

PROFESSIONAL

C++

Sixth Edition

Marc Gregoire

Copyright © 2024 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada and the United Kingdom.

ISBNs: 9781394193172 (Paperback), 9781394193196 (ePDF), 9781394193189 (ePub)

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per- copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923,
(978) 750- 8400, fax (978) 750- 4470, or on the web at www.copyright.com. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201)
748- 6011, fax (201) 748- 6008, or online at www.wiley.com/go/permission.

Trademarks: WILEY and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its
affiliates, in the United States and other countries, and may not be used without written permission. All other trademarks are
the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in
this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this
book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book
and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be
created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not
be suitable for your situation. You should consult with a professional where appropriate. Further, readers should be aware
that websites listed in this work may have changed or disappeared between when this work was written and when it is read.
Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not
limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care
Department within the United States at (800) 762- 2974, outside the United States at (317) 572- 3993 or fax (317) 572- 4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Control Number: 2023948608

Cover image: © CSA- Printstock/Getty Images
Cover design: Wiley

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

Dedicated to my amazing parents and brother,

whose continuous support and patience help me in

tackling such a big project as writing this book.

ABOUT THE AUTHOR

MARC GREGOIRE is a software architect from Belgium. He graduated from the University of
Leuven, Belgium, with a degree in “Burgerlijk ingenieur in de computer wetenschappen” (equivalent
to a master of science in engineering in computer science). The year after, he received an advanced
master’s degree in artificial intelligence, cum laude, at the same university. After his studies, Marc
started working for a software consultancy company called Ordina Belgium. As a consultant, he
worked for Siemens and Nokia Siemens Networks on critical 2G and 3G software running on Solaris
for telecom operators. This required working in international teams stretching from South America
and the United States to Europe, the Middle East, Africa, and Asia. Now, Marc is a software project
manager and software architect at Nikon Metrology (industry.nikon.com), a division of Nikon
and a leading provider of precision optical instruments, X- ray machines, and metrology solutions for
X- ray, CT, and 3- D geometric inspection.

His main expertise is C++. He has experience with developing C++ programs running 24/7 on Win-
dows and Linux platforms: for example, KNX/EIB home automation software. In addition to C++,
Marc also likes C#.

Since April 2007, he has received the annual Microsoft MVP (Most Valuable Professional) award for
his Visual C++ expertise.

Marc is the founder of the Belgian C++ Users Group (becpp.org), co- author of C++ Standard
Library Quick Reference 1st and 2nd editions (Apress 2016 and 2019), a technical editor for numer-
ous books for several publishers, and a regular speaker at the CppCon C++ conference (cppcon.org).
He maintains a blog at www.nuonsoft.com/blog and is passionate about traveling and gastronomic
restaurants.

ABOUT THE TECHNICAL EDITORS

BRADLEY JONES has programmed in a variety of languages and tools ranging from C to Unity on
platforms ranging from Windows to mobile and including the web as well as a little bit of virtual
reality and embedded devices just for fun. In addition to programming, he has authored books on C,
C++, C#, Windows, the web, and many more technical topics and a few nontechnical topics. Bradley
is the owner of Lots of Software, LLC, and has been recognized in the industry as a community influ-
encer as well as has been recognized as a Microsoft MVP, a CODiE Judge, an international technol-
ogy speaker, a bestselling technical author, and more.

ARTHUR O’DWYER is a professional C++ trainer, software engineer, author, and WG21 committee
member. He authored Mastering the C++17 STL (Packt Publishing, 2017), founded CppCon’s “Back
to Basics” track (2019), implemented libc++’s <memory_resource> header (2022), and is responsible
for the simplified “implicit move” semantics in C++20 and C++23. He and his wife live in New York.

http://industry.nikon.com
http://becpp.org
http://cppcon.org
http://www.nuonsoft.com/blog

ACKNOWLEDGMENTS

I THANK THE JOHN WILEY & SONS editorial and production teams for their support. A special thank-
you to Jim Minatel, executive editor at Wiley, for giving me a chance to write this sixth edition; Pete
Gaughan, senior managing editor; Ashirvad Moses Thyagarajan, managing editor; Kathryn Hogan,
PhD, project manager; Archana Pragash, content refinement specialist; and Kim Wimpsett, copyeditor.

A special thank you to technical editors Bradley Jones and Arthur O’Dwyer for checking the technical
accuracy of the book. Their feedback and numerous contributions have strengthened this book and
are greatly appreciated.

Of course, the support and patience of my parents and my brother were very important in finishing
this book. I would also like to express my sincere gratitude to my employer, Nikon Metrology, for
supporting me during this project.

Finally, I thank you, the reader, for supporting me over all these years and across numerous editions
with this approach to professional C++ software development.

— Marc Gregoire

CONTENTS

INTRODUCTION xli

PART I: INTRODUCTION TO PROFESSIONAL C++

CHAPTER 1: A CRASH COURSE IN C++ AND THE STANDARD LIBRARY 3

C++ Crash Course 4
The Obligatory “Hello, World” Program 4

Comments 5
Importing Modules 5
How the Compiler Processes Your Source Code 6
Preprocessor Directives 6
The main() Function 7
Printing Text 7
I/O Streams 7
Returning from a Function 9

Namespaces 9
Nested Namespace 11
Namespace Alias 11

Literals 11
Variables 12

Numerical Limits 15
Zero Initialization 15
Casting 16
Floating-Point Numbers 16

Operators 18
Enumerations 21

Old-Style Enumerations 22
Structs 23
Conditional Statements 24

if/else Statements 24
switch Statements 25

The Conditional Operator 27
Logical Evaluation Operators 27
Three-Way Comparisons 29
Functions 30

Contents

Function Return Type Deduction 31
Current Function’s Name 32
Function Overloading 32

Attributes 32
[[nodiscard]] 33
[[maybe_unused]] 33
[[noreturn]] 34
[[deprecated]] 34
[[likely]] and [[unlikely]] 35
[[assume]] 35

C-Style Arrays 36
std::array 37
std::vector 38
std::pair 39
std::optional 40
Structured Bindings 41
Loops 41

The while Loop 41
The do/while Loop 42
The for Loop 42
The Range-Based for Loop 42

Initializer Lists 43
Strings in C++ 43
C++ as an Object-Oriented Language 44

Defining Classes 44
Using Classes 47

Scope Resolution 47
Uniform Initialization 48

Designated Initializers 51
Pointers and Dynamic Memory 52

The Stack and the Free Store 52
Working with Pointers 53
Dynamically Allocated Arrays 54
Null Pointer Constant 55

The Use of const 56
const as a Qualifier for a Type 56
const Member Functions 58

References 59
Reference Variables 59
Reference Data Members 62
Reference Parameters 62

viii

ix

Contents

Reference Return Values 65
Deciding Between References and Pointers 65

const_cast() 69
Exceptions 70
Type Aliases 71
typedefs 72
Type Inference 72

The auto Keyword 72
The decltype Keyword 75

The Standard Library 75
Your First Bigger C++ Program 76

An Employee Records System 76
The Employee Class 76

Employee.cppm 76
Employee.cpp 78
EmployeeTest.cpp 79

The Database Class 80
Database.cppm 80
Database.cpp 81
DatabaseTest.cpp 82

The User Interface 82
Evaluating the Program 85

summary 85
exercises 85

CHAPTER 2: WORKING WITH STRINGS AND STRING VIEWS 87

Dynamic strings 88
C- Style Strings 88
String Literals 90

Raw String Literals 90
The C++ std::string Class 92

What Is Wrong with C- Style Strings? 92
Using the std::string Class 92
std::string Literals 95
CTAD with std::vector and Strings 96

Numeric Conversions 96
High- Level Numeric Conversions 96
Low- Level Numeric Conversions 98

The std::string_view Class 100
std::string_view and Temporary Strings 102
std::string_view Literals 102

x

Contents

Nonstandard Strings 103
Formatting and Printing strings 103

Format Strings 104
Argument Indices 105
Printing to Different Destinations 106
Compile- Time Verification of Format Strings 106

Non- Compile- Time Constant Format Strings 106
Handling Errors in Non- Compile- Time Constant Format Strings 107

Format Specifiers 107
width 108
[fill]align 108
sign 109
109
type 109
precision 110
0 111
L 111

Formatting Escaped Characters and Strings 111
Formatting Ranges 112
Support for Custom Types 114

summary 117
exercises 117

CHAPTER 3: CODING WITH STYLE 119

the Importance of Looking Good 119
Thinking Ahead 120
Elements of Good Style 120

Documenting Your Code 120
Reasons to Write Comments 120

Commenting to Explain Usage 120
Commenting to Explain Complicated Code 122
Commenting to Convey Meta-information 124
Copyright Comment 125

Commenting Styles 125
Commenting Every Line 125
Prefix Comments 126
Fixed-Format Comments 127
Ad Hoc Comments 129
Self-Documenting Code 129

Decomposition 129
Decomposition through Refactoring 130

xi

Contents

Decomposition by Design 131
Decomposition in This Book 131

naming 132
Choosing a Good Name 132
Naming Conventions 133

Counters 133
Prefixes 133
Hungarian Notation 134
Getters and Setters 134
Capitalization 134
Namespaced Constants 134

Using Language Features with style 135
Use Constants 135
Use References Instead of Pointers 136
Use Custom Exceptions 136

Formatting 137
The Curly Brace Alignment Debate 137
Coming to Blows over Spaces and Parentheses 138
Spaces, Tabs, and Line Breaks 139

stylistic Challenges 139
summary 140
exercises 140

PART II: PROFESSIONAL C++ SOFTWARE DESIGN

CHAPTER 4: DESIGNING PROFESSIONAL C++ PROGRAMS 145

What is Programming Design? 146
the Importance of Programming Design 147
Designing For C++ 149
two Rules for Your own C++ Designs 150

Abstraction 150
Benefiting from Abstraction 150
Incorporating Abstraction in Your Design 151

Reuse 152
Writing Reusable Code 153
Reusing Designs 153

Reusing existing Code 154
A Note on Terminology 155
Deciding Whether to Reuse Code or Write It Yourself 156

Advantages to Reusing Code 156

xii

Contents

Disadvantages to Reusing Code 157
Putting It Together to Make a Decision 158

Guidelines for Choosing a Library to Reuse 158
Understand the Capabilities and Limitations 158
Understand the Learning Cost 159
Understand the Performance 159
Understand Platform Limitations 162
Understand Licensing 162
Understand Support and Know Where to Find Help 162
Prototype 163
Open- Source Libraries 163
The C++ Standard Library 165

Designing a Chess Program 166
Requirements 166
Design Steps 167

Divide the Program into Subsystems 167
Choose Threading Models 169
Specify Class Hierarchies for Each Subsystem 170
Specify Classes, Data Structures, Algorithms, and Patterns
for Each Subsystem 170
Specify Error Handling for Each Subsystem 173

summary 174
exercises 175

CHAPTER 5: DESIGNING WITH CLASSES 177

Am I thinking Procedurally? 178
the object- oriented Philosophy 178

Classes 178
Components 179
Properties 179
Behaviors 180
Bringing It All Together 180

Living In a World of Classes 181
Over- Classification 182
Overly General Classes 182

Class Relationships 183
The Has- a Relationship 183
The Is- a Relationship (Inheritance) 184

Inheritance Techniques 185
Polymorphism 186

The Fine Line Between Has- a and Is- a 186

xiii

Contents

The Not- a Relationship 190
Hierarchies 191
Multiple Inheritance 192
Mixin Classes 193

summary 194
exercises 194

CHAPTER 6: DESIGNING FOR REUSE 197

the Reuse Philosophy 198
How to Design Reusable Code 198

Use Abstraction 199
Structure Your Code for Optimal Reuse 200

Avoid Combining Unrelated or Logically Separate Concepts 201
Use Templates for Generic Data Structures and Algorithms 203
Provide Appropriate Checks and Safeguards 205
Design for Extensibility 206

Design Usable Interfaces 208
Consider the Audience 208
Consider the Purpose 209
Design Interfaces That Are Easy to Use 210
Design General- Purpose Interfaces 214
Reconciling Generality and Ease of Use 215

Designing a Successful Abstraction 216
The SOLID Principles 216

summary 217
exercises 217

PART III: C++ CODING THE PROFESSIONAL WAY

CHAPTER 7: MEMORY MANAGEMENT 221

Working with Dynamic Memory 222
How to Picture Memory 222
Allocation and Deallocation 223

Using new and delete 223
What About My Good Friend malloc? 224
When Memory Allocation Fails 225

Arrays 225
Arrays of Primitive Types 226
Arrays of Objects 228

xiv

Contents

Deleting Arrays 228
Multidimensional Arrays 229

Working with Pointers 233
A Mental Model for Pointers 233
Casting with Pointers 234

Array- Pointer Duality 234
Arrays Decay to Pointers 234
Not All Pointers Are Arrays! 236

Low- Level Memory operations 236
Pointer Arithmetic 236
Custom Memory Management 237
Garbage Collection 238
Object Pools 238

Common Memory Pitfalls 239
Underallocating Data Buffers and Out- of- Bounds Memory Access 239
Memory Leaks 240

Finding and Fixing Memory Leaks in Windows with Visual C++ 241
Finding and Fixing Memory Leaks in Linux with Valgrind 243

Double- Deletion and Invalid Pointers 243
smart Pointers 244

unique_ptr 245
Creating unique_ptrs 245
Using unique_ptrs 247
unique_ptr and C- Style Arrays 248
Custom Deleters 248

shared_ptr 249
Creating and Using shared_ptrs 249
The Need for Reference Counting 250
Casting a shared_ptr 251
Aliasing 252

weak_ptr 252
Passing to Functions 253
Returning from Functions 253
enable_shared_from_this 254
Interoperability of Smart Pointers with C- Style Functions 255
The Old and Removed auto_ptr 255

summary 256
exercises 256

xv

Contents

CHAPTER 8: GAINING PROFICIENCY WITH CLASSES AND OBJECTS 259

Introducing the spreadsheet example 260
Writing Classes 260

Class Definitions 260
Class Members 261
Access Control 261
Order of Declarations 262
In- Class Member Initializers 263

Defining Member Functions 263
Accessing Data Members 264
Calling Other Member Functions 264

Using Objects 265
Objects on the Stack 266
Objects on the Free Store 266

The this Pointer 267
Explicit Object Parameter 268

Understanding object Life Cycles 269
Object Creation 269

Writing Constructors 270
Using Constructors 270
Providing Multiple Constructors 271
Default Constructors 272
Constructor Initializers aka Ctor- Initializers 276
Copy Constructors 279
Initializer- List Constructors 281
Delegating Constructors 283
Converting Constructors and Explicit Constructors 284
Summary of Compiler- Generated Constructors 285

Object Destruction 286
Assigning to Objects 288

Declaring an Assignment Operator 288
Defining an Assignment Operator 289
Explicitly Defaulted and Deleted Assignment Operator 290

Compiler- Generated Copy Constructor and Copy Assignment Operator 291
Distinguishing Copying from Assignment 291

Objects as Return Values 291
Copy Constructors and Object Members 292

summary 293
exercises 293

xvi

Contents

CHAPTER 9: MASTERING CLASSES AND OBJECTS 295

Friends 296
Dynamic Memory Allocation in objects 297

The Spreadsheet Class 297
Freeing Memory with Destructors 300
Handling Copying and Assignment 301

The Spreadsheet Copy Constructor 303
The Spreadsheet Assignment Operator 303
Disallowing Assignment and Pass- by- Value 306

Handling Moving with Move Semantics 307
Rvalue References 307
Decay Copy 310
Implementing Move Semantics 310
Testing the Spreadsheet Move Operations 314
Implementing a Swap Function with Move Semantics 316
Using std::move() in Return Statements 317
Optimal Way to Pass Arguments to Functions 318

Rule of Zero 319
More About Member Functions 320

static Member Functions 320
const Member Functions 321

mutable Data Members 322
Member Function Overloading 323

Overloading Based on const 323
Explicitly Deleting Overloads 325
Ref- Qualified Member Functions 325

Inline Member Functions 327
Default Arguments 329

Constexpr and Consteval 330
The constexpr Keyword 330
The consteval Keyword 331
constexpr and consteval Classes 332

Different Kinds of Data Members 333
static Data Members 333

Inline Variables 334
Accessing static Data Members from within Class
Member Functions 334

constexpr static Data Members 335
Accessing static Data Members from Outside
Class Member Functions 336

Reference Data Members 336

xvii

Contents

nested Classes 338
enumerations Inside Classes 339
operator overloading 339

Example: Implementing Addition for SpreadsheetCells 340
First Attempt: The add Member Function 340
Second Attempt: Overloaded operator+ as a Member Function 341
Third Attempt: Global operator+ 342

Overloading Arithmetic Operators 343
Overloading the Arithmetic Shorthand Operators 344

Overloading Comparison Operators 345
Overloading Comparison Operators Before C++20 345
Overloading Comparison Operators Since C++20 347
Compiler- Generated Comparison Operators 348

Building stable Interfaces 350
Using Interface and Implementation Classes 350

summary 354
exercises 354

CHAPTER 10: DISCOVERING INHERITANCE TECHNIQUES 357

Building Classes with Inheritance 358
Extending Classes 358

A Client’s View of Inheritance 359
A Derived Class’s View of Inheritance 360
Preventing Inheritance 362

Overriding Member Functions 362
The virtual Keyword 362
Syntax for Overriding a Member Function 363
A Client’s View of Overridden Member Functions 363
The override Keyword 365
The Truth about virtual 366
Preventing Overriding 370

Inheritance For Reuse 370
The WeatherPrediction Class 370
Adding Functionality in a Derived Class 371
Replacing Functionality in a Derived Class 373

Respect Your Parents 373
Parent Constructors 373
Parent Destructors 375
virtual Member Function Calls within Constructors and Destructor 376
Referring to Parent Names 377
Casting Up and Down 379

xviii

Contents

Inheritance for Polymorphism 380
Return of the Spreadsheet 380
Designing the Polymorphic Spreadsheet Cell 381
The SpreadsheetCell Base Class 382

A First Attempt 382
Pure virtual Member Functions and Abstract Base Classes 382

The Individual Derived Classes 383
StringSpreadsheetCell Class Definition 383
StringSpreadsheetCell Implementation 384
DoubleSpreadsheetCell Class Definition and Implementation 384

Leveraging Polymorphism 385
Future Considerations 386
Providing Implementations for Pure virtual Member Functions 388

Multiple Inheritance 388
Inheriting from Multiple Classes 389
Naming Collisions and Ambiguous Base Classes 390

Name Ambiguity 390
Ambiguous Base Classes 391
Uses for Multiple Inheritance 392

Interesting and obscure Inheritance Issues 392
Changing the Overridden Member Function’s Return Type 393
Adding Overloads of virtual Base Class Member
Functions to Derived Classes 396
Inherited Constructors 396

Hiding of Inherited Constructors 397
Inherited Constructors and Multiple Inheritance 398
Initialization of Data Members 399

Special Cases in Overriding Member Functions 400
The Base Class Member Function Is static 400
The Base Class Member Function Is Overloaded 401
The Base Class Member Function Is private 403
The Base Class Member Function Has Default Arguments 404
The Base Class Member Function Has a Different
Access Specification 405

Copy Constructors and Assignment Operators in Derived Classes 407
Run- Time Type Facilities 408
Non- public Inheritance 410
Virtual Base Classes 411

Casts 414
static_cast() 414

xix

Contents

reinterpret_cast() 415
dynamic_cast() 416
std::bit_cast() 417
Summary of Casts 418

summary 418
exercises 419

CHAPTER 11: MODULES, HEADER FILES, AND
MISCELLANEOUS TOPICS 421

Modules 422
Unmodularizing Code 423
Standard Named Modules 423
Module Interface Files 423
Module Implementation Files 425
Splitting Interface from Implementation 426
Visibility vs. Reachability 427
Submodules 428
Module Partitions 429

Implementation Partitions 431
Private Module Fragment 432
Header Units 433
Importable Standard Library Headers 434

Preprocessor Directives 436
Preprocessor Macros 437

Linkage 438
Internal Linkage 439
The extern Keyword 440

Header Files 441
One Definition Rule (ODR) 441
Duplicate Definitions 442
Circular Dependencies 442
Querying Existence of Headers 443
Module Import Declarations 443

Feature-test Macros for Core Language Features 444
the static Keyword 445

static Data Members and Member Functions 445
static Variables in Functions 445
Order of Initialization of Nonlocal Variables 446
Order of Destruction of Nonlocal Variables 446

xx

Contents

C- style Variable- Length Argument Lists 447
Accessing the Arguments 448
Why You Shouldn’t Use C- Style Variable- Length Argument Lists 448

summary 449
exercises 449

CHAPTER 12: WRITING GENERIC CODE WITH TEMPLATES 451

overview of templates 452
Class templates 453

Writing a Class Template 453
Coding Without Templates 453
A Template Grid Class 456
Using the Grid Template 460

How the Compiler Processes Templates 461
Selective/Implicit Instantiation 462
Explicit Instantiation 462
Template Requirements on Types 462

Distributing Template Code Between Files 463
Member Function Definitions in Same File as Class
Template Definition 463
Member Function Definitions in Separate File 463

Template Parameters 464
Non- type Template Parameters 464
Default Values for Template Parameters 466
Class Template Argument Deduction 467

Member Function Templates 468
Member Function Templates with Non- type Template
Parameters 471
Using Member Function Templates with Explicit
Object Parameters to Avoid Code Duplication 473

Class Template Specialization 474
Deriving from Class Templates 477
Inheritance vs. Specialization 478
Alias Templates 479

Function templates 479
Function Overloads vs. Function Template 481
Function Template Overloading 481
Function Templates as Friends of Class Templates 482
More on Template Type Parameter Deduction 484
Return Type of Function Templates 484
Abbreviated Function Template Syntax 486

xxi

Contents

Variable templates 487
Concepts 487

Syntax 488
Constraints Expression 488

Requires Expressions 489
Combining Concept Expressions 491

Predefined Standard Concepts 491
Type- Constrained auto 492
Type Constraints and Function Templates 493

Constraint Subsumption 495
Type Constraints and Class Templates 495
Type Constraints and Class Member Functions 496
Constraint- Based Class Template Specialization and
Function Template Overloading 496
Best Practices 497

summary 498
exercises 498

CHAPTER 13: DEMYSTIFYING C++ I/O 501

Using streams 502
What Is a Stream, Anyway? 502
Stream Sources and Destinations 504
Output with Streams 504

Output Basics 504
Member Functions of Output Streams 505
Handling Output Errors 506
Output Manipulators 508

Input with Streams 510
Input Basics 510
Handling Input Errors 511
Input Member Functions 512
Input Manipulators 516

Input and Output with Objects 517
Custom Manipulators 519

string streams 519
span-Based streams 521
File streams 522

Text Mode vs. Binary Mode 523
Jumping Around with seek() and tell() 523
Linking Streams Together 526
Read an Entire File 526

xxii

Contents

Bidirectional I/o 527
Filesystem support Library 528

Path 528
Directory Entry 530
Helper Functions 530
Directory Iteration 530

summary 531
exercises 532

CHAPTER 14: HANDLING ERRORS 533

errors and exceptions 534
What Are Exceptions, Anyway? 534
Why Exceptions in C++ Are a Good Thing 535
Recommendation 536

exception Mechanics 536
Throwing and Catching Exceptions 537
Exception Types 540
Catching Exception Objects as Reference-to-const 541
Throwing and Catching Multiple Exceptions 541

Matching and const 543
Matching Any Exception 543

Uncaught Exceptions 544
noexcept Specifier 546
noexcept(expression) Specifier 546
noexcept(expression) Operator 546
Throw Lists 547

exceptions and Polymorphism 547
The Standard Exception Hierarchy 547
Catching Exceptions in a Class Hierarchy 549
Writing Your Own Exception Classes 550
Nested Exceptions 553

Rethrowing exceptions 555
stack Unwinding and Cleanup 556

Use Smart Pointers 558
Catch, Cleanup, and Rethrow 558

source Location 559
Source Location for Logging 560
Automatically Embed a Source Location in Custom Exceptions 560

stack trace 561

xxiii

Contents

The Stack Trace Library 561
Automatically Embed a Stack Trace in Custom Exceptions 563

Common error-Handling Issues 564
Memory Allocation Errors 565

Non-throwing new 565
Customizing Memory Allocation Failure Behavior 566

Errors in Constructors 567
Function-Try-Blocks for Constructors 569
Errors in Destructors 572

exception safety Guarantees 573
summary 573
exercises 573

CHAPTER 15: OVERLOADING C++ OPERATORS 577

overview of operator overloading 578
Why Overload Operators? 578
Limitations to Operator Overloading 578
Choices in Operator Overloading 579

Member Function or Global Function 579
Choosing Argument Types 580
Choosing Return Types 581
Choosing Behavior 581

Operators You Shouldn’t Overload 581
Summary of Overloadable Operators 582
Rvalue References 586
Precedence and Associativity 587
Relational Operators 588
Alternative Notation 589

overloading the Arithmetic operators 589
Overloading Unary Minus and Unary Plus 589
Overloading Increment and Decrement 590

overloading the Bitwise and Binary Logical operators 591
overloading the Insertion and extraction operators 591
overloading the subscripting operator 593

Providing Read- Only Access with operator[] 596
Multidimensional Subscripting Operator 598
Non- integral Array Indices 599
static Subscripting Operator 599

overloading the Function Call operator 600
static Function Call Operator 601

xxiv

Contents

overloading the Dereferencing operators 602
Implementing operator* 603
Implementing operator–> 604
What in the World Are operator.* and operator–>*? 604

Writing Conversion operators 605
Operator auto 606
Solving Ambiguity Problems with Explicit Conversion Operators 606
Conversions for Boolean Expressions 607

overloading the Memory Allocation and Deallocation operators 609
How new and delete Really Work 609

The New- Expression and operator new 609
The Delete- Expression and operator delete 610

Overloading operator new and operator delete 610
Explicitly Deleting or Defaulting operator new and operator delete 613
Overloading operator new and operator delete with Extra Parameters 613
Overloading operator delete with Size of Memory as Parameter 614

overloading User- Defined Literal operators 615
Standard Library Literals 615
User- Defined Literals 616

Cooked- Mode Literal Operator 616
Raw- Mode Literal Operator 617

summary 618
exercises 618

CHAPTER 16: OVERVIEW OF THE C++ STANDARD LIBRARY 619

Coding Principles 620
Use of Templates 621
Use of Operator Overloading 621

overview of the C++ standard Library 621
Strings 621
Regular Expressions 622
I/O Streams 622
Smart Pointers 622
Exceptions 623
Standard Integer Types 623
Numerics Library 623
Integer Comparisons 624
Bit Manipulation 624
Time and Date Utilities 625
Random Numbers 625

xxv

Contents

Initializer Lists 626
Pair and Tuple 626
Vocabulary Types 626
Function Objects 627
Filesystem 627
Multithreading 627
Type Traits 627
Standard Library Feature- Test Macros 627
<version> 629
Source Location 629
Stack Trace 629
Containers 629

Sequential Containers 630
Sequential Views 632
Container Adapters 632
Ordered Associative Containers 634
Unordered Associative Containers/Hash Tables 635
Flat Associative Container Adapters 635
bitset 636
Summary of Standard Library Containers 636

Algorithms 639
Non- modifying Sequence Algorithms 640
Modifying Sequence Algorithms 642
Operational Algorithms 643
Swap Algorithms 644
Partitioning Algorithms 644
Sorting Algorithms 645
Binary Search Algorithms 645
Set Algorithms on Sorted Sequences 645
Other Algorithms on Sorted Sequences 646
Heap Algorithms 646
Minimum/Maximum Algorithms 646
Numerical Processing Algorithms 647
Permutation Algorithms 648
Choosing an Algorithm 648

Ranges Library 649
What’s Missing from the Standard Library 650

summary 650
exercises 650

xxvi

Contents

CHAPTER 17: UNDERSTANDING ITERATORS AND
THE RANGES LIBRARY 653

Iterators 654
Getting Iterators for Containers 656
Iterator Traits 658
Examples 659
Function Dispatching Using Iterator Traits 660

stream Iterators 661
Output Stream Iterator: ostream_iterator 662
Input Stream Iterator: istream_iterator 663
Input Stream Iterator: istreambuf_iterator 663

Iterator Adapters 663
Insert Iterators 664
Reverse Iterators 665
Move Iterators 666

Ranges 668
Constrained Algorithms 669

Projection 670
Views 671

Modifying Elements Through a View 677
Mapping Elements 677

Range Factories 678
Input Streams as Views 679

Converting a Range into a Container 680
summary 681
exercises 681

CHAPTER 18: STANDARD LIBRARY CONTAINERS 683

Containers overview 684
Requirements on Elements 685
Exceptions and Error Checking 687

sequential Containers 687
vector 687

vector Overview 687
vector Details 690
Move Semantics 703
vector Example: A Round-Robin Class 704

The vector<bool> Specialization 709
deque 709
list 710

xxvii

Contents

Accessing Elements 710
Iterators 711
Adding and Removing Elements 711
list Size 711
Special list Operations 711
list Example: Determining Enrollment 713

forward_list 714
array 717

sequential Views 718
span 718
mdspan 720

Container Adapters 722
queue 722

queue Operations 722
queue Example: A Network Packet Buffer 723

priority_queue 725
priority_queue Operations 725
priority_queue Example: An Error Correlator 726

stack 727
stack Operations 728
stack Example: Revised Error Correlator 728

Associative Containers 728
Ordered Associative Containers 728

The pair Utility Class 729
map 729
multimap 738
set 742
multiset 744

Unordered Associative Containers Or Hash Tables 744
Hash Functions 744
unordered_map 746
unordered_multimap 750
unordered_set/unordered_multiset 751

Flat Set and Flat Map Associative Container Adapters 751
Performance of Associative Containers 752

other Containers 752
Standard C-Style Arrays 752
Strings 753
Streams 754
bitset 754

bitset Basics 755

xxviii

Contents

Bitwise Operators 755
bitset Example: Representing Cable Channels 756

summary 759
exercises 759

CHAPTER 19: FUNCTION POINTERS, FUNCTION
OBJECTS, AND LAMBDA EXPRESSIONS 761

Function Pointers 762
findMatches() Using Function Pointers 762
findMatches() As a Function Template 764
Windows DLLs and Function Pointers 765

Pointers to Member Functions (And Data Members) 765
Function objects 767

Writing Your First Function Object 767
Function Objects in the Standard Library 767

Arithmetic Function Objects 768
Comparison Function Objects 769
Logical Function Objects 771
Bitwise Function Objects 771
Adapter Function Objects 771

Polymorphic Function Wrappers 775
std::function 775
std::move_only_function 776

Lambda expressions 777
Syntax 777
Lambda Expressions as Parameters 783
Generic Lambda Expressions 783
Lambda Capture Expressions 784
Templated Lambda Expressions 785
Lambda Expressions as Return Type 785
Lambda Expressions in Unevaluated Contexts 786
Default Construction, Copying, and Assigning 786
Recursive Lambda Expressions 787

Invokers 787
summary 788
exercises 788

CHAPTER 20: MASTERING STANDARD LIBRARY ALGORITHMS 791

overview of Algorithms 792
The find and find_if Algorithms 793
The accumulate Algorithm 795

