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Foreword

Kolmogorov Equations play a pivotal role in bridging the theories of Partial
Differential Equations and Stochastic Differential Equations that emerge across
various research domains. The objective of the INJAM Meeting on “Kolmogorov
Operators and their Applications”, held in Cortona from June 13 to 17, 2022, was to
convene established researchers whose work revolves around Kolmogorov operators
and their applications. This gathering aimed to stimulate the exploration of novel
research directions and foster new collaborations.

Degenerate Kolmogorov operators are highly degenerate evolution operators
that exhibit invariance with respect to non-Euclidean geometric structures. The
simplest instance of this family of differential operators appears when considering
the Langevin process (V;, X;);>¢ in the phase space R4 x R4

!VIZUO+Wta )

X; =x0+f0[ Vsds.

Here (W;),>o denotes a d-dimensional Wiener process. The density p =
p(t, v, x,v9,x0) of (V;, X;)r=0 is the fundamental solution to the strongly
degenerate Kolmogorov equation Lp = 0, being

Lp:=3Ap+v-Vip+dp=0, >0, (v,x)eR™ )

In 1934 Kolmogorov provided us with the explicit expression of p

3d/2
p(ts U7x3 v01x0) - mex

(_ \v—vol2 _3 (v=vp)-(x—x0+tv9) __ 3 |x—x0+tv0|2>

t 12 13 ’
and pointed out that it is a smooth function, despite the strong degeneracy of the
opertor L. As it is suggested by the smoothness of the density p, the operator £

is hypoelliptic, that is every distributional solution f € Llloc(Q) to the equation
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Lf = g, in some open set Q C R24+1 e have that
geEC®(Q) = [feC®.

The study of this category of differential operators has seen substantial growth
in recent years, driven by both theoretical and practical considerations. They
hold significant relevance in the realms of Partial Differential Equations and the
theory of Stochastic Processes. In terms of their numerous real-world applications,
degenerate Kolmogorov operators find utility in areas such as Kinetic Theory and
the Theory of Financial Markets. These research domains are of great interest,
featuring numerous open problems and unexplored issues. Currently, researchers
are investigating existence, uniqueness, and regularity problems associated with this
family of equations, considering both classical and weak theories, as well as the
presence of fractional derivatives.

This volume comprises contributions from several speakers at the conference,
encompassing a wide array of topics addressed during the event. These topics
have transdisciplinary implications, spanning various fields within mathematics.
The editors of this volume extend their heartfelt gratitude to the authors for their
outstanding contributions.

Université d’Evry Val d’Essonne Stéphane Menozzi
Alma Mater Studiorum - Universita di Bologna Andrea Pascucci
Universita degli Studi di Modena e Reggio Emilia Sergio Polidoro
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Local Regularity for the Landau ®)
Equation (with Coulomb Interaction Qe
Potential)

Francois Golse and Cyril Imbert

Abstract This is a survey of our recent work with A. Vasseur [arXiv:2206.
05155] on the local regularity of some class of weak solutions of the space
homogeneous Landau equation with Coulomb singularity. Our main result is that
any axisymmetric solution in this class is smooth outside the axis of symmetry.

1 The Landau Equation and the Regularity Problem

The Landau equation discussed here is a variant of the Boltzmann equation of the
kinetic theory of gases proposed by Landau [11] in the context of plasma physics.
It has been known for quite a long time (see for instance [16]) that the Boltzmann
collision integral cannot be defined for particle interacting via a repulsive Coulomb
potential, because of a logarithmic divergence, whose coefficient is precisely the
Landau collision integral: see for instance §41 in [12], or [3].

As in the case of all kinetic models, the unknown in the Landau equation is the
velocity distribution function f = f(¢, x, v), that is the number density of particles
located at the position x with velocity v at time z. Henceforth, we shall restrict our
attention to velocity distribution functions that are independent of the x-variable, a
situation referred to as the space-homogeneous case.

The (space-homogeneous) Landau equation with unknown f = f(t,v) > 0
reads

o f(t, v) = div, / alv—w)(Vy = V) (fit,v) ft, w)dw, ve R? s
R3
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In the right-hand side above, Landau collision kernel a is the matrix-valued function
defined by the explicit formula

1 2 1 z ®2
a(@) = Vel = @, where @) =1 — ()

It is instructive to write a nonconservative form of the Landau equation. It reads

0 f (1 v) = trace (@, f(1, O)VEF (W) + f1 07,

where %, designates the convolution product in the v-variable. What is remarkable
in this form of the Landau equation is the local term £ (z, v)%, which comes from
the identity

div(diva(z)) = —8o(z), inD'(R>).

The presence of the term f(z, v)? on the right-hand side obviously raises the
following question: does the Cauchy problem with f | o = Jin admit global
classical solutions (defined for all + > 0), or is there a finite-time blow-up for
classical solutions of the Landau equation?

If one considers solutions f(#) > O independent of v, the Landau equation
reduces in this case to the Riccati equation f'(t) = f ()%, whose solution f(r) =
1 f ;;m blows up at time 1/f;,. This is somehow uninteresting because, on physical
grounds, the velocity distribution function f(z, -) is expected to be a probability
density, or at least an element of L! (R3), which excludes positive constants.

It may seem more relevant to think of the Landau equation as a variant of the
semilinear heat equation

ou(t,x) = Ayu(t, x) + au(t, x)z, xeRY.

In this case again, there is a finite-time blow-up phenomenon, which easily follows
from Kaplan’s clever argument [9]. Pick ¢ to be a ground state for the Dirichlet
Laplacian in the unit ball B of R¢:

i —Ap =Xy, ¢>00nB,
¢’|aB =0.
Consider the quantity

Jput, x)p(x)dx

L(t) := T otds
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Using the Green formula and the Jensen inequality shows that
ut,)>0onB = L(t) > —roL(t) +aL’(t),

and a comparison argument based on the Riccati equation again proves that positive
classical solutions of the semilinear heat equation for which L(0) > A/« blow up
in finite time.

However, comparing the Landau equation with the semilinear equation is
misleading for the following reason. If f(z, v) grows very fast as t — t* < 400
for v near some point vg, one can hope that the diffusion matrix a *, f(z, v) will
grow accordingly, and that the diffusion term trace ((a *, f(t, v))Vg f, v)) will
ultimately offset the effect of the local quadratic nonlinearity f(f, v)>.

For this reason, several authors have considered an “Isotropic”” Landau Equation

du = ((—A) " "w)Au + au?, 0O<ac<l.

(The term “isotropic” comes from the fact that the matrix field a in Landau’s
collision integral is replaced with ﬁIRa .) See for instance [10] for a proof of global

regularity forall ¢ € [0, %). Although this result is an interesting contribution to the

understanding of the competition between the smoothing effect of the diffusion term
and the promotion of blow-up by the quadratic nonlinearity, the total mass of the
solution is dissipated by the dynamics of the isotropic model for 0 < « < 1, which
is not very satisfying on physical grounds. More recently, the case « = 1 has been
considered in [8], where the global regularity of radially symmetric, nonincreasing
solutions is proved. This is more satisfying, since the total mass of the solution is
conserved by the dynamics of the isotropic Landau equation with @ = 1, as in the
case of the true Landau equation—and yet not fully satisfying because this model
fails to conserve the energy of the solution, at variance with the Landau equation.
Energy conservation is somehow related to the existence of nontrivial equilibrium
solutions of the Landau equation, i.e. solutions of

trace ((a w0 FO)V2F(, v)) F )2 =0

with finite mass and energy. We shall return to this later, but the existence of such
equilibria shows that one cannot argue that either the diffusion term or the quadratic
nonlinearity dominates the dynamics.

Other approaches to the regularity issue for the Landau equation itself, instead of
a model equation, have been attempted. Silvestre [15] proved the regularity of H-
solutions (a class of weak solutions of the Landau equation obtained by Villani in
[16]) belonging to L>°((0, +00); L?(R3; (1 + |v|)*dv)) with p > 3/2 and k > 8.
Desvillettes, He and Jiang [5] have obtained a new Lyapunov functional for the
Landau equation, and proved the global existence of regular solutions for near
equilibrium initial data; they also prove that H-solutions of the Landau equation
cannot become singular after some finite time that can be computed explicitly in



4 F. Golse and C. Imbert

terms of the initial data. Still another approach to the regularity issue consists in
showing that the (potential) singular set of a H-solution must be “small” in some
sense. For instance, with Gualdani and Vasseur [6], we proved that the set of singular
times of Villani solutions of the Landau equation has Hausdorff dimension < 1/2.
This result is of course reminiscent of the upper bound on the Hausdorff dimension
of the set of singular times [13] of Leray solutions of the Navier-Stokes equations
in three space dimensions, and of the more recent partial regularity results for the
Navier-Stokes equations obtained by Scheffer [14] and Caffarelli-Kohn-Nirenberg
[2].

This is survey article with a (hopefully) streamlined presentation of the local
regularity results under appropriate symmetry assumptions obtained in collaboration
with Vasseur in [7]. There are also partial regularity results in [6, 7] without any
additional symmetry assumptions. These results are based in part on the same
arguments as the local regularity results discussed here, and on another important
ingredient briefly sketched in the last section of the present paper. We have chosen
to refrain from giving a thorough presentation of these partial regularity results in
the present survey for the sake of brevity. The interested reader is referred to Sect. 7
for a quick description of the partial regularity obtained for the Landau equation
with Coulomb interaction, and to [6, 7] for complete proofs of the main results in
that section.

2 Fundamental Properties of the Landau Collision Integral

In the first part of section, we recall some very classical properties of the collision
integral, such as the conservation laws of mass, momentum and energy, together
with the Boltzmann H Theorem, with the expression of the entropy production rate.
All these properties have been well known since Landau published his equation in
[11].

We shall conclude this section with a much more recent, yet equally fundamental
inequality comparing the Landau entropy production rate with the Fisher informa-
tion.

2.1 Conservation Laws and H-Theorem

Write the Landau collision integral as
C(F)(v) :=div, /3 alv—w)(Vy — V) (F(v)F(w))dw .
R

Lemmal For all F € CY(R3) such that F(v) > 0 and VF(v) are rapidly
decaying as |v| — oo, the Landau collision integral C(F) is the distribution
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defined by
(C(F), ¢) = _%//113 R}(V¢>(v)—V¢(w))'a(v—w)(vv—Vw)(F(v)F(w))dvdw

for all test functions ¢ € CR3) such that ¢p(v) and V¢ (v) have at most
polynomial growth as |v| — oo.

(This formula is based on the definition of the divergence of a vector field in the
sense of distributions, viz.

crror == [[ o) atw—w)(¥, = V) (FQ) F@)dudu:
the conclusion follows from symmetrizing the integrand with the substitution

(v, w) — (w, v).)

Corollary 1 Under the assumptions of Lemma 1
(C(F), 1) = (C(F), v1) = (C(F), v2) = (C(F), v3) = (C(F), [v]*) =0

(Indeed, if ¢ = 1, one has V¢p = 0, so that the expression in the right-hand
side of the formula in Lemma 1 is obviously 0. By the same token, if ¢ = v; for
Jj =1,2,3, then V¢ is a constant vector field, hence V¢ (v) — V¢ (w) = 0. Finally,
if ¢ (v) = |v|?, one has

Vo () — Vo (w) =2(v — w)

and we conclude after observing thata(v —w)*- (v—w) = a(v—w) - (v —w) = 0.)

Corollary 2 (H-Theorem) Under the assumptions of Lemma 1, if moreover
F(v) > 0 is such that In F(v) has at most polynomial growth as |v| — o009,
then

(C(F),InF) = — 1 //m y F(v)F(w)

v — w|
2
x |TT(v — w) (VFP;S))) — V;;i?)”) dvdw

‘ dvdw
4w w]

- f/ M=)V, = Vo) VFO Fw)
R3xR3

—f/ = T — w)(Vy — Vy)
R3xR3

x VF@) Fw)/|v — wl‘zdvdw.
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(The first equality follows from the identity
(Vo = Vy))(F()F(w)) = F)F(w)(VIn F(v) — VIn F(w))
in the right-hand side of the equality in Lemma 1, and the second from the identity

VFO)FWw)(VInF(v) = VIn F(w)) =2(Vy — V)V F)F(w).

The last equality is based on observing that I[T(v — w)(Vy, — Vy,)®(Jv —w]) =0
forall ® € C'((0, +00)).)

2.2 The Entropy Production and the Fisher Information

In 2015, Desvillettes came up with a remarkable inequality relating the entropy
production rate for the Landau equation with the Fisher information.

Theorem 1 ([4]) For each f € L'(R3; (1 + |v|>)dv) such that f > 0 a.e. on R?
and f1n f € LY(R?), one has

2 2
/ |VVT@)|" dv —CpiCh / M@= w)(Vo = Vo) VIO F@|"
R (14 [v[?)3? RS v — wl

for some constant Cp depending only on the conserved moments of f, and on its H
function:

Cp=Cp U (1, v, v, |1nf(v)|)f(v)dv} > 0.
R3

Interestingly, the Desvillettes theorem puts the Landau equation in the same class
as the Navier-Stokes in three space dimensions, in terms of Lebesgue exponents, as
shown by Table 1.

There are several applications of the Desvillettes inequality, including for
instance the propagation of moments for weak solutions of the Landau equations,

Table 1 Analogy between the Navier-Stokes equations, with unknown the fluid velocity field
u(r, x) € R3, and the Landau equation with unknown the distribution function f (¢, v)

Equations Unknowns Dissipation rates
Navier-Stokes ueLPL? Veu € L2L2

Landau VT € L®L2((1 + |v])%dv) Vo F € LZL2(1 + |v])~3dv)
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i.e. the fact that quantities of the form

f | f (2, v)dv
R3

remain bounded over finite time intervals if they are bounded for t = 0. (We shall
not use this fact here, since we are primarily interested in local properties of weak
solutions of the Landau equation.)

3 Weak Solutions

In [16], Villani proposed the following notion of weak solution of the Landau
equation.

Definition 1 A H-solution of the Landau equation] on the time interval [0, T) with
initial data f;,, > 0 is an element

fecqo, ), DR NL'(0,T); L'R*; (1 + [v])~'dv)

such that

(v — w)(Vy — Vo)Vt 0) f(t, w)/|v —w] € L*>([0, T) x R} xR3)

satisfying the Landau equation in the sense of distributions in the form
t
/ Jin()9 (0, v)dv — / f@ v)e, vydv + / / f @, v)9¢(s, v)dvds
R3 R3 0 JR3

t
=/// JLEDLD @ (s, v, w) - TT(w—w) (Vy = Vi) | LS dudwds,
0 RO

forall ¢ € C°([0, +00) x R3), where ® (¢, v, w) := V,¢(t, v) — V¢ (t, w) € R,
together with the conservation of mass, momentum and energy, i.e.

1 1
/mf(t,v) v dv:/sz,',,(v) v |dv forallt €[0,7T),

2 2
[v] [v]

!'In the Coulomb interaction case.
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and the Boltzmann H-Theorem, in the form
f(@,v) >0a.e.on[0,T) x R} , and / f@&,v)In f(t,v)dv
R3

< / Fin (@) In fin(0)dv
R3

forallt € [0, T).
Observe that, by

2
</f V LORLCD @ (s, v, w) - TI(0—w) (Vy — Vyy)y/ LELE0) w)dvdw)
RO
< //6‘n(v—w)(vv—vw)\/—-f(‘ﬁ;’)f;‘,‘“w)
R

x //]#Wf(s’ v) f (s, wydvdw

< sup \@\(; vul)lf)l ||fm||L1(R?) // ‘l’[(v w)(Vy—Vy) [ fs,0) f(s,w) v)fu()s w)

s, v, w

dvdw

dvdw

by the Cauchy-Schwarz inequality. Since the right-hand side of this last inequality
is integrable on [0, T'], we conclude from the Cauchy-Schwarz inequality (applied
to integrals in the time variable) that, for each H-solution f of the Landau equation

t— / f,v)p(t, v)dv
R3

belongs to C%1/2([0, +00)) for each ¢ € C§°(R3).
Villani proved the following global existence theorem for the Landau equation
(see Theorem 4 (i) of [16]).

Theorem 2 Let f;, € L'(R3; (1 4 |v|?)dv) satisfy
fin = 0a.e. on R3, and finIn fiy, € Ll(R3).

There exists a H-solution f of the Landau equation on [0, 4-00) such that f’t:O =
ﬁ’l'

We need to explain the basics of Villani’s construction. To do this, we introduce
a truncating procedure for the Landau collision kernel. Pick x € C°°(R) such that

1oy <x <1222, with [x'| <2,
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and define the truncated collision kernel by the formula
as(z) == (1 - x(zl/8)a(z), zeR

for each § > 0. Set
) = x @), and &)=k (§) . where xi= [ xciuba.

For each § > 0, the regularized problem

@ — A, f3(t, v):din/R;ZS(U_w)(VU_vw)(fé(tv V) f5(t, w)dw,
Fol,o = 05 % (&5 fin) + Wf'"‘zp,

has a unique smooth solution by standard fixed-point arguments. Besides, the
maximum principle implies that

f5(t,v) > Ca(;)e—lvﬁ/z

so thatIn fs(z, v) > —% |v|2+1In C; (1), and formal computations with the Boltzmann
H-Theorem are legitimate.

Theorem 3 Under the same assumptions as in Theorem 2, the family fs of solutions
of the regularized Landau equation is relatively compact in Ll1 e ([0, +00) x R3),
and any of its limit points as § — 0V is a H-solution of the Landau equation with
initial data fip.

Henceforth, we refer to any H-solution of the Landau equation obtained as a
limit point of the family of solutions of the regularized Landau equation as in
Theorem 3 as a Villani solution of the Landau equation. In the sequel, we focus
on this specific type of H-solutions to the Landau equation, since they enjoy useful
additional properties, which general H-solutions are not known to satisfy (to the
best of our knowledge).

4 Local Regularity

Our main results in this paper address the local regularity of Villani solutions of the
Landau equation enjoying additional symmetry properties.
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Let f be a Villani solution of the Landau equation with initial data fj,
measurable on R? satisfying

fin = 0a.e.and / (1+|v|2+|lnﬁn(v)|)ﬁn(v)dv < 00
R3

(see Theorem 3 for the existence of a Villani solution).
Our first result deals with the regularity of axisymmetric Villani solutions of the
Landau equation.

Theorem 4 If f is axisymmetric, i.e. if there exists w € S* such that
f@,v)=ft, R0 - (v w)o) + (v o)),

forall R € SO((Rw)b), then f € C®((0, +00) x (R3\ Rw)).

In plain words, axisymmetric Villani solutions of the Landau equation are smooth
except maybe on the axis of symmetry.

Our next main result is a straightforward consequence of Theorem 4, and treats
the case of radial solutions.

Theorem 5 [If f is radially symmetric, i.e. of the form

ft,v) = F(, |v])

then f € C*®((0, +00) x (R?\ {0})).

Thus radial Villani solutions of the Landau equation are smooth except maybe at
the origin. This is an obvious consequence of Theorem 4, since a radial solution is
axisymmetric around any straight line through the origin.

Indeed, according to Theorem 4, the set of singularities of such a solution is
included in the intersection of all the straight lines through the origin, which is
precisely the origin itself.

After [7] appeared on the arXiwv preprint server, A. Bobylev wrote a very
thorough and interesting discussion [1] of the regularity problem for radial solutions
of the Landau equation. The interested reader is strongly advised to study [1] to
understand the various scenarios, and competing effects promoting or preventing
blow-up for radial solutions of the Landau equation.

5 Mathematical Tools

The proof of Theorem 4 is rather involved. In this section, we shall briefly outline
the main steps, and describe the mathematical methods used in this proof.
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5.1 Ellipticity Bound

In this brief section, we return to the truncated collision kernel ags introduced after
the statement of Theorem 2. Obviously, as is bounded and smooth for each § > 0. Is
the ellipticity preserved by this truncation? This is precisely the question addressed
in this section.

Lemma 2 Assume that f = f(v) > 0 a.e. is a measurable function satisfying the

bounds
v|? Eo
0 =mo= /R f)dv = Mo, /R (lnf(v)> Jdv = (Ho) ‘

Then, there exists colmo, Mo, Eo, Hy] > 0 and §o[mo, My, Eo, Hy] € (0, 1) such
that

0<d<8y = fras() = gty ! forallveR>.

5.2 Locally Bounded Solutions Are Smooth

Henceforth, we shall use parabolic cylinders, denoted as follows:

0, (to, vo) = (to — 2, to] x B, (vp) .

Because of the parabolic nature of the Landau equation, in order to prove the
local smoothness of weak solutions, only some very low regularity is needed.
Smoothness follows by some bootstrap procedure.

Lemma 3 Let f be a Villani solution of the Landau equation. Assume that [ €
L>®(Qr(tog, v9)) for some R, ty > 0 and some vy € R3. Then f is a.e. equal to
Sfunction of class C* on Q g2(to, vo).

A consequence of Desvillettes’ theorem (Theorem 1) is that Villani solutions
of the Landau equation are solutions in the sense of distributions. Thus the Villani
solution f satisfies

8 f = divy(AV, f + fB)
where

A(t,v) = f(t.)*a(v) and

B(t,v) = —f(t,) xdiva(v) =2 (f(t, ) % #) (v).
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Thus, if 0 < f € L*®(Qg (19, vp)), then

f.yxa=f(t,)xas+ f(t,)x(a—as) €L(Qr-2s(t0,0)),

LPL wy LP =10 g,vp))*v(@—as)

and, by the same token, fB € L% (Qg—_2s(fo, vg)). On the other hand, reducing
8 > 0 sothat § < §p as in Lemma 2, one has

fa)xa@) = ft.)xas() = g1 veR?,

so that f belongs to a parabolic De Giorgi class, and is therefore Holder continuous,
with a bound of the form

Lflce (g rtto.v0) = ClflILo(0g, rito.00) (1 + 1BllL(0g, r(t9.v0)))

for all B, B2 such that 0 < B, < B < 1. This implies that A and B belong to the
Holder class C* on Q g, r(f0, vo) for all B3 € (0, 1), again by decomposing a as a =
(a—as)+as. Then, we can use the Schauder estimates to conclude that 9; f and V,, f
are of Holder class C¥ on Qg,r (0, vo) for all 0 < B4 < B3 < 1. Differentiating
both sides of the Landau equation in all variables, the proof of Lemma 3 follows by
a standard bootstrap argument.

5.3 Truncated Entropy Inequality

In the sequel, we shall use the De Giorgi method to prove a sufficient condition for
local boundedness, and therefore local regularity according to Lemma 3. The De
Giorgi method involves considering truncations of the distribution functions. The
following notation will be convenient:

fi=( —x)y =max(f —«,0), forallx >0.
We shall also consider the truncated logarithm

In} z := max(Inz, 0) = Inmax(z, 1) .

Definition 2 For each ¢ > 0 and each ¥ > 0, the truncated entropy generating
function is (Fig. 1)

RS (g) ==khy (£), where hy(z):=zInpz—(z— 1.

At this point, we shall use a property of Villani solutions of the Landau
equation, pertaining to the evolution of the truncated entropy of the distribution
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Fig. 1 Graph of the function /4

function, which we do not know to be satisfied by all H-solutions. This property is
fundamental for our analysis, and this is the reason for restricting our attention to
Villani solutions.

Let f be a Villani solution of the Landau equation on R3.

Forall W € C°((0, T) x R?), there exists a Lebesgue-negligible set N C (0, T')
such that

/ HE(F (12, ) (1, v)dv
R3
5]
< / W (F (1, ) (0, v)do + / / W (F (6, 0)3, (1, v)dvds
R3 1 R3

f2 . Vo f¥ f
~ [ [ aver =i, arn (62 4in (9. ) orduar
n JR3 —_—— —
T1 T2

forallx > Oandall 1 < 1, ¢ N, with
¢ = W2, A(t,v) := / Ft, wa—w)ydw, veR>.
R3

This inequality is obtained by writing the evolution of the truncated entropy for
solutions of the regularized Landau equation used in Villani’s construction of H -
solutions, passing to the limit as the regularization parameter 6 — 0.
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At this point, we forget about the regularized Landau equation, and think of
Villani solutions of the Landau equation as H-solution satisfying the truncated
entropy inequality above. In fact, what we are going to use is a consequence of
the inequality above, where the test function W is chosen so that

. C 2 Cx
15,0 < ¥ <1p500, With V¥l <= and [[V¥[Le < .
Choosing W as above, and using the lower bound for the entropy production rate
provided by the Desvillettes theorem (Theorem 1), one arrives at the following local
estimate, which will be at the core of our analysis of the Landau equation.

Lemma 4 (Key Local Estimate) Lef vy € R?, and assume that fi,, > 0 a.e. on R?
is a measurable function satisfying

, w2\ Eo
0 < mo < /R fin(0)dv < Mo, fm <lnf(v)) fin()dv < <H0) .

There exists Co = Col|vol, mo, Mo, Eo, Hy] > 1 such that any Villani solution of
the Landau equation with initial data f;, satisfies the inequality

K 2
ess sup / he (f(t, v))dv + / RGN
+ f(t,v)
By (vo) 0y (to,v0)

tofr2<t§t()

<Gy /Q»-+s(to,vo) (K + 3% + Sizf *y \_ll) f (ln+ (%) + Iny (%>2> dtdv

+Co/;wﬂmmw(%(fAkj*vr%)jﬂn+(%>dnh

forallty € (0, T)andallr,§ € (0, 1), provided that

10> (r +8)2, ke QNIl,+00).

5.4 Scalings

We have observed in Table 1 the analogy between H -solutions of the Landau equa-
tion and Leray solutions of the Navier-Stokes equations in three space dimensions.
However, there is at least one major difference between these equations, namely the
scaling invariance.

First, we mention the translation invariance of the Landau equation, which is
obvious (and a consequence of the Galilean invariance in classical mechanics).
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Thus, for the Landau equation
f H-solution — f(#y + -, vo + -) H-solution

for all 7o > 0 and all vy € R>.

At variance with the Navier-Stokes equation there is a two-parameter group
of scaling transformations leaving the Landau equation with Coulomb interaction
invariant: for all A > 0 and all & > 0, set

fp(t,v) = Af (i, pv),  (1,v) € (0, +00) x R®.
Then
f H-solution of Landau’s equation == f3 , H-solution of Landau’s equation

(We recall that if u = u(r,x) € R3 is a Leray solution of the Navier-Stokes
equations, then, for each € > 0, the rescaled velocity field u. (¢, x) := eu(ezt, €x)
is also a Leray solution of the Navier-Stokes equations.)

Here is how the scaling transformation f > f) , acts on the quantities
appearing on the left-hand side of the key local estimate, viz. the truncated entropy
and the Fisher information of the truncated distribution function:

/ W (frou(t, v)dv ——/ R (f (A2, 0))dD,
B, (0)

Vo 002004 Vel G0~ s
/_T/ = Jaw A /M/ rin Ao

It is obviously desirable to keep both these terms of the same order of magnitude
under the scaling transforms as one zooms in near a point (¢, vo) to study the local
regularity of the distribution function. Among all the scaling transformations leaving
the Landau equation with Coulomb interaction invariant, we are therefore led to
consider the special case A/u’ = 1/1. Henceforth, we set

u=¢€¢ and A =€,

Thus, let f = f(¢, v) be a global Villani solution of the Landau equation. Pick
(tg, vo) € (0, +00) x R3. Henceforth, we seek to study this solution near (fy, vp) by

considering its translated and scaled variant

fe(t,v) == e2f(to + €21, Vo + €v), veRY, > —to/ez.



16 F. Golse and C. Imbert

If one returns to Table 1, one easily checks that this scaling transformation is exactly
the same as in the case of the Navier-Stokes equations, since

Ve, v) = e\/f(to +€2t,v9 + €v)

is the quantity analogous to the rescaled Navier-Stokes velocity field

uc(t, x) = eu(ty + ezt, X0+ €x).
Set
Ke 1= €k, 8¢ 1= 6/€, Fei=r1/€, c = (fe — Kt -
Assume that
€ € (O,min(%,ﬁ)), ke €[1,2]NQ, rc€(0,2], 8 €(0,1].
Corollary 3 (Scaled Local Estimate) Under the same assumptions and with the

same notations as in Lemma 4, there exists C(’) = C(/)[lvol, mo, My, Eo, Hy] > 1,
independent of €, such that

Ke 2
ess sup / h'f (fe(t,v))dv + / lv”]{:(+’;))ldtdv
By o) ’

—r2<t<0 €

1pc
<} /Q (KE + g+ e s |—> Jen () + Iy (f2))drdv
re+0e¢
o/ 1
H3 [ fer TG + Iny () )drdv.
re+3d¢

This is a rather straightforward consequence of Lemma 4, splitting the term
coming from the Landau collision kernel as

L A< I

z| |z] |z]

)

and transforming the integrals by the substitution

(t,v) > (to + 62t, vo + €v) .

5.5 Local Regularity Criterion

The last mathematical tool used in our study of the local regularity for the Landau
equation with Coulomb singularity is the De Giorgi iteration method—specifically,
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the part of De Giorgi’s argument leading to a local bound—and not the reduction of
oscillations (in fact, this latter part of De Giorgi’s analysis has already been used as
a black box procedure in the proof of Lemma 3 before the bootstrap argument based
on Schauder’s estimates).

Lemma 5 (De Giorgi’s First Lemma) Let f.(¢,v) = ezf(to + €21, vy + €v) be
a scaled Villani solution of the Landau equation with initial data f;, = f(0, )
satisfying

: lv]? _ Ey
0<mos/R3 Fin(v)dv < Mo, /R <1nf,-n(v)> Fin()dv < (HO).

Assume

1 c
esssup fe(t,-) x B'—mf <Zc, where Z, > 1.

01(0,0) |

Then, there exists npG = npglmo, My, Eo, Hy, |vo|] € (0, 1) such that

esssup [ (folt,v) = oo+ / Vo TP,z dido < 125
—4<t<0J By 0> ’ Ze

= fe<2aeonQip.

Of course, the proof of Lemma 5 is based on simultaneous truncations of the
values of the distribution function f, and parabolic zooming transformations near
(fo, vo). Specifically choose a sequence r; of radii shrinking from 1 to % and a
sequence of levels k; increasing from 1 to 2, as follows:

rj:=%(1+27j), KjZ=2—27j, j=0.

Then we apply Corollary 3 with v = rjy; and 8¢ = r; — r;j41, while k. =
%(K i + kj+1). Then we proceed with the De Giorgi iteration method, involving
a nonlinearization procedure as usual, and arrive at the statement in Lemma 5.

6 A Sketch of the Proof of Theorem 4

The proof of Theorem 4 is based on two ingredients:

(a) alocal le,v—bound away from the axis of symmetry, and

(b) alocal LY, bound for the diffusion matrix.

Henceforth we fix (7o, vg) € (0, +00) x R3 such that vy is at a distance po >0
from the axis of symmetry of the distribution function f.
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6.1 Local Lf , Bound
b

Roughly speaking, away from the axis of symmetry, an axisymmetric function is
a function of two variables (the distance to the axis and the height). Therefore,
such functions benefit from better Sobolev embeddings than in the generic three
dimensional case. This elementary idea is the basis for the following lemma.

Lemma 6 Ler f € L°°((0, T); L' (Bg)) with V, f € L*((0, T); L' (Bg)) be of the

form
Ft,v) = g(t, JUR+ vg,i);) .

————
Vi V2

Letty € (0,T), let VO = (V2, V) e R%, and let 0 < r < V) — po; then

0]
/ / g(t, V)2dVdr
to—r2 J|V-Vy|<r
1
< SEE T (a1 +IVf )12 )dr
= Qupo)? o1 » LB (0,0,V9)) » LB (0,0,V9)) ’

where Cs(B,) is the Sobolev constant for W'(B,) c L*(B,) in R2.

(Notice that the right-hand side of this inequality involves L' norms for the 3-
dimensional Lebesgue measure over the 3-dimensional ball B, (0, 0, Vzo), whereas
the integral on the left-hand side is over a 2-dimensional domain. This is the reason
why the right-hand side is expressed in terms of f, and the left-hand side in terms
of the function g.)

6.2 Local Ltofv Bound of the Diffusion Matrix

The quantity f(z, -) » ﬁ appears twice on the right-hand side of the inequality in
Corollary 3. Now this quantity is interesting, because of the following observation.
For each € > 0 and each Villani solution of the Landau equation, it holds

1 s 1
— )= flto+e€t,)*—

Jelt I B

(vo + €v),
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for all (9, vo) € (0, +00) x R3, all v € R3 and all t > —1g/€2, so that

Jexy —

1
= f*ur

I 220 (Qcr 10.v0))

L>°(Q,(0,0))

In other words, the quantity f(z, -) * |1—‘ is L®-critical.
The next lemma provides an L control on this quantity for rescaled axisym-
metric Villani solutions of the Landau equation.

Lemma 7 Let f > 0 be measurable on (0, T) x R> and of the form

f@,v):=F (t,,/vf +v%, vg) .

Let (o, vo) € (0, T) x R3 be such that

0 :=,/v12+v%>0,

and let

fe(t,v) 1= € f(to + €%, v0 + €v) .

Then, there exists an absolute constant Cy > 0 such that, for 0 < € < 22, it holds

ess sup fe(t, )*|— < —/ f+1Ing ), v)dv+C*,0§
03

= Z*[M()s E07 HO? pO] .

6.3 Deducing Local Regularity from Lemmas 6 and 7

Write the scaled key local estimate of Corollary 3 with re = 2 and 8, = k¢ = %,

using the elementary inequality

Ing(2y) + (Inp(2y)* <6y,  y>0.
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Then, by Lemma 7

-1/2 2
ess sup/ A v))dv+/ Mffj+)”)|dtdv
—4<t<0J B(0) 0-(0,0)

<6CHG + %Z*)/Q oo fe(t, v)*dtdv .
3,

Then

/ fe(t,v)?dtdv
03(0,0)

) po+3e€ vg+3e
<2m(po +3) / / g(s, p, w3)2dsdpdw3 -0
P v

10—9¢2 J pg—3e 93¢
as € — 0 by Lebesgue’s Theorem, since
(to — 9€2, 1p) x (o — 3¢, po + 3€) x (vg — 3¢, vg + 3¢)
is a set of set of vanishing measure as € — 0, and since
g € L' ((tg — 9€3, 1) x (po — 3€0, po + 3€0) X (V5 — 3¢9, V3 + 3€0))

by Lemma 6 for some €p > 0 fixed.
Therefore, there exists € > 0 small enough such that

12 2
ess sup/ hi/z(fe (t, v))dv + / IVL'-;e€+(+)“)|dtafv
—4<1<0J B (0) 0,(0,0)

falls below the threshold npg/ Zi/ % in the De Giorgi local regularity criterion
(Lemma 5).

Lemma 5 implies that, for this value of € it holds fe < 2a.e.on Q1,2(0,0), so
that

f <2/eae.on Qc(to, vo) -

By Lemma 3, this implies that f is of class C* in Q¢4 (to, vo).
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7 Conclusion and Final Remarks

We have proved that axisymmetric, or radially symmetric Villani solutions of the
Landau-Coulomb equation are regular away from the axis of symmetry, or from the
origin in the case of radial solutions.

Our proof based on the De Giorgi method applied to a localized variant of the
inequality derived from the H-Theorem for the Landau equation. One key ingredient
in this proof is the upper bound for the diffusion matrix (Lemma 7 above), which
is a critical quantity in LgS..

The same approach with an additional ingredient, viz. a control of the local
mass || fellzzr1(0p0.0p for R < 3 in terms of [[Vyv/Fellz2(0,0,0y and of

||§ﬁ€ ||L2(Q2(0,0)><R3) with

Re 1= T — w)(Vy — Vi)y/ fe(t, ) fe(t, w) /v — w]

shows that, for all Villani solutions f of the Landau equation with Coulomb
interaction, the 7/2-dimensional parabolic Hausdorff measure” of its singular set
satisfies

H2 L (SIf]) =0,

parabolic

where S[ f] is the singular set of f, i.e.
S[f] = {(r, v) € (0, 400) x R3s.t. f ¢ L¥(Q, (¢, v)) forall < ﬁ} .

This can be seen as a refinement on our earlier result with M.P. Gualdani and A.
Vasseur recalled in the introduction (the fact that the Hausdorff dimension of the
set of singular times for any Villani solution of the Landau equation with Coulomb
interaction is at most 1/2), also based on the De Giorgi method.

2For all s € [0, 5], the s-dimensional parabolic Hausdorff measure of a Borel set X C [0, +00) %
R? is defined as

72 . .
H X) = 5£r8+ inf Zr,ﬁ sit. X C U Oy, (tk, xp) withO < rp <8 ¢ .

parabolic
k=1 k>1



