

PROFESSIONAL

C++

Sixth Edition

Marc Gregoire

Copyright © 2024 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada and the United Kingdom.

ISBNs: 9781394193172 (Paperback), 9781394193196 (ePDF), 9781394193189 (ePub)

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201)
748-6011, fax (201) 748-6008, or online at www.wiley.com/go/permission.

Trademarks: WILEY and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its
affiliates, in the United States and other countries, and may not be used without written permission. All other trademarks are
the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in
this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this
book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book
and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be
created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not
be suitable for your situation. You should consult with a professional where appropriate. Further, readers should be aware
that websites listed in this work may have changed or disappeared between when this work was written and when it is read.
Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not
limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care
Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Control Number: 2023948608

Cover image: © CSA-Printstock/Getty Images
Cover design: Wiley

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

Dedicated to my amazing parents and brother,

whose continuous support and patience help me in

tackling such a big project as writing this book.

ABOUT THE AUTHOR

MARC GREGOIRE is a software architect from Belgium. He graduated from the University of
Leuven, Belgium, with a degree in “Burgerlijk ingenieur in de computer wetenschappen” (equivalent
to a master of science in engineering in computer science). The year after, he received an advanced
master’s degree in artificial intelligence, cum laude, at the same university. After his studies, Marc
started working for a software consultancy company called Ordina Belgium. As a consultant, he
worked for Siemens and Nokia Siemens Networks on critical 2G and 3G software running on Solaris
for telecom operators. This required working in international teams stretching from South America
and the United States to Europe, the Middle East, Africa, and Asia. Now, Marc is a software project
manager and software architect at Nikon Metrology (industry.nikon.com), a division of Nikon
and a leading provider of precision optical instruments, X-ray machines, and metrology solutions for
X-ray, CT, and 3-D geometric inspection.

His main expertise is C++. He has experience with developing C++ programs running 24/7 on Win-
dows and Linux platforms: for example, KNX/EIB home automation software. In addition to C++,
Marc also likes C#.

Since April 2007, he has received the annual Microsoft MVP (Most Valuable Professional) award for
his Visual C++ expertise.

Marc is the founder of the Belgian C++ Users Group (becpp.org), co-author of C++ Standard
Library Quick Reference 1st and 2nd editions (Apress 2016 and 2019), a technical editor for numer-
ous books for several publishers, and a regular speaker at the CppCon C++ conference (cppcon.org).
He maintains a blog at www.nuonsoft.com/blog and is passionate about traveling and gastronomic
restaurants.

ABOUT THE TECHNICAL EDITORS

BRADLEY JONES has programmed in a variety of languages and tools ranging from C to Unity on
platforms ranging from Windows to mobile and including the web as well as a little bit of virtual
reality and embedded devices just for fun. In addition to programming, he has authored books on C,
C++, C#, Windows, the web, and many more technical topics and a few nontechnical topics. Bradley
is the owner of Lots of Software, LLC, and has been recognized in the industry as a community influ-
encer as well as has been recognized as a Microsoft MVP, a CODiE Judge, an international technol-
ogy speaker, a bestselling technical author, and more.

ARTHUR O’DWYER is a professional C++ trainer, software engineer, author, and WG21 committee
member. He authored Mastering the C++17 STL (Packt Publishing, 2017), founded CppCon’s “Back
to Basics” track (2019), implemented libc++’s <memory_resource> header (2022), and is responsible
for the simplified “implicit move” semantics in C++20 and C++23. He and his wife live in New York.

http://industry.nikon.com
http://becpp.org
http://cppcon.org
http://www.nuonsoft.com/blog

ACKNOWLEDGMENTS

I THANK THE JOHN WILEY & SONS editorial and production teams for their support. A special thank-
you to Jim Minatel, executive editor at Wiley, for giving me a chance to write this sixth edition; Pete
Gaughan, senior managing editor; Ashirvad Moses Thyagarajan, managing editor; Kathryn Hogan,
PhD, project manager; Archana Pragash, content refinement specialist; and Kim Wimpsett, copyeditor.

A special thank you to technical editors Bradley Jones and Arthur O’Dwyer for checking the technical
accuracy of the book. Their feedback and numerous contributions have strengthened this book and
are greatly appreciated.

Of course, the support and patience of my parents and my brother were very important in finishing
this book. I would also like to express my sincere gratitude to my employer, Nikon Metrology, for
supporting me during this project.

Finally, I thank you, the reader, for supporting me over all these years and across numerous editions
with this approach to professional C++ software development.

—Marc Gregoire

CONTENTS

INTRODUCTION	 xli

PART I: INTRODUCTION TO PROFESSIONAL C++

CHAPTER 1: A CRASH COURSE IN C++ AND THE STANDARD LIBRARY	3

C++ Crash Course	 4
The Obligatory “Hello, World” Program	 4

Comments	 5
Importing Modules	 5
How the Compiler Processes Your Source Code	 6
Preprocessor Directives	 6
The main() Function	 7
Printing Text	 7
I/O Streams	 7
Returning from a Function	 9

Namespaces	 9
Nested Namespace	 11
Namespace Alias	 11

Literals	 11
Variables	 12

Numerical Limits	 15
Zero Initialization	 15
Casting	 16
Floating-Point Numbers	 16

Operators	 18
Enumerations	 21

Old-Style Enumerations	 22
Structs	 23
Conditional Statements	 24

if/else Statements	 24
switch Statements	 25

The Conditional Operator	 27
Logical Evaluation Operators	 27
Three-Way Comparisons	 29
Functions	 30

Contents

Function Return Type Deduction	 31
Current Function’s Name	 32
Function Overloading	 32

Attributes	 32
[[nodiscard]]	 33
[[maybe_unused]]	 33
[[noreturn]]	 34
[[deprecated]]	 34
[[likely]] and [[unlikely]]	 35
[[assume]]	 35

C-Style Arrays	 36
std::array	 37
std::vector	 38
std::pair	 39
std::optional	 40
Structured Bindings	 41
Loops	 41

The while Loop	 41
The do/while Loop	 42
The for Loop	 42
The Range-Based for Loop	 42

Initializer Lists	 43
Strings in C++	 43
C++ as an Object-Oriented Language	 44

Defining Classes	 44
Using Classes	 47

Scope Resolution	 47
Uniform Initialization	 48

Designated Initializers	 51
Pointers and Dynamic Memory	 52

The Stack and the Free Store	 52
Working with Pointers	 53
Dynamically Allocated Arrays	 54
Null Pointer Constant	 55

The Use of const	 56
const as a Qualifier for a Type	 56
const Member Functions	 58

References	 59
Reference Variables	 59
Reference Data Members	 62
Reference Parameters	 62

viii

ix

Contents

Reference Return Values	 65
Deciding Between References and Pointers	 65

const_cast()	 69
Exceptions	 70
Type Aliases	 71
typedefs	 72
Type Inference	 72

The auto Keyword	 72
The decltype Keyword	 75

The Standard Library	 75
Your First Bigger C++ Program	 76

An Employee Records System	 76
The Employee Class	 76

Employee.cppm	 76
Employee.cpp	 78
EmployeeTest.cpp	 79

The Database Class	 80
Database.cppm	 80
Database.cpp	 81
DatabaseTest.cpp	 82

The User Interface	 82
Evaluating the Program	 85

Summary	 85
Exercises	 85

CHAPTER 2: WORKING WITH STRINGS AND STRING VIEWS	 87

Dynamic Strings	 88
C-Style Strings	 88
String Literals	 90

Raw String Literals	 90
The C++ std::string Class	 92

What Is Wrong with C-Style Strings?	 92
Using the std::string Class	 92
std::string Literals	 95
CTAD with std::vector and Strings	 96

Numeric Conversions	 96
High-Level Numeric Conversions	 96
Low-Level Numeric Conversions	 98

The std::string_view Class	 100
std::string_view and Temporary Strings	 102
std::string_view Literals	 102

x

Contents

Nonstandard Strings	 103
Formatting and Printing Strings	 103

Format Strings	 104
Argument Indices	 105
Printing to Different Destinations	 106
Compile-Time Verification of Format Strings	 106

Non-Compile-Time Constant Format Strings	 106
Handling Errors in Non-Compile-Time Constant Format Strings	 107

Format Specifiers	 107
width	 108
[fill]align	 108
sign	 109
#	 109
type	 109
precision	 110
0	 111
L	 111

Formatting Escaped Characters and Strings	 111
Formatting Ranges	 112
Support for Custom Types	 114

Summary	 117
Exercises	 117

CHAPTER 3: CODING WITH STYLE	 119

The Importance of Looking Good	 119
Thinking Ahead	 120
Elements of Good Style	 120

Documenting Your Code	 120
Reasons to Write Comments	 120

Commenting to Explain Usage	 120
Commenting to Explain Complicated Code	 122
Commenting to Convey Meta-information	 124
Copyright Comment	 125

Commenting Styles	 125
Commenting Every Line	 125
Prefix Comments	 126
Fixed-Format Comments	 127
Ad Hoc Comments	 129
Self-Documenting Code	 129

Decomposition	 129
Decomposition through Refactoring	 130

xi

Contents

Decomposition by Design	 131
Decomposition in This Book	 131

Naming	 132
Choosing a Good Name	 132
Naming Conventions	 133

Counters	 133
Prefixes	 133
Hungarian Notation	 134
Getters and Setters	 134
Capitalization	 134
Namespaced Constants	 134

Using Language Features with Style	 135
Use Constants	 135
Use References Instead of Pointers	 136
Use Custom Exceptions	 136

Formatting	 137
The Curly Brace Alignment Debate	 137
Coming to Blows over Spaces and Parentheses	 138
Spaces, Tabs, and Line Breaks	 139

Stylistic Challenges	 139
Summary	 140
Exercises	 140

PART II: PROFESSIONAL C++ SOFTWARE DESIGN

CHAPTER 4: DESIGNING PROFESSIONAL C++ PROGRAMS	 145

What is Programming Design?	 146
The Importance of Programming Design	 147
Designing For C++	 149
Two Rules for Your Own C++ Designs	 150

Abstraction	 150
Benefiting from Abstraction	 150
Incorporating Abstraction in Your Design	 151

Reuse	 152
Writing Reusable Code	 153
Reusing Designs	 153

Reusing Existing Code	 154
A Note on Terminology	 155
Deciding Whether to Reuse Code or Write It Yourself	 156

Advantages to Reusing Code	 156

xii

Contents

Disadvantages to Reusing Code	 157
Putting It Together to Make a Decision	 158

Guidelines for Choosing a Library to Reuse	 158
Understand the Capabilities and Limitations	 158
Understand the Learning Cost	 159
Understand the Performance	 159
Understand Platform Limitations	 162
Understand Licensing	 162
Understand Support and Know Where to Find Help	 162
Prototype	 163
Open-Source Libraries	 163
The C++ Standard Library	 165

Designing a Chess Program	 166
Requirements	 166
Design Steps	 167

Divide the Program into Subsystems	 167
Choose Threading Models	 169
Specify Class Hierarchies for Each Subsystem	 170
Specify Classes, Data Structures, Algorithms, and Patterns
for Each Subsystem	 170
Specify Error Handling for Each Subsystem	 173

Summary	 174
Exercises	 175

CHAPTER 5: DESIGNING WITH CLASSES	 177

Am I Thinking Procedurally?	 178
The Object-Oriented Philosophy	 178

Classes	 178
Components	 179
Properties	 179
Behaviors	 180
Bringing It All Together	 180

Living In a World of Classes	 181
Over-Classification	 182
Overly General Classes	 182

Class Relationships	 183
The Has-a Relationship	 183
The Is-a Relationship (Inheritance)	 184

Inheritance Techniques	 185
Polymorphism	 186

The Fine Line Between Has-a and Is-a	 186

xiii

Contents

The Not-a Relationship	 190
Hierarchies	 191
Multiple Inheritance	 192
Mixin Classes	 193

Summary	 194
Exercises	 194

CHAPTER 6: DESIGNING FOR REUSE	 197

The Reuse Philosophy	 198
How to Design Reusable Code	 198

Use Abstraction	 199
Structure Your Code for Optimal Reuse	 200

Avoid Combining Unrelated or Logically Separate Concepts	 201
Use Templates for Generic Data Structures and Algorithms	 203
Provide Appropriate Checks and Safeguards	 205
Design for Extensibility	 206

Design Usable Interfaces	 208
Consider the Audience	 208
Consider the Purpose	 209
Design Interfaces That Are Easy to Use	 210
Design General-Purpose Interfaces	 214
Reconciling Generality and Ease of Use	 215

Designing a Successful Abstraction	 216
The SOLID Principles	 216

Summary	 217
Exercises	 217

PART III: C++ CODING THE PROFESSIONAL WAY

CHAPTER 7: MEMORY MANAGEMENT	 221

Working with Dynamic Memory	 222
How to Picture Memory	 222
Allocation and Deallocation	 223

Using new and delete	 223
What About My Good Friend malloc?	 224
When Memory Allocation Fails	 225

Arrays	 225
Arrays of Primitive Types	 226
Arrays of Objects	 228

xiv

Contents

Deleting Arrays	 228
Multidimensional Arrays	 229

Working with Pointers	 233
A Mental Model for Pointers	 233
Casting with Pointers	 234

Array-Pointer Duality	 234
Arrays Decay to Pointers	 234
Not All Pointers Are Arrays!	 236

Low-Level Memory Operations	 236
Pointer Arithmetic	 236
Custom Memory Management	 237
Garbage Collection	 238
Object Pools	 238

Common Memory Pitfalls	 239
Underallocating Data Buffers and Out-of-Bounds Memory Access	 239
Memory Leaks	 240

Finding and Fixing Memory Leaks in Windows with Visual C++	 241
Finding and Fixing Memory Leaks in Linux with Valgrind	 243

Double-Deletion and Invalid Pointers	 243
Smart Pointers	 244

unique_ptr	 245
Creating unique_ptrs	 245
Using unique_ptrs	 247
unique_ptr and C-Style Arrays	 248
Custom Deleters	 248

shared_ptr	 249
Creating and Using shared_ptrs	 249
The Need for Reference Counting	 250
Casting a shared_ptr	 251
Aliasing	 252

weak_ptr	 252
Passing to Functions	 253
Returning from Functions	 253
enable_shared_from_this	 254
Interoperability of Smart Pointers with C-Style Functions	 255
The Old and Removed auto_ptr	 255

Summary	 256
Exercises	 256

xv

Contents

CHAPTER 8: GAINING PROFICIENCY WITH CLASSES AND OBJECTS	259

Introducing the Spreadsheet Example	 260
Writing Classes	 260

Class Definitions	 260
Class Members	 261
Access Control	 261
Order of Declarations	 262
In-Class Member Initializers	 263

Defining Member Functions	 263
Accessing Data Members	 264
Calling Other Member Functions	 264

Using Objects	 265
Objects on the Stack	 266
Objects on the Free Store	 266

The this Pointer	 267
Explicit Object Parameter	 268

Understanding Object Life Cycles	 269
Object Creation	 269

Writing Constructors	 270
Using Constructors	 270
Providing Multiple Constructors	 271
Default Constructors	 272
Constructor Initializers aka Ctor-Initializers	 276
Copy Constructors	 279
Initializer-List Constructors	 281
Delegating Constructors	 283
Converting Constructors and Explicit Constructors	 284
Summary of Compiler-Generated Constructors	 285

Object Destruction	 286
Assigning to Objects	 288

Declaring an Assignment Operator	 288
Defining an Assignment Operator	 289
Explicitly Defaulted and Deleted Assignment Operator	 290

Compiler-Generated Copy Constructor and Copy Assignment Operator	 291
Distinguishing Copying from Assignment	 291

Objects as Return Values	 291
Copy Constructors and Object Members	 292

Summary	 293
Exercises	 293

xvi

Contents

CHAPTER 9: MASTERING CLASSES AND OBJECTS	 295

Friends	 296
Dynamic Memory Allocation in Objects	 297

The Spreadsheet Class	 297
Freeing Memory with Destructors	 300
Handling Copying and Assignment	 301

The Spreadsheet Copy Constructor	 303
The Spreadsheet Assignment Operator	 303
Disallowing Assignment and Pass-by-Value	 306

Handling Moving with Move Semantics	 307
Rvalue References	 307
Decay Copy	 310
Implementing Move Semantics	 310
Testing the Spreadsheet Move Operations	 314
Implementing a Swap Function with Move Semantics	 316
Using std::move() in Return Statements	 317
Optimal Way to Pass Arguments to Functions	 318

Rule of Zero	 319
More About Member Functions	 320

static Member Functions	 320
const Member Functions	 321

mutable Data Members	 322
Member Function Overloading	 323

Overloading Based on const	 323
Explicitly Deleting Overloads	 325
Ref-Qualified Member Functions	 325

Inline Member Functions	 327
Default Arguments	 329

Constexpr and Consteval	 330
The constexpr Keyword	 330
The consteval Keyword	 331
constexpr and consteval Classes	 332

Different Kinds of Data Members	 333
static Data Members	 333

Inline Variables	 334
Accessing static Data Members from within Class
Member Functions	 334

constexpr static Data Members	 335
Accessing static Data Members from Outside
Class Member Functions	 336

Reference Data Members	 336

xvii

Contents

Nested Classes	 338
Enumerations Inside Classes	 339
Operator Overloading	 339

Example: Implementing Addition for SpreadsheetCells	 340
First Attempt: The add Member Function	 340
Second Attempt: Overloaded operator+ as a Member Function	 341
Third Attempt: Global operator+	 342

Overloading Arithmetic Operators	 343
Overloading the Arithmetic Shorthand Operators	 344

Overloading Comparison Operators	 345
Overloading Comparison Operators Before C++20	 345
Overloading Comparison Operators Since C++20	 347
Compiler-Generated Comparison Operators	 348

Building Stable Interfaces	 350
Using Interface and Implementation Classes	 350

Summary	 354
Exercises	 354

CHAPTER 10: DISCOVERING INHERITANCE TECHNIQUES	 357

Building Classes with Inheritance	 358
Extending Classes	 358

A Client’s View of Inheritance	 359
A Derived Class’s View of Inheritance	 360
Preventing Inheritance	 362

Overriding Member Functions	 362
The virtual Keyword	 362
Syntax for Overriding a Member Function	 363
A Client’s View of Overridden Member Functions	 363
The override Keyword	 365
The Truth about virtual	 366
Preventing Overriding	 370

Inheritance For Reuse	 370
The WeatherPrediction Class	 370
Adding Functionality in a Derived Class	 371
Replacing Functionality in a Derived Class	 373

Respect Your Parents	 373
Parent Constructors	 373
Parent Destructors	 375
virtual Member Function Calls within Constructors and Destructor	 376
Referring to Parent Names	 377
Casting Up and Down	 379

xviii

Contents

Inheritance for Polymorphism	 380
Return of the Spreadsheet	 380
Designing the Polymorphic Spreadsheet Cell	 381
The SpreadsheetCell Base Class	 382

A First Attempt	 382
Pure virtual Member Functions and Abstract Base Classes	 382

The Individual Derived Classes	 383
StringSpreadsheetCell Class Definition	 383
StringSpreadsheetCell Implementation	 384
DoubleSpreadsheetCell Class Definition and Implementation	 384

Leveraging Polymorphism	 385
Future Considerations	 386
Providing Implementations for Pure virtual Member Functions	 388

Multiple Inheritance	 388
Inheriting from Multiple Classes	 389
Naming Collisions and Ambiguous Base Classes	 390

Name Ambiguity	 390
Ambiguous Base Classes	 391
Uses for Multiple Inheritance	 392

Interesting and Obscure Inheritance Issues	 392
Changing the Overridden Member Function’s Return Type	 393
Adding Overloads of virtual Base Class Member
Functions to Derived Classes	 396
Inherited Constructors	 396

Hiding of Inherited Constructors	 397
Inherited Constructors and Multiple Inheritance	 398
Initialization of Data Members	 399

Special Cases in Overriding Member Functions	 400
The Base Class Member Function Is static	 400
The Base Class Member Function Is Overloaded	 401
The Base Class Member Function Is private	 403
The Base Class Member Function Has Default Arguments	 404
The Base Class Member Function Has a Different
Access Specification	 405

Copy Constructors and Assignment Operators in Derived Classes	 407
Run-Time Type Facilities	 408
Non-public Inheritance	 410
Virtual Base Classes	 411

Casts	 414
static_cast()	 414

xix

Contents

reinterpret_cast()	 415
dynamic_cast()	 416
std::bit_cast()	 417
Summary of Casts	 418

Summary	 418
Exercises	 419

CHAPTER 11: MODULES, HEADER FILES, AND
MISCELLANEOUS TOPICS	 421

Modules	 422
Unmodularizing Code	 423
Standard Named Modules	 423
Module Interface Files	 423
Module Implementation Files	 425
Splitting Interface from Implementation	 426
Visibility vs. Reachability	 427
Submodules	 428
Module Partitions	 429

Implementation Partitions	 431
Private Module Fragment	 432
Header Units	 433
Importable Standard Library Headers	 434

Preprocessor Directives	 436
Preprocessor Macros	 437

Linkage	 438
Internal Linkage	 439
The extern Keyword	 440

Header Files	 441
One Definition Rule (ODR)	 441
Duplicate Definitions	 442
Circular Dependencies	 442
Querying Existence of Headers	 443
Module Import Declarations	 443

Feature-Test Macros for Core Language Features	 444
The Static Keyword	 445

static Data Members and Member Functions	 445
static Variables in Functions	 445
Order of Initialization of Nonlocal Variables	 446
Order of Destruction of Nonlocal Variables	 446

xx

Contents

C-Style Variable-Length Argument Lists	 447
Accessing the Arguments	 448
Why You Shouldn’t Use C-Style Variable-Length Argument Lists	 448

Summary	 449
Exercises	 449

CHAPTER 12: WRITING GENERIC CODE WITH TEMPLATES	 451

Overview of Templates	 452
Class Templates	 453

Writing a Class Template	 453
Coding Without Templates	 453
A Template Grid Class	 456
Using the Grid Template	 460

How the Compiler Processes Templates	 461
Selective/Implicit Instantiation	 462
Explicit Instantiation	 462
Template Requirements on Types	 462

Distributing Template Code Between Files	 463
Member Function Definitions in Same File as Class
Template Definition	 463
Member Function Definitions in Separate File	 463

Template Parameters	 464
Non-type Template Parameters	 464
Default Values for Template Parameters	 466
Class Template Argument Deduction	 467

Member Function Templates	 468
Member Function Templates with Non-type Template
Parameters	 471
Using Member Function Templates with Explicit
Object Parameters to Avoid Code Duplication	 473

Class Template Specialization	 474
Deriving from Class Templates	 477
Inheritance vs. Specialization	 478
Alias Templates	 479

Function Templates	 479
Function Overloads vs. Function Template	 481
Function Template Overloading	 481
Function Templates as Friends of Class Templates	 482
More on Template Type Parameter Deduction	 484
Return Type of Function Templates	 484
Abbreviated Function Template Syntax	 486

xxi

Contents

Variable Templates	 487
Concepts	 487

Syntax	 488
Constraints Expression	 488

Requires Expressions	 489
Combining Concept Expressions	 491

Predefined Standard Concepts	 491
Type-Constrained auto	 492
Type Constraints and Function Templates	 493

Constraint Subsumption	 495
Type Constraints and Class Templates	 495
Type Constraints and Class Member Functions	 496
Constraint-Based Class Template Specialization and
Function Template Overloading	 496
Best Practices	 497

Summary	 498
Exercises	 498

CHAPTER 13: DEMYSTIFYING C++ I/O	 501

Using Streams	 502
What Is a Stream, Anyway?	 502
Stream Sources and Destinations	 504
Output with Streams	 504

Output Basics	 504
Member Functions of Output Streams	 505
Handling Output Errors	 506
Output Manipulators	 508

Input with Streams	 510
Input Basics	 510
Handling Input Errors	 511
Input Member Functions	 512
Input Manipulators	 516

Input and Output with Objects	 517
Custom Manipulators	 519

String Streams	 519
Span-Based Streams	 521
File Streams	 522

Text Mode vs. Binary Mode	 523
Jumping Around with seek() and tell()	 523
Linking Streams Together	 526
Read an Entire File	 526

xxii

Contents

Bidirectional I/O	 527
Filesystem Support Library	 528

Path	 528
Directory Entry	 530
Helper Functions	 530
Directory Iteration	 530

Summary	 531
Exercises	 532

CHAPTER 14: HANDLING ERRORS	 533

Errors and Exceptions	 534
What Are Exceptions, Anyway?	 534
Why Exceptions in C++ Are a Good Thing	 535
Recommendation	 536

Exception Mechanics	 536
Throwing and Catching Exceptions	 537
Exception Types	 540
Catching Exception Objects as Reference-to-const	 541
Throwing and Catching Multiple Exceptions	 541

Matching and const	 543
Matching Any Exception	 543

Uncaught Exceptions	 544
noexcept Specifier	 546
noexcept(expression) Specifier	 546
noexcept(expression) Operator	 546
Throw Lists	 547

Exceptions and Polymorphism	 547
The Standard Exception Hierarchy	 547
Catching Exceptions in a Class Hierarchy	 549
Writing Your Own Exception Classes	 550
Nested Exceptions	 553

Rethrowing Exceptions	 555
Stack Unwinding and Cleanup	 556

Use Smart Pointers	 558
Catch, Cleanup, and Rethrow	 558

Source Location	 559
Source Location for Logging	 560
Automatically Embed a Source Location in Custom Exceptions	 560

Stack Trace	 561

xxiii

Contents

The Stack Trace Library	 561
Automatically Embed a Stack Trace in Custom Exceptions	 563

Common Error-Handling Issues	 564
Memory Allocation Errors	 565

Non-throwing new	 565
Customizing Memory Allocation Failure Behavior	 566

Errors in Constructors	 567
Function-Try-Blocks for Constructors	 569
Errors in Destructors	 572

Exception Safety Guarantees	 573
Summary	 573
Exercises	 573

CHAPTER 15: OVERLOADING C++ OPERATORS	 577

Overview of Operator Overloading	 578
Why Overload Operators?	 578
Limitations to Operator Overloading	 578
Choices in Operator Overloading	 579

Member Function or Global Function	 579
Choosing Argument Types	 580
Choosing Return Types	 581
Choosing Behavior	 581

Operators You Shouldn’t Overload	 581
Summary of Overloadable Operators	 582
Rvalue References	 586
Precedence and Associativity	 587
Relational Operators	 588
Alternative Notation	 589

Overloading The Arithmetic Operators	 589
Overloading Unary Minus and Unary Plus	 589
Overloading Increment and Decrement	 590

Overloading the Bitwise and Binary Logical Operators	 591
Overloading the Insertion and Extraction Operators	 591
Overloading the Subscripting Operator	 593

Providing Read-Only Access with operator[]	 596
Multidimensional Subscripting Operator	 598
Non-integral Array Indices	 599
static Subscripting Operator	 599

Overloading the Function Call Operator	 600
static Function Call Operator	 601

xxiv

Contents

Overloading the Dereferencing Operators	 602
Implementing operator*	 603
Implementing operator–>	 604
What in the World Are operator.* and operator–>*?	 604

Writing Conversion Operators	 605
Operator auto	 606
Solving Ambiguity Problems with Explicit Conversion Operators	 606
Conversions for Boolean Expressions	 607

Overloading the Memory Allocation and Deallocation Operators	 609
How new and delete Really Work	 609

The New-Expression and operator new	 609
The Delete-Expression and operator delete	 610

Overloading operator new and operator delete	 610
Explicitly Deleting or Defaulting operator new and operator delete	 613
Overloading operator new and operator delete with Extra Parameters	 613
Overloading operator delete with Size of Memory as Parameter	 614

Overloading User-Defined Literal Operators	 615
Standard Library Literals	 615
User-Defined Literals	 616

Cooked-Mode Literal Operator	 616
Raw-Mode Literal Operator	 617

Summary	 618
Exercises	 618

CHAPTER 16: OVERVIEW OF THE C++ STANDARD LIBRARY	 619

Coding Principles	 620
Use of Templates	 621
Use of Operator Overloading	 621

Overview of the C++ Standard Library	 621
Strings	 621
Regular Expressions	 622
I/O Streams	 622
Smart Pointers	 622
Exceptions	 623
Standard Integer Types	 623
Numerics Library	 623
Integer Comparisons	 624
Bit Manipulation	 624
Time and Date Utilities	 625
Random Numbers	 625

xxv

Contents

Initializer Lists	 626
Pair and Tuple	 626
Vocabulary Types	 626
Function Objects	 627
Filesystem	 627
Multithreading	 627
Type Traits	 627
Standard Library Feature-Test Macros	 627
<version>	 629
Source Location	 629
Stack Trace	 629
Containers	 629

Sequential Containers	 630
Sequential Views	 632
Container Adapters	 632
Ordered Associative Containers	 634
Unordered Associative Containers/Hash Tables	 635
Flat Associative Container Adapters	 635
bitset	 636
Summary of Standard Library Containers	 636

Algorithms	 639
Non-modifying Sequence Algorithms	 640
Modifying Sequence Algorithms	 642
Operational Algorithms	 643
Swap Algorithms	 644
Partitioning Algorithms	 644
Sorting Algorithms	 645
Binary Search Algorithms	 645
Set Algorithms on Sorted Sequences	 645
Other Algorithms on Sorted Sequences	 646
Heap Algorithms	 646
Minimum/Maximum Algorithms	 646
Numerical Processing Algorithms	 647
Permutation Algorithms	 648
Choosing an Algorithm	 648

Ranges Library	 649
What’s Missing from the Standard Library	 650

Summary	 650
Exercises	 650

xxvi

Contents

CHAPTER 17: UNDERSTANDING ITERATORS AND
THE RANGES LIBRARY	 653

Iterators	 654
Getting Iterators for Containers	 656
Iterator Traits	 658
Examples	 659
Function Dispatching Using Iterator Traits	 660

Stream Iterators	 661
Output Stream Iterator: ostream_iterator	 662
Input Stream Iterator: istream_iterator	 663
Input Stream Iterator: istreambuf_iterator	 663

Iterator Adapters	 663
Insert Iterators	 664
Reverse Iterators	 665
Move Iterators	 666

Ranges	 668
Constrained Algorithms	 669

Projection	 670
Views	 671

Modifying Elements Through a View	 677
Mapping Elements	 677

Range Factories	 678
Input Streams as Views	 679

Converting a Range into a Container	 680
Summary	 681
Exercises	 681

CHAPTER 18: STANDARD LIBRARY CONTAINERS	 683

Containers Overview	 684
Requirements on Elements	 685
Exceptions and Error Checking	 687

Sequential Containers	 687
vector	 687

vector Overview	 687
vector Details	 690
Move Semantics	 703
vector Example: A Round-Robin Class	 704

The vector<bool> Specialization	 709
deque	 709
list	 710

xxvii

Contents

Accessing Elements	 710
Iterators	 711
Adding and Removing Elements	 711
list Size	 711
Special list Operations	 711
list Example: Determining Enrollment	 713

forward_list	 714
array	 717

Sequential Views	 718
span	 718
mdspan	 720

Container Adapters	 722
queue	 722

queue Operations	 722
queue Example: A Network Packet Buffer	 723

priority_queue	 725
priority_queue Operations	 725
priority_queue Example: An Error Correlator	 726

stack	 727
stack Operations	 728
stack Example: Revised Error Correlator	 728

Associative Containers	 728
Ordered Associative Containers	 728

The pair Utility Class	 729
map	 729
multimap	 738
set	 742
multiset	 744

Unordered Associative Containers Or Hash Tables	 744
Hash Functions	 744
unordered_map	 746
unordered_multimap	 750
unordered_set/unordered_multiset	 751

Flat Set and Flat Map Associative Container Adapters	 751
Performance of Associative Containers	 752

Other Containers	 752
Standard C-Style Arrays	 752
Strings	 753
Streams	 754
bitset	 754

bitset Basics	 755

xxviii

Contents

Bitwise Operators	 755
bitset Example: Representing Cable Channels	 756

Summary	 759
Exercises	 759

CHAPTER 19: FUNCTION POINTERS, FUNCTION
OBJECTS, AND LAMBDA EXPRESSIONS	 761

Function Pointers	 762
findMatches() Using Function Pointers	 762
findMatches() As a Function Template	 764
Windows DLLs and Function Pointers	 765

Pointers to Member Functions (And Data Members)	 765
Function Objects	 767

Writing Your First Function Object	 767
Function Objects in the Standard Library	 767

Arithmetic Function Objects	 768
Comparison Function Objects	 769
Logical Function Objects	 771
Bitwise Function Objects	 771
Adapter Function Objects	 771

Polymorphic Function Wrappers	 775
std::function	 775
std::move_only_function	 776

Lambda Expressions	 777
Syntax	 777
Lambda Expressions as Parameters	 783
Generic Lambda Expressions	 783
Lambda Capture Expressions	 784
Templated Lambda Expressions	 785
Lambda Expressions as Return Type	 785
Lambda Expressions in Unevaluated Contexts	 786
Default Construction, Copying, and Assigning	 786
Recursive Lambda Expressions	 787

Invokers	 787
Summary	 788
Exercises	 788

CHAPTER 20: MASTERING STANDARD LIBRARY ALGORITHMS	 791

Overview of Algorithms	 792
The find and find_if Algorithms	 793
The accumulate Algorithm	 795

