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Foreword 

Kolmogorov Equations play a pivotal role in bridging the theories of Partial 
Differential Equations and Stochastic Differential Equations that emerge across 
various research domains. The objective of the INdAM Meeting on “Kolmogorov 
Operators and their Applications”, held in Cortona from June 13 to 17, 2022, was to 
convene established researchers whose work revolves around Kolmogorov operators 
and their applications. This gathering aimed to stimulate the exploration of novel 
research directions and foster new collaborations. 

Degenerate Kolmogorov operators are highly degenerate evolution operators 
that exhibit invariance with respect to non-Euclidean geometric structures. The 
simplest instance of this family of differential operators appears when considering 
the Langevin process .(Vt , Xt )t≥0 in the phase space . Rd × R

d

.

{
Vt = v0 + Wt,

Xt = x0 + ∫ t

0 Vs ds.
(1) 

Here .(Wt )t≥0 denotes a d-dimensional Wiener process. The density . p =
p(t, v, x, v0, x0) of .(Vt , Xt )t≥0 is the fundamental solution to the strongly 
degenerate Kolmogorov equation .Lp = 0, being 

.Lp := 1
2Δvp + v · ∇xp + ∂tp = 0, t ≥ 0, (v, x) ∈ R

2d . (2) 

In 1934 Kolmogorov provided us with the explicit expression of p 

. p(t, v, x, v0, x0) = 3d/2

(2πt2)d
exp

(
−|v−v0|2

t
− 3 (v−v0)·(x−x0+tv0)

t2 − 3 |x−x0+tv0|2
t3

)
,

and pointed out that it is a smooth function, despite the strong degeneracy of the 
opertor . L. As it is suggested by the smoothness of the density p, the operator . L
is hypoelliptic, that is every distributional solution .f ∈ L1

loc(Ω) to the equation

v
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.Lf = g, in some open set .Ω ⊂ R
2d+1, we have that 

. g ∈ C∞(Ω) ⇒ f ∈ C∞(Ω).

The study of this category of differential operators has seen substantial growth 
in recent years, driven by both theoretical and practical considerations. They 
hold significant relevance in the realms of Partial Differential Equations and the 
theory of Stochastic Processes. In terms of their numerous real-world applications, 
degenerate Kolmogorov operators find utility in areas such as Kinetic Theory and 
the Theory of Financial Markets. These research domains are of great interest, 
featuring numerous open problems and unexplored issues. Currently, researchers 
are investigating existence, uniqueness, and regularity problems associated with this 
family of equations, considering both classical and weak theories, as well as the 
presence of fractional derivatives. 

This volume comprises contributions from several speakers at the conference, 
encompassing a wide array of topics addressed during the event. These topics 
have transdisciplinary implications, spanning various fields within mathematics. 
The editors of this volume extend their heartfelt gratitude to the authors for their 
outstanding contributions. 

Université d’Évry Val d’Essonne Stéphane Menozzi 
Alma Mater Studiorum - Università di Bologna Andrea Pascucci 
Università degli Studi di Modena e Reggio Emilia Sergio Polidoro
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Local Regularity for the Landau 
Equation (with Coulomb Interaction 
Potential) 

François Golse and Cyril Imbert 

Abstract This is a survey of our recent work with A. Vasseur [arXiv:2206. 
05155] on the local regularity of some class of weak solutions of the space 
homogeneous Landau equation with Coulomb singularity. Our main result is that 
any axisymmetric solution in this class is smooth outside the axis of symmetry. 

1 The Landau Equation and the Regularity Problem 

The Landau equation discussed here is a variant of the Boltzmann equation of the 
kinetic theory of gases proposed by Landau [11] in the context of plasma physics. 
It has been known for quite a long time (see for instance [16]) that the Boltzmann 
collision integral cannot be defined for particle interacting via a repulsive Coulomb 
potential, because of a logarithmic divergence, whose coefficient is precisely the 
Landau collision integral: see for instance §41 in [12], or [3]. 

As in the case of all kinetic models, the unknown in the Landau equation is the 
velocity distribution function .f ≡ f (t, x, v), that is the number density of particles 
located at the position x with velocity v at time t . Henceforth, we shall restrict our 
attention to velocity distribution functions that are independent of the x-variable, a 
situation referred to as the space-homogeneous case. 

The (space-homogeneous) Landau equation with unknown . f ≡ f (t, v) ≥ 0
reads 

. ∂tf (t, v) = divv

∫
R3

a(v − w)(∇v − ∇w)(f (t, v)f (t, w))dw , v ∈ R3 ,
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In the right-hand side above, Landau collision kernel a is the matrix-valued function 
defined by the explicit formula 

. a(z) := 1
8π ∇2|z| = 1

8π |z|Π(z) , where Π(z) := I −
(

z
|z|
)⊗2

.

It is instructive to write a nonconservative form of the Landau equation. It reads 

. ∂tf (t, v) = trace
(
(a ⋆v f (t, v))∇2

vf (t, v)
)

+ f (t, v)2 ,

where . ⋆v designates the convolution product in the v-variable. What is remarkable 
in this form of the Landau equation is the local term .f (t, v)2, which comes from 
the identity 

. div(div a(z)) = −δ0(z) , inD'(R3) .

The presence of the term .f (t, v)2 on the right-hand side obviously raises the 
following question: does the Cauchy problem with .f

∣∣
t=0 = fin admit global 

classical solutions (defined for all .t ≥ 0), or is there a finite-time blow-up for 
classical solutions of the Landau equation? 

If one considers solutions .f (t) > 0 independent of v, the Landau equation 
reduces in this case to the Riccati equation .f '(t) = f (t)2, whose solution . f (t) =

fin

1−tfin
blows up at time .1/fin. This is somehow uninteresting because, on physical 

grounds, the velocity distribution function .f (t, ·) is expected to be a probability 
density, or at least an element of .L1(R3), which excludes positive constants. 

It may seem more relevant to think of the Landau equation as a variant of the 
semilinear heat equation 

. ∂tu(t, x) = Δxu(t, x) + αu(t, x)2 , x ∈ Rd .

In this case again, there is a finite-time blow-up phenomenon, which easily follows 
from Kaplan’s clever argument [9]. Pick . φ to be a ground state for the Dirichlet 
Laplacian in the unit ball B of . Rd : 

. 

{ − Δφ = λ0φ , φ > 0 on B ,

φ
∣∣
∂B

= 0 .

Consider the quantity 

.L(t) :=
∫
B

u(t, x)φ(x)dx∫
B

φ(x)dx
.
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Using the Green formula and the Jensen inequality shows that 

. u(t, ·) ≥ 0 on B =⇒ L̇(t) ≥ −λ0L(t) + αL2(t) ,

and a comparison argument based on the Riccati equation again proves that positive 
classical solutions of the semilinear heat equation for which .L(0) > λ0/α blow up 
in finite time. 

However, comparing the Landau equation with the semilinear equation is 
misleading for the following reason. If .f (t, v) grows very fast as . t → t∗ < +∞
for v near some point . v0, one can hope that the diffusion matrix .a ⋆v f (t, v) will 
grow accordingly, and that the diffusion term .trace

(
(a ⋆v f (t, v))∇2

vf (t, v)
)
will 

ultimately offset the effect of the local quadratic nonlinearity .f (t, v)2. 
For this reason, several authors have considered an “Isotropic” Landau Equation 

. ∂tu = ((−Δ)−1u)Δu + αu2 , 0 ≤ α ≤ 1 .

(The term “isotropic” comes from the fact that the matrix field a in Landau’s 
collision integral is replaced with .

1
π |z| IR3 .) See for instance [10] for a proof of global 

regularity for all .α ∈ [0, 74
75 ). Although this result is an interesting contribution to the 

understanding of the competition between the smoothing effect of the diffusion term 
and the promotion of blow-up by the quadratic nonlinearity, the total mass of the 
solution is dissipated by the dynamics of the isotropic model for .0 ≤ α < 1, which 
is not very satisfying on physical grounds. More recently, the case .α = 1 has been 
considered in [8], where the global regularity of radially symmetric, nonincreasing 
solutions is proved. This is more satisfying, since the total mass of the solution is 
conserved by the dynamics of the isotropic Landau equation with .α = 1, as in the  
case of the true Landau equation—and yet not fully satisfying because this model 
fails to conserve the energy of the solution, at variance with the Landau equation. 
Energy conservation is somehow related to the existence of nontrivial equilibrium 
solutions of the Landau equation, i.e. solutions of 

. trace
(
(a ⋆v f (v))∇2

vf (t, v)
)

+ f (v)2 = 0

with finite mass and energy. We shall return to this later, but the existence of such 
equilibria shows that one cannot argue that either the diffusion term or the quadratic 
nonlinearity dominates the dynamics. 

Other approaches to the regularity issue for the Landau equation itself, instead of 
a model equation, have been attempted. Silvestre [15] proved the regularity of H -
solutions (a class of weak solutions of the Landau equation obtained by Villani in 
[16]) belonging to .L∞((0,+∞);Lp(R3; (1 + |v|)kdv)) with .p > 3/2 and .k > 8. 
Desvillettes, He and Jiang [5] have obtained a new Lyapunov functional for the 
Landau equation, and proved the global existence of regular solutions for near 
equilibrium initial data; they also prove that H -solutions of the Landau equation 
cannot become singular after some finite time that can be computed explicitly in
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terms of the initial data. Still another approach to the regularity issue consists in 
showing that the (potential) singular set of a H -solution must be “small” in some 
sense. For instance, with Gualdani and Vasseur [6], we proved that the set of singular 
times of Villani solutions of the Landau equation has Hausdorff dimension .≤ 1/2. 
This result is of course reminiscent of the upper bound on the Hausdorff dimension 
of the set of singular times [13] of Leray solutions of the Navier-Stokes equations 
in three space dimensions, and of the more recent partial regularity results for the 
Navier-Stokes equations obtained by Scheffer [14] and Caffarelli-Kohn-Nirenberg 
[2]. 

This is survey article with a (hopefully) streamlined presentation of the local 
regularity results under appropriate symmetry assumptions obtained in collaboration 
with Vasseur in [7]. There are also partial regularity results in [6, 7] without any 
additional symmetry assumptions. These results are based in part on the same 
arguments as the local regularity results discussed here, and on another important 
ingredient briefly sketched in the last section of the present paper. We have chosen 
to refrain from giving a thorough presentation of these partial regularity results in 
the present survey for the sake of brevity. The interested reader is referred to Sect. 7 
for a quick description of the partial regularity obtained for the Landau equation 
with Coulomb interaction, and to [6, 7] for complete proofs of the main results in 
that section. 

2 Fundamental Properties of the Landau Collision Integral 

In the first part of section, we recall some very classical properties of the collision 
integral, such as the conservation laws of mass, momentum and energy, together 
with the Boltzmann H Theorem, with the expression of the entropy production rate. 
All these properties have been well known since Landau published his equation in 
[11]. 

We shall conclude this section with a much more recent, yet equally fundamental 
inequality comparing the Landau entropy production rate with the Fisher informa-
tion. 

2.1 Conservation Laws and H-Theorem 

Write the Landau collision integral as 

. C(F )(v) := divv

∫
R3

a(v − w)(∇v − ∇w)(F (v)F (w))dw .

Lemma 1 For all .F ∈ C1(R3) such that .F(v) ≥ 0 and .∇F(v) are rapidly 
decaying as .|v| → ∞, the Landau collision integral .C(F ) is the distribution
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defined by 

. 〈C(F ), φ〉 = − 1
2

∫∫
R3×R3

(∇φ(v)−∇φ(w))·a(v−w)(∇v−∇w)(F (v)F (w))dvdw

for all test functions .φ ∈ C∞(R3) such that .φ(v) and .∇φ(v) have at most 
polynomial growth as .|v| → ∞. 

(This formula is based on the definition of the divergence of a vector field in the 
sense of distributions, viz. 

. 〈C(F ), φ〉 = −
∫∫

R3×R3
∇φ(v) · a(v − w)(∇v − ∇w)(F (v)F (w))dvdw ;

the conclusion follows from symmetrizing the integrand with the substitution 
.(v,w) ⍿→ (w, v).) 

Corollary 1 Under the assumptions of Lemma 1 

. 〈C(F ), 1〉 = 〈C(F ), v1〉 = 〈C(F ), v2〉 = 〈C(F ), v3〉 = 〈C(F ), |v|2〉 = 0 .

(Indeed, if .φ ≡ 1, one has .∇φ = 0, so that the expression in the right-hand 
side of the formula in Lemma 1 is obviously 0. By the same token, if .φ = vj for 
.j = 1, 2, 3, then . ∇φ is a constant vector field, hence .∇φ(v) − ∇φ(w) = 0. Finally, 
if .φ(v) = |v|2, one has 

. ∇φ(v) − ∇φ(w) = 2(v − w)

and we conclude after observing that .a(v−w)∗ · (v−w) = a(v−w) · (v−w) = 0.) 

Corollary 2 (H-Theorem) Under the assumptions of Lemma 1, if moreover 
.F(v) > 0 is such that .lnF(v) has at most polynomial growth as .|v| → ∞, 
then 

.

〈C(F ), lnF 〉 = − 1
16π

∫∫
R3×R3

F(v)F (w)

|v − w|

×
∣∣∣∣Π(v − w)

(∇F(v)

F (v)
− ∇F(w)

F(w)

)∣∣∣∣
2

dvdw

= −
∫∫

R3×R3

∣∣∣Π(v − w)(∇v − ∇w)
√

F(v)F (w)

∣∣∣2 dvdw

4π |v − w|
= −
∫∫

R3×R3

1
4π |Π(v − w)(∇v − ∇w)

× √F(v)F (w)/|v − w|
∣∣∣2 dvdw .
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(The first equality follows from the identity 

. (∇v − ∇w)(F (v)F (w)) = F(v)F (w)(∇ lnF(v) − ∇ lnF(w))

in the right-hand side of the equality in Lemma 1, and the second from the identity 

. 
√

F(v)F (w)(∇ lnF(v) − ∇ lnF(w)) = 2(∇v − ∇w)
√

F(v)F (w) .

The last equality is based on observing that . Π(v − w)(∇v − ∇w)Ф(|v − w|) = 0
for all .Ф ∈ C1((0,+∞)).) 

2.2 The Entropy Production and the Fisher Information 

In 2015, Desvillettes came up with a remarkable inequality relating the entropy 
production rate for the Landau equation with the Fisher information. 

Theorem 1 ([4]) For each .f ∈ L1(R3; (1 + |v|2)dv) such that .f ≥ 0 a.e. on . R3

and .f ln f ∈ L1(R3), one has 

. 

∫
R3

∣∣∇√
f (v)
∣∣2 dv

(1 + |v|2)3/2 ≤ CD + CD

∫
R6

∣∣Π(v − w)(∇v − ∇w)
√

f (v)f (w)
∣∣2

|v − w| dvdw

for some constant . CD depending only on the conserved moments of f , and on its H 
function: 

. CD ≡ CD

[∫
R3

(1, v, |v|2, | ln f (v)|)f (v)dv

]
> 0 .

Interestingly, the Desvillettes theorem puts the Landau equation in the same class 
as the Navier-Stokes in three space dimensions, in terms of Lebesgue exponents, as 
shown by Table 1. 

There are several applications of the Desvillettes inequality, including for 
instance the propagation of moments for weak solutions of the Landau equations, 

Table 1 Analogy between the Navier-Stokes equations, with unknown the fluid velocity field 
.u(t, x) ∈ R3, and the Landau equation with unknown the distribution function . f (t, v)

Equations Unknowns Dissipation rates 

Navier-Stokes .u ∈ L∞
t L2

x . ∇xu ∈ L2
t L

2
x

Landau .
√

f ∈ L∞
t L2((1 + |v|)2dv) .∇v

√
f ∈ L2

t L
2(1 + |v|)−3dv)
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i.e. the fact that quantities of the form 

. 

∫
R3

|v|mf (t, v)dv

remain bounded over finite time intervals if they are bounded for .t = 0. (We shall 
not use this fact here, since we are primarily interested in local properties of weak 
solutions of the Landau equation.) 

3 Weak Solutions 

In [16], Villani proposed the following notion of weak solution of the Landau 
equation. 

Definition 1 A H -solution of the Landau equation1 on the time interval .[0, T ) with 
initial data .fin ≥ 0 is an element 

. f ∈ C([0, T ),D'(R3)) ∩ L1([0, T );L1(R3; (1 + |v|)−1dv)

such that 

. Π(v − w)(∇v − ∇w)
√

f (t, v)f (t, w)/|v − w| ∈ L2([0, T ) × R3
v × R3

w) ,

satisfying the Landau equation in the sense of distributions in the form 

. 

∫
R3

fin(v)φ(0, v)dv −
∫

R3
f (t, v)φ(t, v)dv +

∫ t

0

∫
R3

f (t, v)∂tφ(s, v)dvds

=
∫ t

0

∫∫
R6

√
f (s,v)f (s,w)

|v−w| Ф(s, v,w)·Π(v−w)(∇v−∇w)

√
f (s,v)f (s,w)

|v−w| dvdwds ,

for all .φ ∈ C∞
c ([0,+∞)×R3), where .Ф(t, v,w) := ∇vφ(t, v)−∇wφ(t, w) ∈ R3, 

together with the conservation of mass, momentum and energy, i.e. 

.

∫
R3

f (t, v)

⎛
⎝ 1

v

|v|2

⎞
⎠ dv =

∫
R3

fin(v)

⎛
⎝ 1

v

|v|2

⎞
⎠ dv for all t ∈ [0, T ) ,

1 In the Coulomb interaction case. 
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and the Boltzmann H -Theorem, in the form 

. f (t, v) ≥ 0 a.e. on [0, T ) × R3 , and
∫

R3
f (t, v) ln f (t, v)dv

≤
∫

R3
fin(v) ln fin(v)dv

for all .t ∈ [0, T ). 

Observe that, by 

. 

(∫∫
R6

√
f (s,v)f (s,w)

|v−w| Ф(s, v,w)·Π(v−w)(∇v−∇w)

√
f (s,v)f (s,w)

|v−w| dvdw

)2

≤
∫∫

R6

∣∣∣∣Π(v−w)(∇v−∇w)

√
f (s,v)f (s,w)

|v−w|

∣∣∣∣
2

dvdw

×
∫∫

R6

|Ф(s,v,w)|2
|v−w| f (s, v)f (s, w)dvdw

≤ sup
s,v,w

|Ф(s,v,w)|2
|v−w| ‖fin‖2L1(R3)

∫∫
R6

∣∣∣∣Π(v−w)(∇v−∇w)

√
f (s,v)f (s,w)

|v−w|

∣∣∣∣
2

dvdw

by the Cauchy-Schwarz inequality. Since the right-hand side of this last inequality 
is integrable on .[0, T ], we conclude from the Cauchy-Schwarz inequality (applied 
to integrals in the time variable) that, for each H -solution f of the Landau equation 

. t ⍿→
∫

R3
f (t, v)φ(t, v)dv

belongs to .C0,1/2([0,+∞)) for each .φ ∈ C∞
c (R3). 

Villani proved the following global existence theorem for the Landau equation 
(see Theorem 4 (i) of [16]). 

Theorem 2 Let .fin ∈ L1(R3; (1 + |v|2)dv) satisfy 

. fin ≥ 0 a.e. on R3 , and fin ln fin ∈ L1(R3) .

There exists a H -solution f of the Landau equation on .[0,+∞) such that . f
∣∣
t=0 =

fin. 

We need to explain the basics of Villani’s construction. To do this, we introduce 
a truncating procedure for the Landau collision kernel. Pick .χ ∈ C∞(R) such that 

.1[−1,1] ≤ χ ≤ 1[−2,2] , with |χ '| ≤ 2 ,
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and define the truncated collision kernel by the formula 

. aδ(z) := (1 − χ(|z|/δ))a(z) , z ∈ R3

for each .δ > 0. Set 

. ξδ(v) := χ(δ|v|) , and ζδ(v) := 1
X

1
δ3

χ
( |v|

δ

)
, where X :=

∫
R3

χ(|v|)dv .

For each .δ > 0, the regularized problem 

. 

⎧⎪⎨
⎪⎩

(∂t − δ
2Δv)fδ(t, v)=divv

∫
R3

aδ(v−w)(∇v−∇w)(fδ(t, v)fδ(t, w))dw ,

fδ

∣∣
t=0 = ζδ ⋆ (ξδfin) + δ

(2π)3/2
e−|v|2/2 ,

has a unique smooth solution by standard fixed-point arguments. Besides, the 
maximum principle implies that 

. fδ(t, v) ≥ Cδ(t)e
−|v|2/2

so that .ln fδ(t, v) ≥ − 1
2 |v|2+lnCδ(t), and formal computations with the Boltzmann 

H -Theorem are legitimate. 

Theorem 3 Under the same assumptions as in Theorem 2, the family . fδ of solutions 
of the regularized Landau equation is relatively compact in .L1

loc([0,+∞) × R3), 
and any of its limit points as .δ → 0+ is a H -solution of the Landau equation with 
initial data . fin. 

Henceforth, we refer to any H -solution of the Landau equation obtained as a 
limit point of the family of solutions of the regularized Landau equation as in 
Theorem 3 as a Villani solution of the Landau equation. In the sequel, we focus 
on this specific type of H -solutions to the Landau equation, since they enjoy useful 
additional properties, which general H -solutions are not known to satisfy (to the 
best of our knowledge). 

4 Local Regularity 

Our main results in this paper address the local regularity of Villani solutions of the 
Landau equation enjoying additional symmetry properties.
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Let f be a Villani solution of the Landau equation with initial data . fin

measurable on . R3 satisfying 

. fin ≥ 0 a.e. and
∫

R3
(1 + |v|2 + | ln fin(v)|)fin(v)dv < ∞

(see Theorem 3 for the existence of a Villani solution). 
Our first result deals with the regularity of axisymmetric Villani solutions of the 

Landau equation. 

Theorem 4 If f is axisymmetric, i.e. if there exists .ω ∈ S2 such that 

. f (t, v) = f (t,R(v − (v · ω)ω) + (v · ω)ω) ,

for all .R ∈ SO((Rω)⊥), then .f ∈ C∞((0,+∞) × (R3 \ Rω)). 

In plain words, axisymmetric Villani solutions of the Landau equation are smooth 
except maybe on the axis of symmetry. 

Our next main result is a straightforward consequence of Theorem 4, and treats 
the case of radial solutions. 

Theorem 5 If f is radially symmetric, i.e. of the form 

. f (t, v) = F(t, |v|)

then .f ∈ C∞((0,+∞) × (R3 \ {0})). 
Thus radial Villani solutions of the Landau equation are smooth except maybe at 

the origin. This is an obvious consequence of Theorem 4, since a radial solution is 
axisymmetric around any straight line through the origin. 

Indeed, according to Theorem 4, the set of singularities of such a solution is 
included in the intersection of all the straight lines through the origin, which is 
precisely the origin itself. 

After [7] appeared on the arXiv preprint server, A. Bobylev wrote a very 
thorough and interesting discussion [1] of the regularity problem for radial solutions 
of the Landau equation. The interested reader is strongly advised to study [1] to  
understand the various scenarios, and competing effects promoting or preventing 
blow-up for radial solutions of the Landau equation. 

5 Mathematical Tools 

The proof of Theorem 4 is rather involved. In this section, we shall briefly outline 
the main steps, and describe the mathematical methods used in this proof.
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5.1 Ellipticity Bound 

In this brief section, we return to the truncated collision kernel . aδ introduced after 
the statement of Theorem 2. Obviously, . aδ is bounded and smooth for each .δ > 0. Is  
the ellipticity preserved by this truncation? This is precisely the question addressed 
in this section. 

Lemma 2 Assume that .f ≡ f (v) ≥ 0 a.e. is a measurable function satisfying the 
bounds 

. 0 < m0 ≤
∫

R3
f (v)dv ≤ M0 ,

∫
R3

( |v|2
ln f (v)

)
f (v)dv ≤

(
E0

H0

)
.

Then, there exists .c0[m0,M0, E0,H0] > 0 and .δ0[m0,M0, E0,H0] ∈ (0, 1) such 
that 

. 0 < δ < δ0 =⇒ f ⋆ aδ(v) ≥ c0
(1+|v|)3 I for all v ∈ R3 .

5.2 Locally Bounded Solutions Are Smooth 

Henceforth, we shall use parabolic cylinders, denoted as follows: 

. Qr(t0, v0) := (t0 − r2, t0] × Br(v0) .

Because of the parabolic nature of the Landau equation, in order to prove the 
local smoothness of weak solutions, only some very low regularity is needed. 
Smoothness follows by some bootstrap procedure. 

Lemma 3 Let f be a Villani solution of the Landau equation. Assume that . f ∈
L∞(QR(t0, v0)) for some .R, t0 > 0 and some .v0 ∈ R3. Then f is a.e. equal to 
function of class .C∞ on .QR/2(t0, v0). 

A consequence of Desvillettes’ theorem (Theorem 1) is that Villani solutions 
of the Landau equation are solutions in the sense of distributions. Thus the Villani 
solution f satisfies 

. ∂tf = divv(A∇vf + f B)

where 

.A(t, v) := f (t, ·) ⋆ a(v) and

B(t, v) = −f (t, ·) ⋆ div a(v) = 2
(
f (t, ·) ⋆ z

|z|3
)

(v) .
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Thus, if .0 ≤ f ∈ L∞(QR(t0, v0)), then 

. f (t, ·) ⋆ a = f (t, ·) ⋆ aδ︸ ︷︷ ︸
L∞

t L1
v ⋆v L∞

v

+ f (t, ·) ⋆ (a − aδ)︸ ︷︷ ︸
=(f 1QR(t0,v0))⋆v(a−aδ)

∈ L∞(QR−2δ(t0, v0)) ,

and, by the same token, .f B ∈ L∞(QR−2δ(t0, v0)). On the other hand, reducing 
.δ > 0 so that .δ < δ0 as in Lemma 2, one has 

. f (t, ·) ⋆ a(v) ≥ f (t, ·) ⋆ aδ(v) ≥ c0
(1+|v|)3 I , v ∈ R3 ,

so that f belongs to a parabolic De Giorgi class, and is therefore Hölder continuous, 
with a bound of the form 

. [f ]Cα(Qβ2R(t0,v0)) ≤ C‖f ‖L∞(Qβ1R(t0,v0))(1 + ‖B‖L∞(Qβ1R(t0,v0)))

for all .β1, β2 such that .0 < β2 < β1 < 1. This implies that A and B belong to the 
Hölder class . Cα on .Qβ3R(t0, v0) for all .β3 ∈ (0, 1), again by decomposing a as . a =
(a−aδ)+aδ . Then, we can use the Schauder estimates to conclude that .∂tf and . ∇vf

are of Hölder class . Cα on .Qβ4R(t0, v0) for all .0 < β4 < β3 < 1. Differentiating 
both sides of the Landau equation in all variables, the proof of Lemma 3 follows by 
a standard bootstrap argument. 

5.3 Truncated Entropy Inequality 

In the sequel, we shall use the De Giorgi method to prove a sufficient condition for 
local boundedness, and therefore local regularity according to Lemma 3. The  De  
Giorgi method involves considering truncations of the distribution functions. The 
following notation will be convenient: 

. f κ+ := (f − κ)+ = max(f − κ, 0) , for all κ > 0 .

We shall also consider the truncated logarithm 

. ln+ z := max(ln z, 0) = lnmax(z, 1) .

Definition 2 For each .g ≥ 0 and each .κ > 0, the truncated entropy generating 
function is (Fig. 1) 

. hκ+(g) := κh+
( g

κ

)
, where h+(z) := z ln+ z − (z − 1)+ .

At this point, we shall use a property of Villani solutions of the Landau 
equation, pertaining to the evolution of the truncated entropy of the distribution
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Fig. 1 Graph of the function . h+

function, which we do not know to be satisfied by all H -solutions. This property is 
fundamental for our analysis, and this is the reason for restricting our attention to 
Villani solutions. 

Let f be a Villani solution of the Landau equation on . R3. 
For all .Ψ ∈ C∞

c ((0, T )×R3), there exists a Lebesgue-negligible set . N ⊂ (0, T )

such that 

. 

∫
R3

hκ+(f (t2, v))φ(t, v)dv

≤
∫

R3
hκ+(f (t1, v))φ(t, v)dv +

∫ t2

t1

∫
R3

hκ+(f (t, v))∂tφ(t, v)dvdt

−
∫ t2

t1

∫
R3

(A∇vf −(divv A)f )
(

φ
∇vf

κ+
f︸ ︷︷ ︸
T1

+ln+(
f
κ
)∇vφ︸ ︷︷ ︸
T2

)
(t, v)dvdt

for all .κ > 0 and all .t1 < t2 /∈ N, with 

. φ := Ψ2 , A(t, v) :=
∫

R3
f (t, w)a(v − w)dw , v ∈ R3 .

This inequality is obtained by writing the evolution of the truncated entropy for 
solutions of the regularized Landau equation used in Villani’s construction of H -
solutions, passing to the limit as the regularization parameter .δ → 0.
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At this point, we forget about the regularized Landau equation, and think of 
Villani solutions of the Landau equation as H -solution satisfying the truncated 
entropy inequality above. In fact, what we are going to use is a consequence of 
the inequality above, where the test function . Ψ is chosen so that 

. 1Br(v0) < Ψ < 1Br+δ(v0) , with ‖∇Ψ‖L∞ ≤ c∗
δ

and ‖∇2Ψ‖L∞ ≤ c∗
δ2

.

Choosing . Ψ as above, and using the lower bound for the entropy production rate 
provided by the Desvillettes theorem (Theorem 1), one arrives at the following local 
estimate, which will be at the core of our analysis of the Landau equation. 

Lemma 4 (Key Local Estimate) Let .v0 ∈ R3, and assume that .fin ≥ 0 a.e. on . R3

is a measurable function satisfying 

. 0 < m0 ≤
∫

R3
fin(v)dv ≤ M0 ,

∫
R3

( |v|2
ln f (v)

)
fin(v)dv ≤

(
E0

H0

)
.

There exists .C0 ≡ C0[|v0|,m0,M0, E0,H0] ≥ 1 such that any Villani solution of 
the Landau equation with initial data . fin satisfies the inequality 

. 

ess sup
t0−r2<t≤t0

∫
Br(v0)

hκ+(f (t, v))dv +
∫

Qr(t0,v0)

|∇vf
κ+(t,v)|2

f (t,v)
dtdv

≤ C0

∫
Qr+δ(t0,v0)

(
κ + 1

δ2
+ 1

δ2
f ⋆v

1
| · |
)

f

(
ln+
(

f
κ

)
+ ln+

(
f
κ

)2)
dtdv

+C0

∫
Qr+δ(t0,v0)

(
1
δ
(f ∧ κ) ⋆v

1
| · |2
)

f ln+
(

f
κ

)
dtdv

for all .t0 ∈ (0, T ) and all .r, δ ∈ (0, 1), provided that 

. t0 > (r + δ)2 , κ ∈ Q ∩ [1,+∞) .

5.4 Scalings 

We have observed in Table 1 the analogy between H -solutions of the Landau equa-
tion and Leray solutions of the Navier-Stokes equations in three space dimensions. 
However, there is at least one major difference between these equations, namely the 
scaling invariance. 

First, we mention the translation invariance of the Landau equation, which is 
obvious (and a consequence of the Galilean invariance in classical mechanics).
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Thus, for the Landau equation 

. f H -solution =⇒ f (t0 + ·, v0 + ·)H -solution

for all .t0 > 0 and all .v0 ∈ R3. 
At variance with the Navier-Stokes equation there is a two-parameter group 

of scaling transformations leaving the Landau equation with Coulomb interaction 
invariant: for all .λ > 0 and all .μ > 0, set  

. fλ,μ(t, v) := λf (λt, μv) , (t, v) ∈ (0,+∞) × R3 .

Then 

. f H -solution of Landau’s equation =⇒ fλ,μ H -solution of Landau’s equation

(We recall that if .u ≡ u(t, x) ∈ R3 is a Leray solution of the Navier-Stokes 
equations, then, for each .ϵ > 0, the rescaled velocity field . uϵ(t, x) := ϵu(ϵ2t, ϵx)

is also a Leray solution of the Navier-Stokes equations.) 
Here is how the scaling transformation .f ⍿→ fλ,μ acts on the quantities 

appearing on the left-hand side of the key local estimate, viz. the truncated entropy 
and the Fisher information of the truncated distribution function: 

. 

∫
Br(0)

hλκ+ (fλ,μ(t, v))dv = λ
μ3

∫
Bμr (0)

hκ+(f (λt, ṽ))dṽ ,

∫ 0

−τ

∫
Br

|∇v(fλ,μ(t,v)−λκ)+|2
fλ,μ(t,v)

dtdv = 1
μ

∫ 0

−λτ

∫
Bμr

|∇ṽ (f (t̃,ṽ)−κ)+|2
f (t̃,ṽ)

dt̃dṽ .

It is obviously desirable to keep both these terms of the same order of magnitude 
under the scaling transforms as one zooms in near a point .(t0, v0) to study the local 
regularity of the distribution function. Among all the scaling transformations leaving 
the Landau equation with Coulomb interaction invariant, we are therefore led to 
consider the special case .λ/μ3 = 1/μ. Henceforth, we set 

. μ = ϵ and λ = ϵ2 .

Thus, let .f ≡ f (t, v) be a global Villani solution of the Landau equation. Pick 
.(t0, v0) ∈ (0,+∞)× R3. Henceforth, we seek to study this solution near .(t0, v0) by 
considering its translated and scaled variant 

.fϵ(t, v) := ϵ2f (t0 + ϵ2t, v0 + ϵv) , v ∈ R3 , t > −t0/ϵ
2 .
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If one returns to Table 1, one easily checks that this scaling transformation is exactly 
the same as in the case of the Navier-Stokes equations, since 

. 
√

fϵ(t, v) = ϵ

√
f (t0 + ϵ2t, v0 + ϵv)

is the quantity analogous to the rescaled Navier-Stokes velocity field 

. uϵ(t, x) = ϵu(t0 + ϵ2t, x0 + ϵx) .

Set 

. κϵ := ϵ2κ , δϵ := δ/ϵ , rϵ := r/ϵ , f
κϵ
ϵ,+ := (fϵ − κϵ)+ .

Assume that 

. ϵ ∈ (0,min( 12 ,
√

t0)) , κϵ ∈ [1, 2] ∩ Q , rϵ ∈ (0, 2] , δϵ ∈ (0, 1] .

Corollary 3 (Scaled Local Estimate) Under the same assumptions and with the 
same notations as in Lemma 4, there exists .C'

0 ≡ C'
0[|v0|,m0,M0, E0,H0] ≥ 1, 

independent of . ϵ, such that 

. 

ess sup
−r2ϵ <t≤0

∫
Brϵ

h
κϵ+ (fϵ(t, v))dv +

∫
Qrϵ

|∇vf
κϵ
ϵ+(t,v)|2

fϵ(t,v)
dtdv

≤ C'
0

∫
Qrϵ+δϵ

(
κϵ + 1

δ2ϵ
+ 1

δ2ϵ
fϵ ⋆

1Bc
1| · |
)

fϵ(ln+(
fϵ

κϵ
) + ln+(

fϵ

κϵ
)2)dtdv

+C'
0

δ2ϵ

∫
Qrϵ+δϵ

fϵ ⋆
1B1| · | fϵ(ln+(

fϵ

κϵ
) + ln+(

fϵ

κϵ
)2)dtdv .

This is a rather straightforward consequence of Lemma 4, splitting the term 
coming from the Landau collision kernel as 

. 
1

|z| = 1|z|<1

|z| + 1|z|≥1

|z| ,

and transforming the integrals by the substitution 

. (t, v) ⍿→ (t0 + ϵ2t, v0 + ϵv) .

5.5 Local Regularity Criterion 

The last mathematical tool used in our study of the local regularity for the Landau 
equation with Coulomb singularity is the De Giorgi iteration method—specifically,
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the part of De Giorgi’s argument leading to a local bound—and not the reduction of 
oscillations (in fact, this latter part of De Giorgi’s analysis has already been used as 
a black box procedure in the proof of Lemma 3 before the bootstrap argument based 
on Schauder’s estimates). 

Lemma 5 (De Giorgi’s First Lemma) Let .fϵ(t, v) = ϵ2f (t0 + ϵ2t, v0 + ϵv) be 
a scaled Villani solution of the Landau equation with initial data . fin := f (0, ·)
satisfying 

. 0 < m0 ≤
∫

R3
fin(v)dv ≤ M0 ,

∫
R3

( |v|2
ln fin(v)

)
fin(v)dv ≤

(
E0

H0

)
.

Assume 

. ess sup
Q1(0,0)

fϵ(t, ·) ⋆
1B1(0)c

| · | ≤ Zϵ , where Zϵ ≥ 1 .

Then, there exists .ηDG ≡ ηDG[m0,M0, E0,H0, |v0|] ∈ (0, 1) such that 

. 

ess sup
−4<t≤0

∫
B2

(fϵ(t, v) − 1)+dv +
∫

Q2

|∇v

√
fϵ |21fϵ≥1dtdv ≤ ηDG

Z
3/2
ϵ

=⇒ fϵ ≤ 2 a.e. on Q1/2 .

Of course, the proof of Lemma 5 is based on simultaneous truncations of the 
values of the distribution function f , and parabolic zooming transformations near 
.(t0, v0). Specifically choose a sequence . rj of radii shrinking from 1 to . 12 , and a 
sequence of levels . κj increasing from 1 to 2, as follows: 

. rj := 1
2 (1 + 2−j ) , κj := 2 − 2−j , j ≥ 0 .

Then we apply Corollary 3 with .rϵ = rj+1 and .δϵ = rj − rj+1, while . κϵ =
1
2 (κj + κj+1). Then we proceed with the De Giorgi iteration method, involving 
a nonlinearization procedure as usual, and arrive at the statement in Lemma 5. 

6 A Sketch of the Proof of Theorem 4 

The proof of Theorem 4 is based on two ingredients: 

(a) a local .L2
t,v-bound away from the axis of symmetry, and 

(b) a local .L∞
t,v bound for the diffusion matrix. 

Henceforth we fix .(t0, v0) ∈ (0,+∞) × R3 such that . v0 is at a distance . ρ0 > 0
from the axis of symmetry of the distribution function f .
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6.1 Local L2 
t,v Bound 

Roughly speaking, away from the axis of symmetry, an axisymmetric function is 
a function of two variables (the distance to the axis and the height). Therefore, 
such functions benefit from better Sobolev embeddings than in the generic three 
dimensional case. This elementary idea is the basis for the following lemma. 

Lemma 6 Let .f ∈ L∞((0, T );L1(BR)) with .∇vf ∈ L2((0, T );L1(BR)) be of the 
form 

. f (t, v) = g
(
t,

√
v21 + v22︸ ︷︷ ︸

V1

, v3︸︷︷︸
V2

)
.

Let .t0 ∈ (0, T ), let .V 0 = (V 0
1 , V 0

2 ) ∈ R2, and let .0 < r < V 0
1 − ρ0; then 

. 

∫ t0

t0−r2

∫
|V −V0|≤r

g(t, V )2dV dt

≤ CS(Br )
2

(2πρ0)
2

∫ t0

t0−r2

(
‖f (t, ·)‖2

L1(Br (0,0,V 0
2 ))

+ ‖∇f (t, ·)‖2
L1(Br (0,0,V 0

2 ))

)
dt ,

where .CS(Br) is the Sobolev constant for .W 1,1(Br) ⊂ L2(Br) in . R2. 

(Notice that the right-hand side of this inequality involves . L1 norms for the 3-
dimensional Lebesgue measure over the 3-dimensional ball .Br(0, 0, V 0

2 ), whereas 
the integral on the left-hand side is over a 2-dimensional domain. This is the reason 
why the right-hand side is expressed in terms of f , and the left-hand side in terms 
of the function g.) 

6.2 Local L∞ 
t,v Bound of the Diffusion Matrix 

The quantity .f (t, ·) ⋆ 1
| · | appears twice on the right-hand side of the inequality in 

Corollary 3. Now this quantity is interesting, because of the following observation. 
For each .ϵ > 0 and each Villani solution of the Landau equation, it holds 

.fϵ(t, ·) ⋆
1

| · | (v) = f (t0 + ϵ2t, ·) ⋆
1

| · | (v0 + ϵv) ,
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for all .(t0, v0) ∈ (0,+∞) × R3, all .v ∈ R3 and all .t > −t0/ϵ
2, so that 

. 

∥∥∥∥fϵ ⋆v

1

| · |
∥∥∥∥

L∞(Qr (0,0))
=
∥∥∥∥f ⋆v

1

| · |
∥∥∥∥

L∞(Qϵr (t0,v0))

.

In other words, the quantity .f (t, ·) ⋆ 1
| · | is .L∞-critical. 

The next lemma provides an .L∞ control on this quantity for rescaled axisym-
metric Villani solutions of the Landau equation. 

Lemma 7 Let .f ≥ 0 be measurable on .(0, T ) × R3 and of the form 

. f (t, v) := F

(
t,

√
v21 + v22, v3

)
.

Let .(t0, v0) ∈ (0, T ) × R3 be such that 

. ρ0 :=
√

v21 + v22 > 0 ,

and let 

. fϵ(t, v) := ϵ2f (t0 + ϵ2t, v0 + ϵv) .

Then, there exists an absolute constant .C∗ > 0 such that, for .0 < ϵ <
ρ0
6 , it holds 

. 

ess sup
Q3

fϵ(t, ·) ⋆
1

| · | ≤ C∗
ρ0

∫
R3

f (1 + ln+ f )(t, v)dv + C∗ρ2
0

=: Z∗[M0, E0,H0, ρ0] .

6.3 Deducing Local Regularity from Lemmas 6 and 7 

Write the scaled key local estimate of Corollary 3 with .rϵ = 2 and .δϵ = κϵ = 1
2 , 

using the elementary inequality 

. ln+(2y) + (ln+(2y))2 ≤ 6y , y > 0 .
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Then, by Lemma 7 

. 

ess sup
−4<t≤0

∫
B2(0)

h
1/2
+ (fϵ(t, v))dv +

∫
Q2(0,0)

|∇vf
1/2
ϵ+ (t,v)|2

fϵ(t,v)
dtdv

≤ 6C'
0(

3
4 + 1

2Z∗)
∫

Q3(0,0)
fϵ(t, v)2dtdv .

Then 

. 

∫
Q3(0,0)

fϵ(t, v)2dtdv

≤ 2π(ρ0 + 3)
∫ t0

t0−9ϵ2

∫ ρ0+3ϵ

ρ0−3ϵ

∫ v03+3ϵ

v03−3ϵ
g(s, ρ,w3)

2dsdρdw3 → 0

as .ϵ → 0+ by Lebesgue’s Theorem, since 

. (t0 − 9ϵ2, t0) × (ρ0 − 3ϵ, ρ0 + 3ϵ) × (v03 − 3ϵ, v03 + 3ϵ)

is a set of set of vanishing measure as .ϵ → 0, and since 

. g ∈ L1((t0 − 9ϵ20 , t0) × (ρ0 − 3ϵ0, ρ0 + 3ϵ0) × (v03 − 3ϵ0, v
0
3 + 3ϵ0))

by Lemma 6 for some .ϵ0 > 0 fixed. 
Therefore, there exists .ϵ > 0 small enough such that 

. ess sup
−4<t≤0

∫
B2(0)

h
1/2
+ (fϵ(t, v))dv +

∫
Q2(0,0)

|∇vf
1/2
ϵ+ (t,v)|2

fϵ(t,v)
dtdv

falls below the threshold .ηDG/Z
3/2∗ in the De Giorgi local regularity criterion 

(Lemma 5). 
Lemma 5 implies that, for this value of . ϵ it holds .fϵ ≤ 2 a.e. on Q1/2(0, 0), so  

that 

. f ≤ 2/ϵ a.e. on Qϵ/2(t0, v0) .

By Lemma 3, this implies that f is of class .C∞ in .Qϵ/4(t0, v0).
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7 Conclusion and Final Remarks 

We have proved that axisymmetric, or radially symmetric Villani solutions of the 
Landau-Coulomb equation are regular away from the axis of symmetry, or from the 
origin in the case of radial solutions. 

Our proof based on the De Giorgi method applied to a localized variant of the 
inequality derived from the H-Theorem for the Landau equation. One key ingredient 
in this proof is the upper bound for the diffusion matrix (Lemma 7 above), which 
is a critical quantity in .L∞

t,x . 
The same approach with an additional ingredient, viz. a control of the local 

mass .‖fϵ‖L∞
t L1

v(QR(0,0)) for .R < 1
2 in terms of .‖∇v

√
fϵ‖L2(Q2(0,0)) and of 

.‖Rϵ‖L2(Q2(0,0)×R3) with 

. Rϵ := Π(v − w)(∇v − ∇w)
√

fϵ(t, v)fϵ(t, w)/|v − w|

shows that, for all Villani solutions f of the Landau equation with Coulomb 
interaction, the .7/2-dimensional parabolic Hausdorff measure2 of its singular set 
satisfies 

. H7/2
parabolic(S[f ]) = 0 ,

where .S[f ] is the singular set of f , i.e. 

. S[f ] :=
{
(t, v) ∈ (0,+∞) × R3 s.t. f /∈ L∞(Qr(t, v)) for all r <

√
t
}

.

This can be seen as a refinement on our earlier result with M.P. Gualdani and A. 
Vasseur recalled in the introduction (the fact that the Hausdorff dimension of the 
set of singular times for any Villani solution of the Landau equation with Coulomb 
interaction is at most . 1/2), also based on the De Giorgi method. 

2 For all .s ∈ [0, 5], the  s-dimensional parabolic Hausdorff measure of a Borel set . X ⊂ [0,+∞) ×
R3 is defined as 

.H7/2
parabolic(X) = lim

δ→0+ inf

⎧⎨
⎩
∑
k≥1

rs
k s.t. X ⊂

⋃
k≥1

Qrk (tk, xk) with 0 < rk < δ

⎫⎬
⎭ .


