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Chapter 1 
Analysis of Expenditure Benefits 
with Multi-party Market Participants 
in the Carbon-Electricity Synergy 

Wen Zhao, Qiang Liu, Jie He, Hengzi Huang, and Ruiyang Lu 

Abstract This paper introduces the carbon emission trading (CET) mechanism into 
the electricity spot market, and conducts a unified analysis of expenditure benefits, 
examining the operation and trading mechanisms of the tripartite market of power 
generation, grid, and users under the coordination of carbon and electricity. An 
expenditure benefit analysis model is proposed for each participant, and the impact 
of CET market operation, changes in user demand share on their expenditure benefit 
is examined. The results show that the main sources of revenue for power gener-
ation and grid come from the price difference of electricity purchase and sale and 
avoidable capacity expenditure. The operation of the CET market leads to higher elec-
tricity market clearing prices, reduces the revenue of power generation and users, 
and increases the revenue of the grid. With the continuous advancement of elec-
tricity market reform, the integration degree of CET and the spot electricity market 
is constantly deepening, and further research on trading mechanisms and strategies 
among various stakeholders is necessary. 

Keywords Carbon-electricity coordination · Carbon emission trading market ·
Expenditure benefit rate · Electricity spot market · Dual carbon targets 

1.1 Introduction 

In the context of the dual carbon goals, China is vigorously promoting the construc-
tion of a market system based on carbon-electricity coordination development and 
establishing a carbon-electricity coordinated management system under a diverse 
market environment (Bi and Li 2023), making significant contributions to global 
climate change mitigation. 

The carbon emission trading (CET) system in the carbon market is widely consid-
ered one of the most effective tools for controlling carbon emissions (Li et al. 2022).
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In the CET mechanism, each participant (usually a controlled emission enterprise) 
obtains a certain amount of carbon emission quotas through auctions on the primary 
CET market and can trade with other participants on the secondary CET market to 
obtain more quotas to support production or gain benefits using surplus quotas (Li 
et al. 2022; Demailly and Quirion 2008; Deja et al.  2010; Anger 2010). In recent 
years, electricity consumption has grown rapidly, and the construction of the elec-
tricity market has continued to advance. Although the carbon market and the elec-
tricity market operate independently at the institutional level, the two are closely 
linked and coordinated, and there are price transmission effects between the two 
mechanisms (Szabo et al. 2006). 

It is more in line with the market’s actual situation to introduce the carbon emis-
sion trading mechanism into the electricity spot market and conduct a unified analysis 
of expenditure benefits and costs (Day-ahead dispatching scheduling for power grid 
integrated with wind farm considering influence of carbon emission quota, 2014). 
Therefore, to analyze the impact of the carbon emission trading market on the expen-
diture benefits and costs of various market participants, this paper first introduces the 
coordination model between the carbon emission trading market and the electricity 
spot market (Hongliang et al. 2017). Based on the trading settlement mechanism of 
each market participant under the coordination of carbon and electricity, the paper 
proposes expenditure benefit and cost analysis models for three market participants, 
including power generation, user-side and grid-side. The paper uses actual grid oper-
ation data to quantitatively calculate various indicators and obtain a more complete 
picture of expenditure benefit and cost situations for each market participant involved 
in market transactions (Feng 2016; Zhang et al. 2021). 

1.2 CET and Electricity Spot Market Synergy Model 

To analyze the impact of carbon emissions trading (CET) market operations on the 
clearing situation of the electricity spot market (Hongliang et al. 2017), this section 
considers the synergistic interaction between the CET market and the electricity spot 
market, incorporates carbon trading costs into the unit price bidding of the clearing 
model, and combines the interaction mechanism of the two markets to reflect the 
synergistic impact of the CET market. 

1.2.1 The Overall Framework of the Electricity Spot Market 

Spot market transactions mainly refer to transactions conducted in the day-ahead 
market and real-time market. The current framework of the Chinese electricity spot 
market is shown in Fig. 1.1. The expenditure benefit analysis model for the coor-
dinated market of electricity spot and carbon trading in this paper is based on the 
day-ahead settlement mechanism and real-time settlement mechanism (Feng 2016).
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Fig. 1.1 Framework of Guangdong electricity market 

1.2.2 Carbon and Electricity Collaborative Market Clearance 
Framework 

The interaction mechanism between the CET market and the spot market can be 
summarized as follows: In the CET market, power plants with surplus carbon emis-
sion quotas can profit by trading their excess carbon emission quotas. Similarly, 
when a power plant’s carbon emissions exceed the free quotas it received, it needs 
to pay additional carbon emission costs (Zhang et al. 2021). Therefore, in the spot 
market, power generation units will evaluate the carbon emission costs they need to 
pay based on the free carbon emission quotas allocated by the government before 
bidding in the market (Zhilin et al. 2022). 

Incorporating carbon trading costs into the clearing model, the clearing frame-
work of the coordinated market of carbon and electricity is constructed as shown 
in Fig. 1.2, which calculates the electricity price, unit bidding situation, and carbon 
trading situation for each node.

1.2.3 How Free Carbon Allowances Are Allocated 

Currently, China allocates carbon emission quotas on an annual time scale. In this 
paper, to study the impact of the CET market on the spot market, carbon emission 
quotas are allocated on a daily time scale. The free carbon emission quotas in the 
national carbon market are determined by the baseline method. According to this
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Fig. 1.2 Framework of 
electricity market clearing
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method, a unit’s carbon emission quota is composed of two parts, the electricity 
supply and heat supply quotas. The carbon emission quota Eq,i that a unit i obtains 
through the baseline method is given by: 

Eq,i = Ee,i + Eh,i (1.1) 

where Ee,i is the carbon emission quota for electricity supply of unit i, and Eh,i is 
the carbon emission quota for heat supply of unit i. The calculation formula for the 
carbon emission quota for electricity supply of a unit is: 

Ee,i = Pe,i Be,i F1,i Ft,i Ff,i (1.2) 

where Pe,i is the electricity output of unit i; Be,i is the electricity generation baseline 
value for the unit’s category, which is determined based on the regulations for carbon 
emission baseline values for various types of units in China, as shown in Table 1.1; Fl,i 
is the cooling mode correction coefficient for unit i; Fr,i is the heat supply correction 
coefficient for unit i; Ff,i is the output correction coefficient for unit i.
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Table 1.1 Carbon emission baseline of various unit 

Unit category Power supply reference value 
(t/MW•h) 

Heating benchmark value (t/ 
GJ) 

Conventional coal-fired units 
under 300 MW 

1.0026 0.1352 

Conventional coal-fired units 
above 300 MW 

1.0889 0.1354 

Unconventional coal-fired 
units 

1.2564 0.1348 

Gas units 0.4039 0.0589 

In addition, the calculation formula for the carbon emission quota for heat supply 
of a unit is: 

Eh,i = Qh,i Bh,i (1.3) 

where Qh,i is the heat output of unit i, which is proportional to the total heat supply 
quota of the unit; Bh,i is the heat supply baseline value for the unit’s category. 

Quotation of conventional units considering the cost of carbon emissions. 
After obtaining the free carbon emission quotas, the unit carbon emission cost for 

the power plant Ccarbon 
i,t can be calculated as follows: 

Ccarbon 
i,t =

(∑t=1 
24 βi Pi,max − ηEq,i

)
ρre

∑t=1 
24 Pi,max 

(1.4) 

where ρre is the carbon emission price (Zhao 2015), βi is the carbon emission intensity 
coefficient for the conventional unit i, η is the proportion of free allocation of quotas, 
and Pi,max is the maximum output of the conventional unit i in the time period t. 

Without considering the CET market, the conventional units submit their offers 
with an increasing block pricing. With the inclusion of the CET market, the total 
power generation cost of the conventional unit i will be affected by carbon emission 
trading. Therefore, each conventional unit will adjust its quotation in the market 
(Peng and Zhong 2021). The quotation of the conventional unit i in the m-th block 
in time period t Ci,t,m is given by: 

Ci,t,m = Ci,m + Ccarbon 
i,t (1.5) 

where Ci,m is the energy price of the m-th output interval declared by unit i. The 
operational cost Ci,t of unit i in time period t can be expressed as: 

Ci,t = 
m=1∑
M 

Ci,t,m Pi,t,m (1.6)
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where M is the total number of bidding blocks submitted by the unit, and Pi,t,m is 
the awarded electricity quantity of unit i in the m-th output interval in time period 
t. The market clearing model aims to minimize the system operating cost, subject 
to safety constraints on unit combinations and economic dispatch. The optimization 
calculation is performed to obtain the clearing results of the spot market. 

1.3 Analysis Model 

In the collaborative environment of CET market and spot market, the expenditure 
and benefit analysis frameworks for each participant on the generation side, user side, 
and grid side have been developed. The formulas for calculating various indicators 
have been proposed to evaluate the expenditure and benefits of demand response 
under the collaboration of CET market and spot market. The specific framework is 
shown in Fig. 1.3. 

1.3.1 Power Generation Side Model 

The overall benefit model is: 

G = Bc + Br + BLCfD + BDR − Cg − Cch (1.7) 

In the formula, G represents the total income of the generation side, Bc represents 
the settlement income of the day-ahead market, Br represents the settlement income 
of the real-time market, BLCfD represents the settlement income of the mid-to-long 
term market for the generation side, BDR represents the income of the generation 
side under demand response, Cg represents the generation cost and carbon emis-
sions trading costs, and Cch represents the market deviation assessment cost for the 
generation side.

Fig. 1.3 Overall analysis 
framework 

Analysis of Expenditure Benefits 
with Multi-Party Market 

Power generation side expenditure 
and benefit 

User-side expenditure 
and benefit 

Grid-side expenditure 
and benefit 



1 Analysis of Expenditure Benefits with Multi-party Market Participants … 7

Benefits Analysis Model 

(1) Day Ahead Market Settlement Gains: 

Bc =
∑[(

QGc,t − QGL,t
)
ρGc,t

]
(1.8) 

where QGc,t is the demand for electricity in the day-ahead market of the power 
generation side in time period t; QGL,t is the contracted electricity volume of the 
power generation side in the medium and long-term market in time period t; and ρ 
Gc,t is the day-ahead node electricity price in time period t. 

(2) Real-time market settlement revenue: 

Br =
∑[(

Qu,t − QGc,t
)
ρGr,t

]
(1.9) 

In the equation, Qu,t represents the real-time online electricity volume on the 
power generation side of the market, and ρGr,t represents the real-time node electricity 
price for time period t. 

(3) Medium-to-long-term market settlement revenue: 

BLC f  D  =
∑

QGL  ,t ρGL ,t (1.10) 

In the equation, QGL,t represents the net contracted electricity volume for the 
medium-to-long-term during time period t, and ρGr,t represents the net contracted 
price for unit t during that period. 

(4) Demand Response (DR) benefits: 

⎧⎨ 

⎩ 

BDR = Bi − Cdrg 

Bi = ∑
co PDR,t 

Cdrg = ∑[
(ρGr,t − ρt )∆QDR,t

] (1.11) 

In the equation, Bi represents the reduced expenditure cost of the power gener-
ation side due to demand response; Cdrg represents the reduced power generation 
revenue of the power generation side due to demand response; co represents the 
daily expenditure cost per unit of electricity generation capacity; PDR,t represents 
the power generation capacity for demand response during time period t; ρt represents 
the bid price of the power generation side during time period t; ∆QDR,t represents 
the change in electricity consumption before and after demand response during time 
period t.
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Expenditure Analysis Model 

(1) Generation and carbon emission trading costs: 

Cg =
∑

ρt Pt (1.12) 

In the equation, Pt represents the output power of the unit during time period t. 

(2) Market deviation penalty costs: 

Cch = ∑
max

{
ρGc,t Mg, ρmin

}
max

{
Pdec,gDR,t Rg − Preal,gDR,t , 0

} (1.13) 

In the equation, Mg is the penalty factor; ρmin is the lower limit of the assessed 
price; Pdec,gDR,t is the declared response capacity of the power generation side; 
Preal,gDR,t is the actual response capacity of the power generation side; Rg is the 
response ratio threshold. 

1.3.2 User-Side Model 

The overall benefit model is: 

U = Bd f  + Bloss  + Brei  − Cd f  − Closs  − Cuch − Cmu (1.14) 

In the equation: U represents the total benefit for demand response users; Bdf 
represents the reduced electricity cost for users participating in demand response; 
Bloss represents the reduced network loss cost for users participating in demand 
response; Brei represents the compensation received by users participating in demand 
response; Cdf represents the electricity cost paid by users; Closs represents the 
network loss cost borne by users; Cuch represents the demand response partici-
pation cost for users; Cmu represents the operation and management cost paid by 
users to the load aggregator. 

Benefits Analysis Model 

(1) Cost savings in electricity bills from participating in demand response: 

Bdf =
∑(

QDR,t ρdf,t
)

(1.15) 

In the equation, QDR,t represents the amount of electricity reduced by the user 
during time period t due to participation in demand response, and ρdf,t represents 
the electricity bill the user has to pay during that period:
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ρdf,t = ρGr,t + ρtran,t + ρfund,t (1.16) 

In the equation, ρtran,t represents the transmission and distribution price during 
time period t, and ρfund,t represents the unit price of the fund and its surcharge. 

(2) Cost savings in network loss from participating in demand response: 

Bloss  =
∑(

∆Q'
loss,t − ∆Qloss,t

)
ρdr,t (1.17) 

In the equation, ∆Q’loss,t represents the total network loss during time period t 
before participating in demand response, and ∆Qloss,t represents the total network 
loss during time period t after participating in demand response. 

(3) Compensation received from participating in interruptible load programs: 

Brei = 
n=1∑
N 

brei,n QDR (1.18) 

In the equation, brei,n represents the unit compensation price provided by the load 
aggregator for the n-th time the user participates in demand response, QDR represents 
the amount of electricity reduced due to demand response, and N represents the 
number of times demand response occurs. 

Expenditure Analysis Model. User electricity expenditure: 

Cdf =
∑(

Qday,t ρdf,t
)

(1.19) 

In the equation, Qday,t represents the actual electricity consumption of the user 
during time period t. 

Costs incurred for bearing network losses: 

Closs =
∑(

∆Qloss,t ρdf,t
)

(1.20) 

Costs incurred for demand response performance assessment of users: 

Cuch = ∑
max

{
ρdf,t Mu, ρmin

}
max

{
Pdec,uDR,t Ru − Preal,uDR,t , 0

} (1.21) 

In the equation, Mu represents the penalty factor, Pdec,uDR,t represents the 
declared response capacity of the user, Preal,uDR,t represents the actual response 
capacity of the user, and Ru represents the response ratio threshold.
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1.3.3 Grid-Side Model 

The total benefit model is: 

P = Bpc + Bpr + BpLCCD + BpDR + Bploss 

− Cploss − Creg − Cmp (1.22) 

In the equation: P represents the total benefit of the grid side, Bpc is the settlement 
benefit of the difference in purchase and sale of electricity in the day-ahead market, 
Bpr is the settlement benefit of the difference in purchase and sale of electricity in the 
real-time market, BpLCfD is the settlement benefit of the difference in purchase and 
sale of electricity in the medium- and long-term market, BpDR is the total benefit 
of implementing demand response on the grid side, Bploss is the benefit of load 
increase caused by network losses, Cploss is the cost of avoiding network losses by 
implementing demand response, Creg is the compensation paid by the grid to the 
load aggregator, and Cmp is the project management cost of the grid. 

Benefits Analysis Model. Price differential revenue from buying and selling 
electricity in the day-ahead market: 

Bpc =
∑[(

QUc,t − QUL,t
)(

ρselll,t − ρGc,t
)]

(1.23) 

In the equation, QUc,t represents the user’s demand for electricity in the day-ahead 
market during time period t, QUL,t represents the user’s demand for electricity in the 
medium-to-long-term market during time period t, and ρsell,t represents the selling 
electricity price in the grid during time period t. 

Price differential revenue from buying and selling electricity in the real-time 
market: 

Bpr =
∑[(

Qu,t − QUc,t
)(

ρsell,t − ρGr,t
)]

(1.24) 

In the equation, Qu,t represents the online electricity volume of the unit in the 
real-time market. 

Price differential revenue from buying and selling electricity in medium-to-long-
term contracts: 

BpLCCD =
∑[

QUL,t
(
ρsell,t − ρGL,t

)]
(1.25) 

Benefits of implementing Demand Response (DR) 

⎧⎪⎪⎨ 

⎪⎪⎩ 

BpDR = Bt − Cg 

Bt =
∑

ct PDR,t 

Cg =
∑ (

ρsell,t − ρGr,t
)
∆QDR,t 

(1.26)
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In the equation, Bt represents the expenditure cost of avoided capacity for the grid 
company, Cg represents the reduction in electricity sales revenue on the grid side due 
to the implementation of demand response, and ct represents the daily expenditure 
cost of avoided capacity per unit for the grid company. 

Revenue from load increase caused by network loss: 

Bploss =
∑(

∆Qloss,ρsell,t

)
(1.27) 

Expenditure Analysis Model. Revenue/cost savings from avoided network loss due 
to the implementation of demand response: 

Cploss =
∑ (

∆Qloss,t − ∆Qloss,t
)
ρsell,t (1.28) 

Compensation fees paid to load aggregators: 

Creg = 
n=1∑
N 

creg,n QDR (1.29) 

In the equation, creg,n represents the unit compensation price provided by the 
grid for the n-th time the load aggregator participates in demand response. 

1.4 Simulation Analysis 

1.4.1 Simulation Scenario 

To quantify the cost–benefit model of the tripartite synergy in the carbon-electricity 
trading market, this paper used a typical operating day (with peak load) as the simu-
lation background and simulated the demand response scenario. The real load data 
for that day in the province was used to clear the market. In this example, the error 
between the day-ahead load forecast data and the actual load data was set to 5%, 
and the medium-to-long-term contract electricity volume was decomposed into daily 
electricity volumes, with a daily electricity volume ratio set at 0.85.In the example, 
demand response reduced peak load by a total of 3%, of which 2% was reduced by 
user participation in demand response, and 1% was shifted through discharging of 
energy storage during peak load periods and supplemented during low load periods 
(00:00–08:00), as shown in Fig. 1.4.

The simulation parameter settings for the expenditure and revenue analysis model 
are shown in Table 1.2. The relevant parameters and cleared electricity prices obtained 
were used for the simulation calculation of the expenditure-benefit for each market 
participant in the following sections.
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Fig. 1.4 Schematic diagram 
of load and demand response 
scenarios
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Table 1.2 Simulation parameters 

Parameter Numeric value Parameter Numeric value 

η/% 95 ρre/(yuan/t) 55 

Mg 0.6 ct/(yuan/KW) 1 

MU 0.8 co/(yuan/KW) 6 

Rg/% 80 ρmin/(yuan/KWh) 0.5 

Ru/% 80 ρtran,t/(yuan/KWh) 0.0278 

cop/% 0.5 cBRC/(yuan/KWh) 2000 

σDOD/% 90 Cmu/(yuan/a) 200,000 

N 2 Cmi/(yuan/a) 10,000 

NCL 3500 Cmp/(yuan/a) 1,000,000 

1.4.2 Simulation Results 

Using the model and simulation parameters described in this paper, the cost–benefit 
for each market participant was quantitatively calculated, and the results for various 
indicators are shown in Figs. 1.5, 1.6, and 1.7. The solid lines represent benefit 
indicators, while the dashed lines represent cost indicators. The overall benefits for 
each market participant on the operating day are shown in Table 1.3.

It can be seen that the benefits for the power generation side mainly come from the 
reduction in unit expenditure due to demand response and the generation revenue in 
the spot market, with overall significant benefits. The user’s participation in demand 
response programs brings certain benefits, but since the cost mainly comes from 
consuming electricity, the overall benefits are negative. The benefits for the grid side 
mainly come from the price differential revenue from buying and selling electricity
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Fig. 1.5 Generation-side 
results for each time period 
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Fig. 1.6 User-side results 
for each time period 

15 

10 

5 

0 6:00 12:00 18:00 24:00 

Electricity bill for usersParticipation in DR assessment costs 

Network losses borne by the user 

Moment 

C
os

t/m
ill

io
n 

R
M

B
 

Fig. 1.7 Grid-side results 
for each time period
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Table 1.3 Total benefit of each market entity on operation day 

Market subject Total daily operating benefit/ten thousand yuan 

Generating side 9501.146 

User side −262,038.592 

Grid side 68,972.327

in various markets, and the implementation of demand response also brings a signifi-
cant amount of avoided capacity expenditure, making its overall benefits the highest 
among all market participants. 

1.4.3 Consider the Impact of the CET Market 

Based on the interaction mechanism between the CET market and the spot market and 
the proposed clearance framework in this paper, it can be seen that carbon emission 
trading will change the market clearing price, thus affecting the benefits of each 
market participant. Figure 1.8 provides a comparison of the cleared electricity price 
in the day-ahead market with and without considering the impact of the CET market. 

It can be seen that the market clearing price changes significantly when consid-
ering the operation of the carbon market. The cleared electricity price in all time 
periods during the day is significantly higher than when the operation of the carbon 
trading market is not considered, with the highest increase of 29.98%. However, the 
overall trend of price changes is basically the same. 

In addition, when not considering the operation of the CET market, the unit carbon 
emission cost is not included in the unit pricing function, which will greatly reduce 
the control of the CET mechanism on the total carbon emissions. To highlight the

Fig. 1.8 Comparison of 
clear electricity prices 
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emission reduction effect after considering the operation of the CET market, this 
paper compared the cleared results under two modes: with and without considering 
the CET market, as shown in Table 1.4. 

It can be seen that, although considering the operation of the CET market cannot 
reduce the total operating costs of units, it can reduce the output of conventional units 
in the CET market to some extent and effectively reduce the total carbon emissions. 
Figure 1.9 compares the total benefits of each market participant on the operating 
day under the two modes. 

From Fig. 1.9, it can be seen that the operation of the CET market mainly affects 
the benefits of the power generation side, the user side, and the grid side. This is 
mainly because considering carbon emission trading will raise the market clearing 
price, and the electricity cost of users will also increase, resulting in a decrease in 
the benefits of the power generation side and the user side, while the benefits of the 
grid side increase. Among them, the impact of the CET market on the benefits of the 
power generation side is the largest, and the benefits of the power generation side 
are reduced by 61.78% when considering the CET market.

Table 1.4 Comparison of the clearing results of the two modes 

Operating mode Unit operating cost Output of coal-fired 
unit/MW 

Total carbon emissions/t 

Consider CET 
market 

2,024,336.08 2,406,373.28 1,639,959.54 

CET market is not 
considered 

1,630,385.84 2,728,763.45 1,828,271.51 

Fig. 1.9 The change of the 
total benefit of each entity in 
the two operating days 
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1.5 Conclusion 

This article studies the operational and transactional mechanisms of market partici-
pants in the power generation side, user side, and power grid side in the CET market 
and spot market synergy. A expenditure-benefit analysis model is established for the 
three-party market participants, and various indicators are quantitatively calculated 
using actual grid operation data, explores the impact of CET market operations, 
changes in user demand response ratio on expenditure-benefit for all parties. 

In conclusion, the income on the power generation and grid side is mainly based 
on the price difference between purchases and sales, and implementing capacity 
investments that can be avoided by demand response. While demand response can 
bring certain benefits to users, they may have to pay high electricity costs, resulting 
in an overall negative benefit. The operation of the CET market affects the efficiency 
of the power generation, user, and grid sides. Overall, optimizing demand response 
and carbon emissions trading policies can potentially create a more efficient and 
sustainable energy system. 
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Chapter 2 
Management and Practice on Classified 
Hazardous Waste in Laboratories 
of Universities in China 

Chaoyi Jiang, Kezhong Chen, Haifeng Lin, Ming Lin, Qin Cui, Dongya Sun, 
and Lei Jin 

Abstract Hazardous waste produced in university laboratory has a tremendous 
harm. If hazardous waste in laboratory is disposed improperly, it will cause immea-
surable pollution and harm to laboratory safety, environment and human body. This 
paper takes the current management situation as starting point, analyses and summa-
rizes the classification and treatment methods and experience of hazardous waste in 
laboratories of Xiamen University of Technology. Starting from top-level design of 
hazardous waste management, the mode is put forward that establish and improve 
the management mechanism, strengthen education and training, build an information
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