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Chapter 1 
Introduction and Preview 

1.1 Motivation and Background 

Many practical engineering systems have the phenomenon of dynamic coexistence 
of multi-temporal scales [ 38, 39, 60]. For example, in the aircraft system, there are 
position coordinate variables that change relatively slowly and speed and direction 
angle variables that change quickly [ 67]; in the power systems, electromagnetic 
transient changes are extremely rapid, while mechanical motion dynamic changes 
are relatively slow [116]; in production and application processes such as chemical 
industry and nuclear reactors, there are extremely fast-changing chemical reactions 
or atomic fission, and there are also relatively slow-changing machine movements. 
Generally, the phenomenon of the coexistence of multiple-time-scales dynamic exists 
in almost all large-scale engineering systems [ 47]. Since this type of system has 
dynamics at different time scales at the same time, the analysis and control problems 
of this type of system become complicated. From the perspective of system modeling, 
such systems with multi-time-scale dynamics can be well described by singularly 
perturbed systems (SPSs). The main feature of SPSs is that the “fast” state and the 
“slow” state coexist, and the degree of separation of the them is described by a small 
parameter (called singular perturbation parameter (SPP)). In past decades, the theory 
of SPSs has attracted the attention of many scholars, and some meaningful research 
results have been published [ 4, 6– 11, 32, 34, 37, 40– 42, 53– 59, 62, 68, 77, 79, 80, 
94– 96, 119, 121, 122, 128]. 

On the other hand, system structure and parameters may encounter sudden changes 
because of sudden external noise disturbances, failure of connections of components 
within the system, and failure of connections between subsystems, which may dete-
riorates system performance and even cause the system to become unstable [ 13, 
14]. To describe this phenomenon, the sudden change characteristics of the system 
are usually described by stochastic processes. At present, the stochastic processes 
commonly used by scholars include Bernoulli process [ 25, 28, 113, 129, 130] and 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024 
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2 1 Introduction and Preview

Markov process [ 13, 14, 76, 126]. Compared with the Bernoulli process, which can 
only simulate the transition of two working modes, the Markov process can describe 
the random switching of the system between multiple modes [ 23, 24, 30, 36, 114, 
127]. 

It is worth pointing out that there are certain limitations in using the Markov 
process to model the stochastic switching phenomenon of actual system struc-
ture/parameters. On the one hand, the Markov process requires that the sojourn-time 
of the stochastic switching phenomenon must follow a specific distribution, that is, 
the exponential distribution for continuous-time domain or the Geometric distribu-
tion for discrete-time domain [ 23, 24, 30, 36, 114, 127]. This limitation makes it 
difficult to apply the current research results to the analysis of some actual systems. 
Unlike the Markov process, semi-Markov process has no specific constraints on the 
sojourn-time [ 33, 35, 43, 66, 85, 98, 112, 123–125, 131]. Most of the current results 
on semi-Markov jump systems presume that the transition probability information 
of systems can be accurately obtained [ 33, 98, 112, 123–125]. However, in some 
complex engineering scenarios, it is usually hard to directly acquire all system transi-
tion probability information [ 63, 64, 84, 85, 99]. Although there are some results to 
deal with partially unknown probability information problem of semi-Markov jump 
systems [ 63, 64, 84, 85, 99], they cannot be directly applied to semi-Markov jump 
singularly perturbed systems (SMJSPSs). 

On the other hand, how to deal with the phenomenon of limited acquisition of 
system mode information is one of the key problems in studying Markov jump 
systems [ 90]. Generally, there are three approaches to deal with the limited acquisition 
of system mode information problem: mode-independent design approach [ 12, 26, 
65, 82, 86, 100, 111], clustering approach [ 16, 27], and the filtering technique 
[ 29, 91– 93]. Recently, a hidden Markov model has been proposed to deal with the 
phenomenon of limited acquisition of modal information in Markov jump systems 
[ 19, 90]. Based on this, how to extend its ideas to the problem of limited acquisition 
of jump information in singularly perturbed jump systems is one of the hot and 
difficult issues in the research of singularly perturbed systems (SPSs). 

Base on the above discussion, this book gives various singularly perturbed jump 
system models in continuous-time domain or discrete-time domain, such as Markov 
jump singularly perturbed systems (MJSPSs), semi-Markov jump singularly per-
turbed systems (SMJSPSs), hidden Markov jump singularly perturbed systems 
(HMJSPSs), and singularly perturbed jump complex network model. Some control 
synthesis problems of them have been considered for. Also, some partial probabil-
ity information cases are taken into account when addressed those control synthesis 
problems.
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1.2 Mathematical Descriptions and Basic Concepts 

1.2.1 Continuous-Time Singularly Perturbed Jump Systems 

In mathematical, there are some type singularly perturbed jump linear systems 

.

{
ẋs (t) = A11

σ(t)xs (t) + A12
σ(t)x f (t) + B1

σ(t)u (t)

εẋ f (t) = A21
σ(t)xs (t) + A22

σ(t)x f (t) + B2
σ(t)u (t)

(1.1) 

where .xs (t) ∈ R
ns and .x f (t) ∈ R

n f are the slow state and fast state, respectively; 
. ε is the SPP; .u (t) ∈ R

nu means the control input; .{σ (t) , t ≥ 0} is the jump pro-
cess of systems, which takes values in a finite set .S = {1, 2, . . . , s}; .A11

σ(t) ∈ R
ns×ns , 

.A12
σ(t) ∈ R

ns×n f , .A21
σ(t) ∈ R

n f ×ns , .A22
σ(t) ∈ R

n f ×n f , .B1
σ(t) ∈ R

ns×nu and . B2
σ(t) ∈ R

n f ×nu

are matrices. 
When the the jump process is subject to a Markov chain, the system (1.1) is called 

as MJSPSs, and when the the jump process is subject to a semi-Markov chain, the 
system can be called as SMJSPSs. 

Generally, for continuous-time case, .{σ (t) ,t ≥ 0} is a Markov process and the 
mode transition rates of it can be described as follows 

. Pr {σ (t + Δ) = j | σ (t) = i} =
{

λi jΔ + o (Δ) if i �= j

1 + λi iΔ + o (Δ) if i = j
(1.2) 

where 

. Δ > 0, lim
Δ→0

(
o (Δ)

Δ

)
= 0

and .λi j ≥ 0 (.∀i, j ∈ S, .i �= j) means the transition rate from .σ (t) = i at time . t to 
.σ (t + Δ) = j at time .t + Δ, and .λi i = −∑

j∈S\{ j=i} λi j for all .i ∈ S. 
For continuous-time case,.{σ (t) , t ≥ 0} is a homogeneous semi-Markov process 

and the mode transition rates of it can be described as follows 

. Pr {σ (t + Δ) = j | σ (t) = i} =
{

λi j (Δ)Δ + o (Δ) if i �= j

1 + λi i (Δ)Δ + o (Δ) if i = j
(1.3) 

where 

. Δ > 0, lim
Δ→0

(
o (Δ)

Δ

)
= 0

and.λi j (Δ) ≥ 0 (.∀i, j ∈ S, .i �= j) means the transition rate from.σ (t) = i at time. t
to .σ (t + Δ) = j at time .t + Δ, and .λi i (Δ) = −∑

j∈S\{ j=i} λi j (Δ) for all .i ∈ S.
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1.2.2 Discrete-Time Singularly Perturbed Jump Systems 

In mathematical, there are some type singularly perturbed jump linear systems 

.

{
xs (k + 1) = A11

σ(k)xs (k) + A12
σ(k)x f (k) + B1

σ(k)u (k)

x f (k + 1) = εA21
σ(k)xs (k) + εA22

σ(k)x f (k) + εB2
σ(k)u (k)

(1.4) 

.

{
xs (k + 1) = A11

σ(k)xs (k) + εA12
σ(k)x f (k) + B1

σ(k)u (k)

x f (k + 1) = A21
σ(k)xs (k) + εA22

σ(k)x f (k) + B2
σ(k)u (k)

(1.5) 

.

⎧⎨
⎩
xs (k + 1) =

(
I + εA11

σ(k)

)
xs (k) + εA12

σ(k)x f (k) + εB1
σ(k)u (k)

x f (k + 1) = A21
σ(k)xs (k) + A22

σ(k)x f (k) + B2
σ(k)u (k)

(1.6) 

where .xs (k) ∈ R
ns and .x f (k) ∈ R

n f are the solw state and fast state, respectively; 
.u (k) ∈ R

nu is the control input; . ε is the SPP; .{σ (k) , k ≥ 0} is the jump pro-
cess of systems, which taks values in a finite set .S = {1, 2, . . . , s}; .A11

σ(t) ∈ R
ns×ns , 

.A12
σ(t) ∈ R

ns×n f , .A21
σ(t) ∈ R

n f ×ns , .A22
σ(t) ∈ R

n f ×n f , .B1
σ(t) ∈ R

ns×nu and . B2
σ(t) ∈ R

n f ×nu

are matrices. When the the jump process is subject to a Markov chain, the system 
can be called as MJSPSs, and when the the jump process is subject to a semi-Markov 
chain, the system can be called as SMJSPSs. 

Generally, for discrete-time case, .{σ (k) , k ≥ 0} is a homogeneous Markov pro-
cess and the mode transition probabilities of it can be described as follows 

. Pr {σ (k + 1) = j | σ (k) = i} = πi j (1.7) 

where 

. πi j ≥ 0,∀i, j ∈ S∑
j∈S

πi j = 1,∀i ∈ S.

The transition probability matrix .Π is defined as .Π �
[
πi j

]
s×s

. 
For discrete-time case, .{σ (k) , k ≥ 0} is a homogeneous semi-Markov process, 

and the mode transition probability of.{σ (k) , k ≥ 0} is generated by a semi-Markov 
kernel (SMK) .Π (τ) �

[
πi j (τ )

]
s×s

, .∀i, j ∈ S with 

. πi j (τ ) � Pr {Rm+1 = j, Tm+1 = τ | Rm = i}
=Pr {Rm+1 = j, Rm = i}

Pr {Rm = i}
Pr {Rm+1 = j, Tm+1 = τ, Rm = i}

Pr {Rm+1 = j, Rm = i}
=ϑi j
i j (τ ) . (1.8)
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where .m denotes the time when system at . mth jump; .Rm is system mode at 
the . mth jump; .Tm+1 denotes the sojourn time between system at . mth jump and 
the .m + 1th jump; .ϑi j � Pr {Rm+1 = j | Rm = i} with .ϑi i = 0 and . 
i j (τ ) � Pr
{Tm+1 = τ | Rm+1 = j, Rm = i}. The cumulative density function (CDF) of sojourn 
time (ST) for mode . i is defined as 

. F (i, τ ) = Pr
{
Tm+1 ≤ τ | η

(
k̄
) = i

} =
τ∑

l=1

∑
j∈S

πi j (l)

with .F (i, 0) = 
i j (0) = 0. 

1.2.3 Lemmas 

Lemma 1.1 ([120]) For a scalar .ε̄ > 0 and symmetric matrices .U1, .U2 with appro-
priate dimensions, if 

.U1 ≥ 0 (1.9) 

.U1 + ε̄U2 > 0 (1.10) 

then 
.U1 + εU2 > 0 (1.11) 

holds for all .ε ∈ (0, ε̄]. 
Lemma 1.2 ([120]) For a scalar .ε̄ > 0 and symmetric matrices .U1, .U2 and .U3 with 
appropriate dimensions, if (1.9), (1.10) and 

.U1 + ε̄U2 + ε̄2U3 > 0 (1.12) 

then 
.U1 + εU2 + ε2U3 > 0 (1.13) 

holds for .∀ε ∈ (0, ε̄]. 
Lemma 1.3 ([ 45]) For a scalar .ε̄ > 0 and symmetric matrices .Ul . (l = 1, 2, . . . , n)

with appropriate dimensions, if (1.9) and 

.U1 +
l−1∑
r=1

ε̄rUr+1 > 0, l = 2, 3, . . . , n (1.14) 

then 
.U1 + εU2 + ε2U3 + · · · + εn−1Un > 0 (1.15) 

holds for .∀ε ∈ (0, ε̄].
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Lemma 1.4 ([ 17]) For a scalar .ε̄ > 0 and matrices .U1, .U2 and .U3 with appropriate 
dimensions, if 

.U1 < 0 (1.16) 

.U3 ≥ 0 (1.17) 

.U1 + ε̄U2 + ε̄2U3 < 0 (1.18) 

then 
.U1 + εU2 + ε2U3 < 0 (1.19) 

holds for .∀ε ∈ (0, ε̄]. 

Remark 1.1 The above four lemmas are useful for obtaining the .ε-independent 
stability analysis conditions and controller design methods for SPSs, and they are 
also significant for constructing .ε-dependent Lyapunov function for SPSs. 

Lemma 1.5 ([ 83]) Considering the parameterized linear matrix inequality 

.

r∑
α=1

r∑
β=1

hα (z) hβ (z)Δαβ < 0. (1.20) 

with .Δαβ=.Δ�
αβ , if  

.Δαα < 0 (1.21) 

.Δαβ + Δβα < 0 (1.22) 

hold for .1 ≤ α < β ≤ r , then (1.20) hold. 

Lemma 1.6 ([ 89]) Considering the parameterized linear matrix inequality (1.20) 
with .Δαβ=.Δ�

αβ , if  
.Δαα < 0 (1.23) 

.
1

s − 1
Δαα + 1

2

(
Δαβ + Δβα

)
< 0 (1.24) 

hold for .1 ≤ α < β ≤ r , then (1.20) hold. 

Remark 1.2 Lemmas 1.5 and 1.6 are available for controller design problem of T-S 
fuzzy systems. Compared with Lemma 1.5, Lemma 1.6 is less conservative without 
introducing additional decision variables. More details can be found in [ 89]. 

Lemma 1.7 ([115]) For given matrices.Ξ1 .Ξ2 and.Ξ3 with appropriate dimensions, 
and .O (k) satisfying .O (k) O� (k) ≤ I , then 

.Ξ1 + Ξ2O (k) Ξ3 + Ξ�
3 O� (k) Ξ�

2 < 0 (1.25)
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holds, if exists a positive scalar .ε > 0 such that 

.Ξ1 + ε−1Ξ2Ξ
�
2 + εΞ�

3 Ξ3 < 0. (1.26) 

Lemma 1.8 ([ 3], Schur Complement) Given matrices .Ξ11 = Ξ�
11, .Ξ12 .Ξ22 = Ξ�

22, 
the following three conditions are equivalent: 

.

[
Ξ11 Ξ12

Ξ�
12 Ξ22

]
< 0 (1.27) 

.Ξ11 < 0, Ξ22 − Ξ�
12Ξ

−1
11 Ξ12 < 0 (1.28) 

.Ξ22 < 0, Ξ11 − Ξ12Ξ
−1
22 Ξ�

12 < 0 (1.29) 

1.3 Literature Review 

For singularly perturbed jump systems, up to now, the research results of the MJSPSs 
are much richer than those of the SMJSPSs and the HMJSPSs. This is mainly because 
that the SMJSPSs and HMJSPSs are more complex and challenging to analyze than 
the Markov jump ones. This section provides a brief review of the results related to 
singularly perturbed jump systems. 

1.3.1 Stability and Stabilization 

MJSPSs possess the properties of both MJSs and SPSs. From the point of view of 
MJSs, the availability of transition probabilities or transition rates information for 
MJSPSs has an impact on their stability analysis. Therefore, when analyzing the 
stability of MJSPSs, scholars mainly consider the two aspects of whether the sys-
tem is accessible or not. Under the consideration that the transition probabilities and 
transition rates information in MJSPSs is completely accessible, the mean-square 
exponential stability criteria based on the method of fast-slow decomposition for the 
stochastic MJSPSs were gave in [ 20, 78]. Under the consideration that the transition 
probabilities are time-varying in MJSPSs, [ 87, 88] gave the stochastic stability cri-
teria for the reduced-order subsystems, respectively, and on the basis of these, the 
stochastic stability conditions for the whole system were gave. Under the consider-
ation that the time-varying transition probabilities in MJSPSs belong to polyspore 
uncertainty, [ 50] investigated the problem of stochastic asymptotic stability analy-
sis of MJSPSs under robust control. Reference [102] studied the stochastic stability 
analysis problem of closed-loop MJSPSs under the cases that the transition probabil-
ity information is fully accessible, the transition probability information is partially 
accessible, and the system mode information is partially observable.
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For SMJSPSs, the.L2 − L∞ stochastic synchronization analysis problem of semi-
Markov jump singularly perturbed complex networks (SPCNs) in continuous-time 
domain was discussed in [ 48]. The stabilization problem for the slow sampling sys-
tems was addressed by employing a slow state feedback strategy in [ 71] and a design 
approach of the slow state feedback stabilization controller was established in [ 71]. 
By utilizing the T-S fuzzy model, the above results obtained in [ 71] was further 
extended to nonlinear systems in [ 69] and the gain fluctuation of the controller was 
considered. 

1.3.2 Robust Control 

For continuous-time MJSPSs, the .H∞ control problem was considered in [ 22], in 
which the controller can be obtained by solved some Riccati equations. The lin-
ear matrix inequalities (LMIs) form .H∞ performance criterion was gave in [ 51], 
in which the .H∞ state controller design methodology and the .H∞ slow state feed-
back controllers design methodology were established. In [ 52], in order to over-
come the difficulty of solving the Riccati equation or nonlinear matrix inequalities, 
a sufficient condition based on LMIs was established for solving the .H∞ control 
problem of MJSPSs. Reference [ 50] further considered the robust control problem 
for continuous-time MJSPSs with uncertain parameters, where the system transi-
tion probability matrix is considered in polyspore form, and the results are available 
for both standard and nonstandard continuous-time MJSPSs. By employing the T-S 
fuzzy model, the .H∞ state feedback control problem and .H∞ output feedback con-
trol problems for a class of nonlinear continuous-time MJSPSs were researched in 
[ 61], and the mode-dependent .H∞ state feedback controller and mode-dependent 
.H∞ output feedback controller design methods were established. 

Considering that the time delay widely exists in practical systems, the passive 
control problem of a class of continuous-time MJSPSs with uncertain parameters 
and time-varying delay was investigated in [108], and the time delay-dependent 
passive performance analysis criterion was gave and the mode information related 
passive controller design method was obtained. The sliding mode control problem for 
a class of nonlinear MJSPSs with constant time delay was studied in [110], where the 
constructed sliding mode surface and the designed controller are mode-dependent. 
For stochastic MJSPSs, [102] investigated the stability bound problem, where the 
case that the system mode information is partially observable was considered. The 
optimal control problem for stochastic MJSPSs was explored in [ 21], where optimal 
controllers are designed that depend on both the SPP and the mode information. 

Considering the possible uncertainties in the system parameters, the sliding mode 
control problem for a class of MJSPSs with uncertain parameters was investigated in 
[ 46], case of obtaining information about the transition rate is considered, that is, the 
transition rate is partially unknown but the system mode information is considered to 
be directly obtained and used for the sliding mode surface and the controller design. 
Considering that the transition rate matrix (TRM) may be time-varying, the .H∞
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control and filtering problem for a class of nonlinear MJSPSs with the help of the 
T-S fuzzy model was investigated in [106], where the TRM is considered to be time-
varying, and its time-varying property obeys a higher-order Markov process. From 
the point of view of mode information acquisition, the case considered in [106] is that  
both the system mode information and the higher-order Markov state information 
are directly accessible. Therefore, the controller and filter designed in [106] rely on  
both system mode and higher-order Markov state information. Moreover, in practice, 
the dynamics of SPSs may also contain algebraic equations, and such systems can 
be modeled as singular SPSs. When the Markov jump parameters are taken into 
account in the singular SPSs, they constitute singular MJSPSs. The study for this 
class of systems is more complicated due to the fact that this class of systems has 
the properties of MJSs, SPSs and singular system, simultaneously [103]. The sliding 
mode control problem for continuous time singular MJSPSs was studied in [107], 
where the time-varying TRM subject to a higher-order Markov processes. 

For fast-sampling discrete-time MJSPSs, the nonfragile.H∞ control problem was 
addressed in [ 31] for nolinear MJSPSs by employing the T-S fuzzy model, where 
a controller is independent on the Markov parameters. It is worth noting that the 
results in [ 31] were obtained based on the inequality derivation in [ 18] did not con-
sider the Markov jump parameter. Therefore, although the derivation established 
therein can deal with the control problem of fast-sampling discrete-time MJSPSs, 
using it to address the control problem of the fast-sampling discrete-time MJSPSs 
inevitably brings a certain degree of conservatism due to the fact that the matrices 
in the derivation do not sufficiently take into account the Markov jump property. 
Reference [ 75] proposes an improved lemma which introduces the transition prob-
ability into the improved lemma. Since the improved lemma takes into account the 
information of the transition probability, the results obtained by using it for fast-
sampling discrete-time MJSPSs have a lower conservatism than the results obtained 
by using the lemma in literature [ 18]. Based on this lemma, literature [ 75] consid-
ers its non-fragile extended dissipative control problems for nonlinear fast-sampling 
discrete-time MJSPSs based on the T-S fuzzy model, and unlike literature [ 31], the 
non-fragile controllers designed in [ 75] is mode-dependent, i.e., the Markov state 
information is fully accessible and used in the design of the controllers. 

For slow-sampling discrete-time MJSPSs, the dissipative fault-tolerant control 
problems is investigated in [104], in which a slow state feedback control strategy is 
adopted because the fast state information in the SPSs may be limited to be acquired, 
and a mode-dependent slow state feedback fault-tolerant controller design method 
was established. Reference [118] further considered the fault-tolerant control prob-
lem of slow-sampling discrete-time MJSPSs by using a sliding-mode control strat-
egy, in which the sliding-mode surface was chosen to be mode-independent and the 
designed controller was accomplished by considering that the fast state information 
can be directly acquired. It is worth pointing out that the mode-independent sliding 
mode surface has some conservatism in some cases. For this reason, [105] improved 
the mode-independent sliding mode surface by adding a discrete-time integral sliding 
mode surface to it, which was more flexible and effective in dealing with vibration.
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For SMJSPSs, the [ 72] considered the quantization phenomenon in the network 
and provided a quantization controller design method. The extended dissipative 
synchronicity control problem of a singularly perturbed neural network with semi-
Markov jump parameters was discussed in [109], in which the extended dissipative 
synchronicity controller design method was provided. A new system framework for 
solving the asynchronous sliding mode control problem of SMJSPSs was gave in 
[ 81], which could effectively eliminate the problem of unavailable system modes 
caused by sliding mode controllers in existing work. 

1.3.3 Filtering, State Estimation and Synchronization 

In some practical situations, some of the state variables of a system are inherently 
non-measurable, or the state information of the system cannot be known precisely 
due to the influence of external noise. In such cases, it is necessary to design corre-
sponding state estimators or filters to reconstruct the system state variables, and then 
make them further severing the system analysis and control problems. Some mean-
ingful results have also been reported on the study of the filtering/state estimation 
problem for MJSPSs. The .H∞ filtering problem for nonlinear uncertain MJSPSs 
was addressed in [ 2], and the linear matrix inequality conditions for the singular 
perturbation parameter-dependent fuzzy filter gain solution were presented. The. H∞
filtering problem for discrete-time MJSPSs with partial transition probability infor-
mation was investigated in [101], in which the SPP was dependent on the Markov 
parameters. The multi-objective filtering problem for nonlinear MJSPSs was inves-
tigated in [ 15], in which the SPP-dependent filter solving method was gave. The 
sampling-based.H∞ filtering problem with considering the measurement output loss 
problem was investigated in [117]. In [ 97], the finite-time state estimation problem 
for Markov jump SPCNs was addressed and a hybrid event-based state estimation 
strategy was proposed. 

For SMJSPSs, the state estimation problem for a class of semi-Markov jump 
SPCNs was addressed in [ 74] with considering mixed passive and.H∞ performance. 
The synchronization problem of a class of nonlinear SPCNs with impulse effects and 
semi-Markov jump topology was studied in [ 49], in which a method was proposed 
to solve the upper bound of SPP with different coupling strengths. 

1.4 Organization of the Book 

This book is organized as follows. 
Part I: Markov Jump Singularly Perturbed Systems 
Chapter 2 addresses the stochastic stability analysis and stabilization problem 

for MJSPSs. For the stochastic stability analysis, some criteria are given, and the 
complete probability information case, partial probability information case and gen-
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eral probability information case are fully considered. For stabilization problem, the 
mode-dependent stabilizing controller and mode-independent one design methods 
are presented for three probability information cases. 

Chapter 3 discusses the .H∞ control problem for linear MJSPSs. Both the mode-
dependent .H∞ controller and mode-independent one design methods are presented 
for complete probability information case, partial probability information case and 
general probability information case. 

Chapter 4 focuses on the robust control problems for nonlinear MJSPSs, in which 
the T-S fuzzy model is introduced to address the nonlinear systems. The nonfragile 
.H∞ control problem, nonfragile passive control problem, and the .H∞ fault-tolerant 
control problem are discussed for Markov jump singularly perturbed nonlinear sys-
tems based on the T-S fuzzy model. The stochastic stability analysis criteria are given 
and the controller design methods are established. 

Chapter 5 addresses the .H∞ synchronization of Markov jump SPCNs. 
Part II Semi-Markov jump singularly perturbed systems 
Chapter 6 gives the discussions for the stabilization problems of semi-Markov 

jump singularly perturbed linear systems, in which the complete probability infor-
mation case and the partial probability information case are considered. Moreover, 
a unified controller form is presented and one can choose the type of controller 
according to the availability of fast states. 

Chapter 7 considers the stabilization problems of semi-Markov jump singularly 
perturbed nonlinear systems based on the T-S fuzzy model. The complete semi-
Markov kernel information case and the all the elements in the partial SMK infor-
mation case are discussed. The stochastic stability analysis criteria for the two cases 
are presented and the design approaches of mode-dependent stabilizing controller 
for two cases are established. 

Chapter 8 focuses on the synchronization of singularly perturbed complex net-
works subject to the semi-Markov chain. The.H∞ synchronization criteria are given 
for the semi-Markov jump SPCNs. 

Part III Hidden Markov jump singularly perturbed systems 
Chapter 9 considers the .H∞ control problem for linear HMJSPSs. The complete 

probability information case, partial probability information case and general proba-
bility information case are considered. For complete probability information case, A 
hidden Markov model, the partial probabilities HMM and the general probabilities 
HMM are introduced in this chapter to describe the phenomenon that the system 
mode information cannot be obtained directly with/without partial known probabil-
ities or general probabilities. The HMM-based controller design approach for three 
probability information cases are established. 

Chapter 10 expands the results in Chap. 9 to the nonlinear systems case by employ-
ing the T-S fuzzy model. The HMM-based fuzzy controller design approach for three 
probability information cases are established.
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Chapter 11 considers the finite-time control problem for hidden Markov jump 
singularly perturbed linear systems. The finite-time boundedness analysis criteria 
are give and the passivity-based finite-time controller design approach for three 
probability information cases are established the complete probability information 
case, partial probability information case and general probability information case.



Part I 
Markov Jump Singularly Perturbed 

Systems



Chapter 2 
Stochastic Stability Analysis 
and Stabilization 

2.1 Problem Formulation 

Let consider the following discrete-time MJSPSs 

.

{
xs (k + 1) = A11

σ(k)xs (k) + A12
σ(k)x f (k) + B1

σ(k)u (k)

x f (k + 1) = εA21
σ(k)xs (k) + εA22

σ(k)x f (k) + εB2
σ(k)u (k)

(2.1) 

where .xs (k) ∈ R
ns and .x f (k) ∈ R

n f are the slow state and fast state, respectively; 
. ε is the singular perturbation parameter (SPP); .u (k) ∈ R

nu is the control input; 
.{σ (k) , k ≥ 0} is the jump process of systems (2.1), which satisfies a homogeneous 
Markov chain taking values in the finite set .S = {1, 2, . . . , s}. The mode transition 
probabilities of .{σ (k) , k ≥ 0} are as follows 

. Pr {σ (k + 1) = j | σ (k) = i} = πi j (2.2) 

where .πi j ≥ 0 (.i, j ∈ S) and .
Σ

j∈S πi j = 1 for .∀i ∈ S. The transition probability 

matrix (TPM) .Π is defined as .Π Δ
[
πi j
]
s×s

. 
Let 

. x (k) =
[
x f (k)
xs (k)

]
, Aσ(k) Δ

[
A11

σ(k) A12
σ(k)

A21
σ(k) A22

σ(k)

]

Bσ(k) Δ
[
B1

σ(k)
B2

σ(k)

]
, Eε Δ diag

{
Ins , ε In f

}

the system (2.1) can be rewritten as 

.x (k + 1) = EεAσ(k)x (k) + EεBσ(k)u (k) . (2.3) 

To simplify the notation, .Ai Δ Aσ(t), .Bi Δ Bσ(t) for .∀σ (t) = i ∈ S. 
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