dependent diabetes mellitus		Survey
IDeg	insulin degludec	NHS	National Health Service
IDF	International Diabetes Federation	NICE	National Institute for Health and Care Excellence
IDL	intermediate-density lipoprotein	NIDDM	non-insulin-dependent diabetes mellitus
IDRS	Indian Diabetes Risk Score	NIH	National Institutes of Health
IgG	immunoglobulin G	NMU	neuromedin U
IGR	impaired glucose regulation	Nox	NAD(P)H oxidase
IGT	impaired glucose tolerance	NOD	non-obese diabetic
ΙΚΚβ	inhibitor κB kinase-β	NPH	neutral protamine Hagedorn
IL	interleukin	NRTI	nucleoside reverse-transcriptase inhibitor
IMT	intima-media thickness	NSAID	non-steroidal anti-inflammatory drug
InsR	insulin receptor	NT-3	neurotrophin-3
IRMA	intraretinal microvascular abnormality	NT-proBNP	N-terminal pro-brain-type natriuretic peptide
ISPAD	International Society for Pediatric and	OCP	oral contraceptive pill
	Adolescent Diabetes	OGIS	oral glucose insulin sensitivity
IT	information technology	OGTT	oral glucose tolerance test(ing)
IVUS	intravascular ultrasound	OR	odds ratio
IWGDF	International Working Group on the Diabetic Foot	oxLDL	oxidation of low-density lipoprotein
JBDS	Joint British Diabetes Societies	PAS	periodic acid–Schiff
KDIGO	Kidney Disease: Improving Global Outcomes	PBA	phenylboronic acid
K	Michaelis constant	PC	prohormone convertase
LÄDA	latent autoimmune diabetes in adults	PCB	polychlorinated biphenyl
LDL	low-density lipoprotein	PCI	percutaneous coronary intervention
LDL-C	low-density lipoprotein cholesterol	PCR	polymerase chain reaction
LDLR	low-density lipoprotein receptor	PCSK-9	proprotein convertase subtilisin kexin type 9
LGA	large-for-gestational age	PDH	pyruvate dehydrogenase
LIRKO	liver-specific InsR knockout	Pdx1	pancreatic duodenal homeobox 1
LPS	lipopolysaccharide	PGF	placental growth factor
Lst	limostatin	PI	protease inhibitor

List of Abbreviations

PI3K	phosphatidylinositol 3-kinase	SGA	second-generation antipsychotics
PID	proportional integral derivative	SHP	short heterodimer protein
P/KX	combined pancreas/kidney transplantation	SMBG	self-monitoring of blood glucose
PNDM	permanent neonatal diabetes mellitus	SMI	severe mental illness
PPAR	peroxisome proliferator-activated receptor	SNP	sub-basal nerve plexus
PROactive	Prospective Pioglitazone Clinical Trial in	SSRI	selective serotonin reuptake inhibitor
	Macrovascular Events	T1DM	type 1 diabetes mellitus
PTDM	post-transplantation diabetes mellitus	T2DM	type 2 diabetes mellitus
PTP1B	protein tyrosine phosphatase 1B	TAG	triacylglyceride
РҮҮ	polypeptide YY	ТВ	tuberculosis
QoL	quality of life	TCF7L2	transcription factor 7 like 2
RA	receptor agonist	TE	transient elastography
RAMP	receptor activity-modifying protein	TIND	treatment-induced neuropathy in diabetes
RCT	randomized controlled trial	TLR	toll-like receptor
RDN	renal denervation	TNDM	transient neonatal diabetes mellitus
RECORD	Rosiglitazone Evaluated for Cardiac Outcomes and	TNFα	tumor necrosis factor alpha
	Regulation of Glycemia in Diabetes	Treg	regulatory T cell
REMS	Risk Evaluation and Mitigation Strategy	TSH	thyroid-stimulating hormone
rHuPH20	recombinant human hyaluronidase	TZD	thiazolidinedione
RMR	resting metabolic rate	UKPDS	UK Prospective Diabetes Study
ROS	reactive oxygen species	US	ultrasound
RR	relative risk	UT	University of Texas
RR	risk ratio	VEGF	vascular endothelial growth factor
RT-PCR	reverse transcriptase polymerase chain reaction	VLCD	very low calorie diet
SCFA	short-chain fatty acid	VLDL	very low-density lipoprotein
s.c.	subcutaneous	VRIII	variable-rate intravenous insulin infusion
sdHDL	small, dense high-density lipoprotein	WGS	whole-genome sequencing
sdLDL	small, dense low-density lipoprotein	WHO	World Health Organization
SDS-PAGE	sodium dodecyl sulfate polyacrylamide gel	XO	xanthine oxidase
	electrophoresis	YY1	Yin Yang 1

1 Diabetes in its Historical and Social Context

1

The History of Diabetes Mellitus

Robert B. Tattersall¹ and David R. Matthews²

¹University of Nottingham, Nottingham, UK ²University of Oxford, Oxford, UK

,

Key points

- Polyuric diseases have been described for over 3500 years. The name diabetes comes from the Greek word for a syphon; the sweet taste of diabetic urine was recognized at the beginning of the first millennium, but the adjective *mellitus* (honeyed) was added by Rollo only in the late eighteenth century.
- The sugar in diabetic urine was identified as glucose by Chevreul in 1815. In the 1840s, Bernard showed that glucose was normally present in blood, and that it was stored in the liver (as glycogen) for secretion into the bloodstream during fasting.
- In 1889, Minkowski and von Mering reported that pancreatectomy caused severe diabetes in the dog. In 1893, Laguesse suggested that the pancreatic *islets* described by Langerhans in 1869 produced an internal secretion that regulated glucose metabolism.
- Insulin was discovered in 1921 by Banting, Best, Macleod, and Collip in acid-ethanol extracts of pancreas. It was first used for treatment in January 1922.
- Diabetes was subdivided on clinical grounds into diabète maigre (lean people) and diabète gras (obese people) by Lancereaux in 1880, and during the 1930s by Falta and Himsworth into insulin-sensitive and insulin-insensitive types. These classifications were the forerunners of the aetiological classification into type 1 (insulin-dependent) diabetes and type 2 (non-insulin-dependent) diabetes.
- Insulin resistance and β-cell failure, the fundamental characteristics of type 2 diabetes, have been investigated by many researchers. The *insulin clamp* method devised by Andres and DeFronzo was the first accurate technique for measuring insulin action.
- Maturity-onset diabetes of the young was described as a distinct variant of type 2 diabetes by Tattersall in 1974.
- Lymphocytic infiltration of the islets (insulitis) was described as early as 1901 and highlighted in 1965 by Gepts, who suggested that it might be a marker of autoimmunity. Islet cell antibodies were discovered by Doniach and Bottazzo in 1979.
- The primary sequence of insulin was reported in 1955 by Sanger and the three-dimensional structure by Hodgkin in 1969. Proinsulin was discovered by Steiner in 1967, and the sequence of the human insulin gene by Bell in 1980. Yalow and Berson invented the radioimmunoassay for

insulin in 1956. The presence of insulin receptors was deduced in 1971 by Freychet, and the receptor protein was isolated in 1972 by Cuatrecasas.

- The various types of diabetic retinopathy were described in the second half of the nineteenth century, as were the symptoms of neuropathy. Albuminuria was noted as a common abnormality in people with diabetes in the nineteenth century and a unique type of kidney disease was described in 1936 by Kimmelstiel and Wilson. The concept of a specific diabetic angiopathy was developed by Lundbæk in the early 1950s.
- Milestones in insulin pharmacology have included the invention of delayedaction preparations in the 1930s and 1940s, synthetic human insulin in 1979, and in the 1990s novel insulin analogues by recombinant DNA technology.
- The first sulfonylurea carbutamide was introduced in 1955, followed by tolbutamide in 1957 and chlorpropamide in 1960. The biguanide phenformin became available in 1959 and metformin in 1960.
- That improved glucose management in both type 1 diabetes and type 2 diabetes was beneficial was proved by the Diabetes Control and Complications Trial (DCCT) in 1993 and the UK Prospective Diabetes Study (UKPDS) in 1998.
- Landmarks in the treatment of complications include photocoagulation for retinopathy, first described by Meyer-Schwickerath; the importance of blood pressure management to slow the progression of nephropathy, demonstrated by Mogensen and Parving; the introduction of low-dose insulin in the treatment of diabetic ketoacidosis in the 1970s; improvements in the care of pregnant women with diabetes pioneered by White and Pedersen; and the emergence of heart failure as a common and treatable pathology.
- The understanding of the complex physiology of type 2 diabetes improved at the beginning of the twenty-first century with clarification of the roles of fat metabolism and signalling; the gut as an endocrine organ; the signals of satiety to the brain; and the role of glucagon as an important homeostatic signal.
- The many therapeutic breakthroughs of the twenty-first century include the discovery of peroxisome proliferator-activated receptor γ (PPAR-γ) activation as a therapy for insulin resistance; the activation of the incretin axis by glucagon-like peptide 1 (GLP-1) receptor agonists and the dipeptidyl peptidase 4 (DPP-4) inhibitors; and the blocking of the renal glucose transporter channels by sodium-glucose cotransporter 2 (SGLT-2) inhibitors.

Professor Robert Tattersall died on 23 November 2020. This historical text is largely his work. Professor David R. Matthews has updated and revised the chapter.

Textbook of Diabetes, Sixth Edition. Edited by Richard I.G. Holt and Allan Flyvbjerg. © 2024 John Wiley & Sons Ltd. Published 2024 by John Wiley & Sons Ltd.

Ancient times

Diseases with the cardinal features of diabetes mellitus were recognized in antiquity (Table 1.1). A polyuric state was described in an Egyptian papyrus dating from c. 1550 BCE, discovered by Georg Ebers (Figure 1.1), and a clearly recognizable description of what would now be called type 1 diabetes was given by Aretaeus of Cappadocia in the second century CE (Figure 1.2a). Aretaeus was the first to use the term *diabetes*, from the Greek word for a syphon, 'because the fluid does not remain in the body, but uses the man's body as a channel whereby to leave it'. His graphic account of the disease highlighted the incessant flow of urine, unquenchable thirst, the 'melting down of the flesh and limbs into urine', and short survival.

The Hindu physicians Charak and Sushrut, who wrote between 400 and 500 BCE, were probably the first to recognize the sweetness of diabetic urine (Figure 1.2b). Indeed, the diagnosis was made by tasting the urine or seeing that ants congregated round it. Charak and Sushrut noted that the disease was most prevalent in those who

 Table 1.1 Milestones in the clinical descriptions of diabetes and its complications.

Clinical features of diabetes

Ebers papyrus (Egypt, 1500 BCE) Sushrut and Charak (India, fifth century BCE) Aretaeus (Cappadocia, second century CE) Chen Chuan (China, seventh century CE) Avicenna (Arabia, tenth century CE)

Diabetic ketoacidosis

William Prout (England, 1810–1820) Adolf Kussmaul (Germany, 1874)

Hyperlipidaemia

Albert Heyl (Philadelphia, 1880)

Retinopathy

Eduard von Jaeger (Germany, 1855) Stephen Mackenzie and Edward Nettleship (England, 1879) Edward Nettleship (England, 1888) Julius Hirschberg (Germany, 1890)

Neuropathy and foot disease

John Rollo (England, 1797) Marchal de Calvi (France, 1864)

William Ogle (England, 1866) Frederick Pavy (England, 1885) Julius Althaus (Germany, 1890) Thomas Davies Pryce (England, 1887)

Nephropathy

Wilhelm Griesinger (Germany, 1859)

Paul Kimmelstiel and Clifford Wilson (USA, 1936) Polyuric state Sugary urine; thin individuals and

those with obesity distinguished Polyuric state named *diabetes*

Sugary urine

Sugary urine; gangrene and impotence as complications

Diabetic coma Acidotic breathing

Lipaemia retinalis

General features Microaneurysms

New vessels, beading of retinal veins Classification of lesions; specific to diabetes

Neuropathic symptoms Neuropathy is a complication of diabetes Ocular nerve palsies in diabetes Peripheral neuropathy Mononeuropathy Perforating foot ulcers

Renal disease in people with diabetes Glomerulosclerosis associated with heavy proteinuria

Figure 1.1 The Ebers papyrus. Source: Courtesy of the Wellcome Library, London.

were indolent, overweight, and gluttonous, and who indulged in sweet and fatty foods. Physical exercise and liberal quantities of vegetables were the mainstays of treatment in people with obesity, while lean people, in whom the disease was regarded as more serious, were given a nourishing diet. The crucial fact that diabetic urine tasted sweet was also emphasized by Arabic medical texts from the ninth to eleventh centuries CE, notably in the medical encyclopaedia written by Avicenna (980–1037).

Seventeenth and eighteenth centuries

In Europe, diabetes was neglected until Thomas Willis (1621–1675) wrote *Diabetes, or the Pissing Evil* [1]. According to him, 'diabetes was a disease so rare among the ancients that many famous physicians made no mention of it... but in our age, given to good fellowship and guzzling down of unallayed wine, we meet with examples and instances enough, I may say daily, of this disease'. He described the urine as being 'wonderfully sweet like sugar or honey', but did not consider that this might be because it contained sugar.

The first description of hyperglycaemia was in a paper published in 1776 by Matthew Dobson (1735–1784) of Liverpool (Figure 1.3 and Table 1.2) [2]. He found that the serum as well as the urine of his patient Peter Dickonson (who passed 28 pints of urine a day) tasted sweet. Moreover, he evaporated the urine to 'a white cake [which] smelled sweet like brown sugar, neither could it by the taste be distinguished from sugar'. Dobson concluded that the kidneys excreted sugar and that it was not 'formed in the secretory organ but previously existed in the serum of the blood'.

The Edinburgh-trained surgeon, John Rollo (*d.* 1809) was the first to apply the adjective *mellitus* (from the Latin word meaning *honey*). He also achieved fame with his *animal diet*, which became the standard treatment for most of the nineteenth century.

(a)

Diabetes is a dreadful affliction, not very frequent among men, being a melting down of the flesh and limbs into urine. The patients never stop making water and the flow is incessant, like the opening of aqueducts. Life is short, unpleasant and painful, thirst unquenchable, drinking excessive, and disproportionate to the large quantity of urine, for yet more urine is passed. One cannot stop them either from drinking or making water. If for a while they abstain from drinking, their mouths become parched and their bodies dry; the viscera seem scorched up, the patients are affected by nausea, restlessness and a burning thirst, and within a short time, they expire.

Figure 1.2 (a) Clinical description of diabetes by Aretaeus of Cappadocia (second century cE). Source: Adapted from Papaspyros, N.S. (1952) *The History of Diabetes Mellitus*. (b) Sushrut (Susrata), an Indian physician who wrote medical texts with Charak (Charuka) between 500 BCE and 400 BCE.

(b)

298 Medical Observations and Inquiries.

XXVII. Experiments and Observations on the Urine in a Diabetes, by Matthew Dobson, M. D. of Liverpool; communicated by Dr. Fothergill.

S OME authors, efpecially the Englifh, have remarked, that the urine in the diabetes is fweet. Others, on the contrary, deny the exiftence of this quality, and confequently exclude it from being a characteriftic of the difeafe. So far as my own experience has extended, and I have met with nine perfons who were afflicted with the diabetes, the urine has always been fweet in a greater or lefs degree, and particularly fo in the cafe of the following patient.

Peter Dickonfon, thirty-three years of age, was admitted into the public hofpital in Liverpool, October 22, 1772. His difeafe was a confirmed diabetes; and he paffed twenty-eight pints of urine every 24 hours. He had formerly enjoyed a good ftate of health; nor did it appear what had been the remote caufes of this indifpo-

Figure 1.3 Frontispiece and opening page of the paper by Matthew Dobson (1776) in which he described the sweet taste of both urine and serum from a person with diabetes [2].

 Table 1.2 Milestones in the scientific understanding of diabetes and its complications.

Matthew Dobson (England, 1776) Michel Chevreul (France, 1815) Claude Bernard (France, 1850s)

Wilhelm Petters (Germany, 1857) Paul Langerhans (Germany, 1869) Adolf Kussmaul (Germany, 1874) Oskar Minkowski and Josef von Mering (Germany, 1889) Gustave Edouard Laguesse (France, 1893) M.A. Lane (USA, 1907) Jean de Meyer (Belgium, 1909)

Frederick Banting, Charles Best, J.J.R. Macleod, James Collip (Canada, 1922) Richard Murlin (USA, 1923) Bernado Houssay (Argentina, 1924)

Frederick Sanger (England, 1955)

W.W. Bromer (USA, 1956)

Rosalyn Yalow and Solomon Berson (USA, 1959) Donald Steiner (USA, 1967) Dorothy Hodgkin (England, 1969)

Pierre Freychet (USA, 1971) Pedro Cuatrecasas (USA, 1972) Axel Ullrich (USA, 1977) Ralph DeFronzo and Reuben Andres (USA, 1979) Graham Bell (USA, 1980)

Joel Habener (USA), Jens Juel Holst (Denmark) (1986) Diabetic serum contains sugar The sugar in diabetic urine is glucose Glucose stored in liver glycogen and secreted during fasting Diabetic urine contains acetone Pancreatic islets described Describes ketoacidosis Pancreatectomy causes diabetes in the dog Glucose-lowering pancreatic secretion produced by islets Distinguished A and B islet cells Hypothetical islet secretion named *insuline* Isolation of insulin

Discovered and named glucagon		
Hypophysectomy enhances insulin		
sensitivity		
Determined primary sequence		
of insulin		
Determined primary sequence		
of glucagon		
Invented radioimmunoassay		
for insulin		
Discovered proinsulin		
Determined three-dimensional		
structure of insulin		
Characterized insulin receptors		
Isolated insulin receptor protein		
Reported sequence of rat insulin		
Invented insulin clamp technique		

Reported sequence of human insulin gene Determined primary sequence of glucagon-like peptide 1 (GLP-1)

Rollo thought that sugar was formed in the stomach from vegetables and concluded that the obvious solution was a diet of animal food. Thus, the regimen described in his 1797 book, *An Account of Two Cases of the Diabetes Mellitus* [3], allowed his patient Captain Meredith to have for dinner 'Game or old meats which have been long kept; and as far as the stomach may bear, fat and rancid old meats, as pork'. Rollo was probably the first to note the difficulty that some people with diabetes find in following a treatment regimen, a difficulty he blamed for the death of his second patient (Figure 1.4).

Nineteenth century

In 1815, the French chemist Michel Chevreul (1786–1889) proved that the sugar in diabetic urine was glucose [4]. In the middle of the century, tasting the urine to make the diagnosis was superseded by chemical tests for reducing agents such as glucose, as introduced by Trommer in 1841, Moore in 1844, and – the best known – Fehling in 1848. Measurement of blood glucose could only be done by 42

5th. * My urine as yefterday. Eat animal food only; took an emetic of ipecacuan in the evening, which made me very fick, and I brought up all I had caten in the course of the day; and in the last puke the matter was very four.

6th.

* Urine fince laft night not exceeding a pint and a quarter, high coloured, very urinous in fmell, and depofiting a reddifh fand. Continued my bitter, alkali in milk, and the hepatifed ammonia.

Remarks.

The patient was strongly remonstrated with, and told the confequence of repeated deviations, in probably fixing the difpofition to the difcafe fo firmly as not only to increase the difficulty, but to establish the impracticability of removing it. Fair promifes were therefore renewed, and abfolute confinement to the houfe, entire animal food, and the hepatifed ammonia as before, with the quaffia infusion, were prefcribed and agreed upon. The urine continued pale, though falt, and of an urinous fmell; but on Sunday the 4th December, the urine had a doubtful fmell, and fome of it being evaporated, yielded a refiduum evidently faccharine, though much lefs fo than in the first experiment, the urinous falts being now more predominant.

Figure 1.4 Extract from John Rollo's account of two cases of diabetes (1797). Rollo was well aware of the problem of not following a treatment regimen. Note that 'the patient was strongly remonstrated with, and told of the consequences of repeated deviations'. Source: Courtesy of the Wellcome Library, London.

skilled chemists, but needed so much blood that it was rarely used in either clinical care or research. It only became practicable with the introduction in 1913 of a micromethod by the Norwegian-born physician Ivar Christian Bang (1869–1918), and it was the ability to measure glucose repeatedly that led to development of the glucose tolerance test between 1913 and 1915.

Glucose metabolism was clarified by the work of Claude Bernard (1813–1878) [5], the Frenchman whose numerous discoveries have given him a special place in the history of physiology (Figure 1.5). When Bernard began work in 1843, the prevailing theory was that sugar could only be synthesized by plants, and that animal metabolism broke down substances originally made in plants. It was also thought that the blood only contained sugar after meals, or in pathological states such as diabetes. Between 1846 and 1848, Bernard reported that glucose was present in the blood of normal animals, even when starved. He also found higher concentrations of glucose in the hepatic than in the portal vein, and 'enormous quantities' of a starch-like substance in the liver that could be readily converted into sugar. He called this *glycogen* (i.e. sugar-forming) and regarded it as analogous to starch in plants. His hypothesis – the *glycogenic* theory – was that sugar absorbed from the intestine was

Figure 1.5 Claude Bernard (1813–1878). Source: Courtesy of the Wellcome Library, London.

Figure 1.6 Oskar Minkowski (1858–1931).

converted in the liver into glycogen and then constantly released into the blood during fasting.

Another discovery by Bernard made a great impression in an era when the nervous control of bodily functions was a scientifically fashionable concept. He found that a lesion in the floor of the fourth ventricle produced temporary hyperglycaemia ($piq\hat{u}re$ diabetes) [6]. This finding spawned a long period in which nervous influences were thought to be important causes of diabetes; indeed, one piece of 'evidence' – cited by J.J.R. Macleod as late as 1914 – was that diabetes was more common among engine drivers than other railway workers because of the mental strain involved [7].

In the first part of the nineteenth century the cause of diabetes was a mystery, because autopsy usually did not show any specific lesions. A breakthrough came in 1889 when Oskar Minkowski (Figure 1.6) and Josef von Mering (1849–1908) reported that pancreatectomy in the dog caused severe diabetes [8]. This was serendipitous, because they were investigating fat metabolism; it is said that the laboratory technician mentioned to Minkowski that the dog, previously house-trained, was now incontinent of urine. Minkowski realized the significance of the polyuria, and tested the dog's urine (Table 1.3).

Possible explanations for the role of the pancreas were that it removed a diabetogenic toxin, or produced an internal secretion that regulated carbohydrate metabolism. The concept of *internal* **Table 1.3** Milestones in the understanding of the causes of diabetes.

Thomas Willis (England, seventeenth century)	Overindulgence in food and drink			
Thomas Cawley (England, 1788)	Pancreatic stones cause diabetes			
Oskar Minkowski and Josef von Mering (Germany, 1889)	Pancreatectomy causes diabetes in the dog			
Etienne Lancereaux (France, 1880)	Lean and obese subtypes of diabetes distinguished			
Eugene Opie (USA, 1900)	Hyaline degeneration (amyloidosis) of islets (type 2 diabetes)			
Eugene Opie (USA, 1910)	Lymphocytic infiltration of islets (insulitis; type 1 diabetes)			
Wilhelm Falta (Vienna) and Harold Himsworth (England, early 1930s)	Distinguished insulin-resistant and insulin-sensitive forms of diabetes			
Willy Gepts (Belgium, 1965)	Suggested that insulitis caused β-cell destruction (type 1 diabetes)			
Deborah Doniach and GianFranco Bottazzo (England, 1979)	Suggested that insulin-dependent diabetes is an autoimmune disease			
Andrew Cudworth and John Woodrow (England, 1975)	Insulin-dependent diabetes associated with specific human leucocyte antigens			

Figure 1.7 Paul Langerhans (1847–1888). Source: Courtesy of the Wellcome Library, London.

secretions had been publicized in June 1889 by the well-known physiologist Charles-Édouard Brown-Séquard (1817–1894), who claimed to have rejuvenated himself by injections of testicular extract [9]. It was given further credence in 1891, when Murray reported that myxoedema could be cured by sheep thyroid extract by injection or orally.

In 1893, Gustave Laguesse suggested that the putative internal secretion of the pancreas was produced by the *islands* of cells scattered through the gland's parenchyma [10], which had been discovered in 1869 by the 22-year-old Paul Langerhans (1847–1888) (Figure 1.7). Langerhans had described these clusters of cells, having teased them out from the general pancreatic tissue, but had not speculated about their possible function [11]; it was Laguesse who named them the *islets of Langerhans*. At this time the glucose-lowering internal secretion of the islets was still hypothetical, but in 1909 the Belgian Jean de Meyer named it *insuline* (from the Latin for *island*) [12].

It would be wrong to give the impression that Minkowski's experiments immediately established the pancreatic origin of diabetes. In fact, during the next two decades it was widely agreed that diabetes was a heterogeneous disorder with various subtypes, and that its pathogenesis involved at least three organs: brain, pancreas, and liver [13]. The discovery by Blum in 1901 that injection of an adrenal extract caused glycosuria implicated other glands, and led to the *polyglandular theory* of Carl von Noorden (Vienna), who proposed that the thyroid, pancreas, adrenals, and parathyroids controlled carbohydrate metabolism.

Clinical diabetes in the nineteenth century

Doctors in the nineteenth century were therapeutically impotent; their main role was as taxonomists who described symptom complexes and the natural history of disease. As a result, most of the major complications of diabetes were well described before 1900. Eduard von Jaeger (1818–1884) is credited with the first description of diabetic retinopathy, in his beautiful *Atlas of Diseases of the Ocular Fundus*, published in 1869 [14]. In fact, the features illustrated (Figure 1.8), from a 22-year-old man, look more like hypertensive retinopathy. In 1879, Stephen Mackenzie (1844–1909) and Sir Edward Nettleship (1845–1913) found microaneurysms in flat preparations of the retina and, in 1888, Nettleship described new vessels and the beaded appearance of retinal veins [15]. The full picture of diabetic retinopathy was described in 1890 by Julius Hirschberg (1843–1925), who was the first to claim that it was specific to diabetes [16].

Neuropathic symptoms in people with diabetes had been mentioned by Rollo at the end of the eighteenth century, and in 1864 Charles Marchal de Calvi (1815–1873) concluded that nerve damage was a specific complication of diabetes. In 1885, the Guy's Hospital physician Frederick Pavy (1829–1911) gave a description of neuropathic symptoms that could grace any modern textbook [17]:

The usual account given by these patients of their condition is that they cannot feel properly in their legs, that their feet are numb, that their legs seem too heavy – as one patient expressed it, 'as if he had 20 lb weights on his legs and a feeling as if his boots were great deal too large for his feet.' Darting or 'lightning' pains are often complained of. Or there may be hyperaesthesia, so that a mere pinching of the skin gives rise to great pain; or it may be the patient is unable to bear the contact of the seam of the dress against the skin on account of the suffering it causes. Not infrequently there is deep-seated pain located, as the patient describes it, in the marrow of the bones which are tender on being grasped, and I have noticed that these pains are generally worse at night.

Pavy also recorded unusual presentations, including a 67-year-old who complained of 'lightning pains on the right side of the waist' and cases in which the third nerve was affected with 'dropped lid and external squint' [18].

Kidney disease was known to be relatively common in diabetes. In 1859, Wilhelm Griesinger (1817–1868) reported 64 autopsies in adults, half of whom had renal changes that he attributed to hypertension and atherosclerosis [19]; however, the histological features of diabetic kidney disease and the importance of renal complications were not reported until the 1930s.

In the latter part of the nineteenth century it was becoming apparent that there were at least two clinically distinct forms of diabetes. In 1880, the French physician Etienne Lancereaux (1829– 1910) identified individuals who were lean and those with obesity as having *diabète maigre* and *diabète gras*, respectively [20], and this observation laid the foundations for subsequent aetiological classifications of the disease.

Twentieth century

Murray's cure of myxoedema in 1891 led to a belief that pancreatic extract would soon result in a cure for diabetes, but, in the face of repeated failures over the next 30 years, even believers in an antidiabetes internal secretion were depressed about the likelihood of isolating it, and diverted their attention to diet as a treatment for the disease.

Best known was the starvation regimen of Frederick Madison Allen (1876–1964), which Joslin (Figure 1.9) described in 1915 as the greatest advance since Rollo's time [22]. This approach was an

Figure 1.8 Pictures from Jaeger's Atlas of the Optic Fundus, 1869 [14]. Top left: Bright's disease. Top right: Jaeger's retinitis haemorrhagica is now recognized as central retinal vein occlusion. Bottom left: A 22-year-old man with suspected diabetes. Bottom right: Central retinal artery occlusion. Source: Courtesy of W.B. Saunders.

extreme application of one that had been proposed as early as 1875 by Apollinaire Bouchardat (1806–1886), who advocated intensive exercise and '*manger le moins possible*'. Starvation treatment did work in a limited sense, in that some people could survive for many months or even years, instead of a few weeks or months with untreated type 1 diabetes. The quality of life, however, was very poor, and some died of malnutrition rather than diabetes. In 1921, Carl von Noorden (1858–1944), proponent of the *oatmeal cure*, turned away in disapproval when he saw Joslin's prize patient, 17-year-old Ruth A, who at just over 1.52 m in height weighed only 24.5 kg (a body mass index of 10.6 kg/m²).

Discovery of insulin

Many attempts were made between 1889 and 1921 to isolate the elusive internal secretion of the pancreas. These largely failed because the extracts were inactive or had unacceptable side effects; some preparations may have had limited biological activity, but this

was not recognized, either because hypoglycaemia was misinterpreted as a toxic reaction or because blood glucose was not measured. Those who came closest were the Berlin physician Georg Zuelzer (1840–1949) in 1907 [23], Ernest Scott (1877–1966) in Chicago in 1911 [24], and Nicolas Paulesco (1869–1931) in Romania in 1920–1921 [25] (Figure 1.10).

The story of how insulin was discovered in Toronto in 1921 is well known, at least superficially (Figure 1.11). A young orthopaedic surgeon, Frederick Banting, inspired after reading an article by the pathologist Moses Barron (1884–1975), wondered whether the anti-diabetes pancreatic principle was digested by trypsin during extraction, and decided to prevent this loss by ligating the pancreatic duct, thus causing the exocrine tissue to degenerate. He approached the professor of physiology in Toronto, J.J.R. Macleod, an authority on carbohydrate metabolism, who poured scorn on the idea and suggested that the only likely outcome would be 'a negative result of great physiological importance'.

Figure 1.9 (a) Elliott P. Joslin (1869–1962), arguably the most famous diabetes specialist of the twentieth century, and (b) the frontispiece to his 1916 textbook [21]. Source: Courtesy of the Wellcome Library, London.

Eventually, Macleod relented and installed Banting in a rundown laboratory, later leaving for Scotland and a fishing holiday. A student, Charles Best, was chosen by the toss of a coin to help Banting. Within six months of this unpromising start, Banting and Best (referred to in Toronto academic circles as B^2) had discovered the most important new therapy since the anti-syphilitic agent salvarsan. These events are described in detail in the excellent book by Michael Bliss [26].

Their approach began with the injection of extracts of atrophied pancreas (prepared according to Macleod's suggestions) into dogs rendered diabetic by pancreatectomy. Subsequently, they discovered that active extracts could be obtained from beef pancreas, which Best obtained from the abattoir. The extraction procedure (using ice-cold acid-ethanol) was greatly refined by James B. (Bert) Collip, a biochemist who was visiting Toronto on sabbatical leave.

The first clinical trial of insulin (using an extract made by Best) took place on 11 January 1922, on 14-year-old Leonard Thompson, who had been on the Allen starvation regimen since 1919 and weighed only 30 kg (Figure 1.12). After the first injection, his blood glucose level fell slightly, but his symptoms were unchanged and he developed a sterile abscess. On 23 January, he was given another extract prepared by Collip, and this normalized his blood glucose by the next morning; further injections over the next 10 days led to

marked clinical improvement and complete elimination of glycosuria and ketonuria. Initial clinical results in seven cases were published in the March 1922 issue of the *Canadian Medical Association Journal* [27], which had the following dramatic conclusions:

• Blood sugar can be markedly reduced, even to normal values.

- Glycosuria can be abolished.
- The acetone bodies can be made to disappear from the urine.

• The respiratory quotient shows evidence of increased utilization of carbohydrates.

• A definite improvement is observed in the general condition of these patients and, in addition, the patients themselves report a subjective sense of well-being and increased vigour for a period following the administration of these preparations.

The term *insulin* was coined by Macleod, who was unaware of de Meyer's earlier suggestion of *insuline*. News of its miraculous effects spread astonishingly rapidly [28]. In 1922, there were only 19 references in the world literature to *insulin* or equivalent terms such as *pancreatic extract*; by the end of 1923, there were 320 new reports, and a further 317 were published during the first six months of 1924.

By October 1923, insulin was available widely throughout North America and Europe. International recognition followed rapidly for its discoverers, and the 1923 Nobel Prize for Physiology or Medicine was awarded jointly to Banting and Macleod. Banting