
Coding Examples
from Simple
to Complex

Synthesis Lectures on Computer Science

Applications in JavaScript™

Paul A. Gagniuc

Synthesis Lectures on Computer Science

The series publishes short books on general computer science topics that will appeal to
advanced students, researchers, and practitioners in a variety of areas within computer
science.

Paul A. Gagniuc

Coding Examples
from Simple to Complex
Applications in JavaScript™

Paul A. Gagniuc
Department of Engineering in Foreign
Languages, Faculty of Engineering in Foreign
Languages
National University of Science and Technology
Politehnica Bucharest
Bucharest, Romania

ISSN 1932-1228 ISSN 1932-1686 (electronic)
Synthesis Lectures on Computer Science
ISBN 978-3-031-53819-3 ISBN 978-3-031-53820-9 (eBook)
https://doi.org/10.1007/978-3-031-53820-9

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG
2024

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give
a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that
may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://doi.org/10.1007/978-3-031-53820-9

Foreword

The book Coding Examples from Simple to Complex—Applications in JavaScript™ by
Paul Aurelian Gagniuc is a very hands-on introduction to programming in JavaScript,
appealing to readers ranging from novices making their first steps in the universe of
programming to more seasoned developers, that can use a very rich reference of code
examples. Because this is the main feature of this work, teaching through examples, over
200, each chapter exemplifying the key concepts by exercises which are implemented,
commented, and explained in great detail.

The chosen language is JavaScript, most probably the most popular programming lan-
guage nowadays. Readers of this book can quickly use the gained knowledge in real-world
projects, as “Any application that can be written in JavaScript, will eventually be writ-
ten in JavaScript.” (Atwood’s Law). Another advantage is that examples can be run on
any computer or any computing device with a browser, without any necessary setting up.
Indeed, programming is just a click away.

The structure is well-thought, starting with traditional starting points in variable decla-
ration, expressions, control statements, arrays, functions, and continuing with objects and
advanced techniques. The author focuses on imperative programming techniques, more
suitable for beginners, however, treating also functional programming and object-oriented
programming in the respective chapters. The examples support the chapters in a logical
succession, one advantage being that a simplified solution is shown before an optimized
one, useful for a deeper understanding of the problem.

The book continues with the moderate examples section, in which more real-world
usages are shown, ranging from topics such as string manipulation, more advanced matrix
operations, sorting algorithms, bitwise operations and encodings and statistics. As exam-
ples are implemented without the use of other libraries except standard library, they are
of great teaching value, in helping practitioners truly understand the inner workings of
concepts.

v

vi Foreword

Where the book is of interest to more advanced developers or researchers in different
fields, is in the complex examples section, covering novel, state-of-the-art algorithms such
as spectral forest or complex usage of Markov Chains, an area in which the author is a
renowned expert.

Andrei Vasilateanu
Professor

Faculty of Engineering in Foreign
Languages

National University of Science
and Technology Politehnica Bucharest

Bucharest, Romania

Preface

In web development, JavaScript stands as the cornerstone of modern programming and is
the main computer language driving the Internet. Explore the rich world of JavaScript™
with this work, a comprehensive guide that takes the reader on a journey from the funda-
mentals to advanced topics, equipping the reader with the knowledge and skills needed to
become a proficient JavaScript developer or scientist. Inside these pages, one discovers a
treasure trove of practical examples, meticulously crafted to deepen the reader understand-
ing of JavaScript. From the basics of variable naming and program structure to complex
matrix operations, recursion, and object-oriented programming, this book covers it all.

Key Features

Hands-on Learning. Explore over 200 examples, carefully designed to reinforce your
comprehension of JavaScript concepts and computer languages in general.

Comprehensive Coverage. Navigate through the essentials of JavaScript, including
variables, conditionals, loops, arrays, functions, JSON, and more.

Advanced Techniques. Elevate your skills with intricate examples on matrix operations,
complex logic gates, sequence alignment, and Markov Chains.

Real-World Applications. Discover practical applications of JavaScript, from essential
data manipulation to graphics and file uploads. Learn also how to implement mathematical
formulas in code.

Browser-Specific Tips. Learn about browser-specific functionality, local storage, and
base64 encoding/decoding.

vii

viii Preface

Throughout the following chapters, readers will gain a more profound understanding of
JavaScript and its multifaceted applications. This comprehensive exploration is designed
to cater to both novice learners, mature developers, and scientists, equipping them with
the requisite knowledge and competencies to harness the JavaScript full potential in their
respective projects. For a journey into the field of software engineering, JavaScript pro-
gramming unfolds as a systematic and rigorous exploration. This book is part of a series
of book titles that aims to mirror these examples and their explanations, as close to each
other as possible. Thus, these examples can also be found in other computer languages.

Bucharest, Romania Paul A. Gagniuc

Contents

1 Introduction . 1
1.1 Future of JavaScript . 2
1.2 The Content is Native . 2

2 Variables . 5

3 Conditional Branching . 15

4 Loops . 19

5 Arrays . 29

6 Traversal of Multidimensional Arrays . 59

7 Matrix Operations . 73

8 Functions . 107
8.1 Built-in Functions/Methods . 107
8.2 Making of Functions . 113
8.3 Recursion . 121

9 Objects . 127
9.1 Constructors and Methods . 128
9.2 JSON . 134

10 Moderate Examples . 141
10.1 Load Arrays from Strings . 141
10.2 Some Matrix Operations . 150
10.3 Logical Operations . 154
10.4 Miscellaneous . 162
10.5 Sorting . 168
10.6 Permutations . 171
10.7 Statistics . 173
10.8 Useful conversions . 182

ix

x Contents

11 Complex Examples . 195

12 Randomnes and Programming . 215

13 Browser Specific . 227

References . 237

1Introduction

JavaScript, often abbreviated as JS, is a pivotal programming language that has profoundly
impacted web development and digital experiences. Its origin can be traced back to the
early 1990s when the internet was in its nascent stages [1]. At that time, the World
Wide Web was primarily static, displaying text and images [2, 3]. A visionary engineer
named Brendan Eich, working at Netscape Communications, was tasked with creating a
language to make web pages more dynamic and interactive [4]. In just ten days, Eich
crafted the initial version of JavaScript, initially named “Mocha” and later “LiveScript”
before settling on the name we know today. In 1995, JavaScript was officially released as
part of Netscape Navigator 2.0, marking the beginning of its remarkable journey [1, 5].
JavaScript introduction was groundbreaking [1, 6]. It allowed developers to embed scripts
directly into HTML documents, enabling real-time manipulation of web content [1]. This
newfound interactivity paved the way for dynamic forms, client-side validation, and the
ability to update web pages without requiring a full page reload [1]. These capabilities
transformed the static web into a dynamic platform, giving rise to the era of web-based
software [1]. Also, JavaScript significance was further bolstered by the proliferation of
libraries and frameworks. jQuery tried to simplify DOM manipulation, making it more
accessible to low-level and untrained developers [1, 7]. Angular, React, and Vue.js, among
others, introduced component-based architecture and enhanced the development of single-
page applications (SPAs) [1, 8–10]. These tools streamlined complex web development
projects and fueled JavaScript prominence in the tech world.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
P. A. Gagniuc, Coding Examples from Simple to Complex, Synthesis Lectures
on Computer Science, https://doi.org/10.1007/978-3-031-53820-9_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-53820-9_1&domain=pdf
https://doi.org/10.1007/978-3-031-53820-9_1

2 1 Introduction

1.1 Future of JavaScript

Today, JavaScript is the backbone of modern web development. It empowers developers
to create responsive, interactive, and feature-rich web applications that run seamlessly
across devices and browsers. Its versatility has led to its adoption in various domains,
including mobile app development (with technologies like React Native and NativeScript),
game development (using libraries like Phaser), and even serverless computing through
AWS Lambda and Azure Functions. On the other hand, the JavaScript future is promis-
ing, with several key trends and developments. JavaScript will work in harmony with
WebAssembly, allowing developers to run high-performance code in web browsers at
near-native speeds [1, 11–13]. Progressive Web Apps (PWAs), powered by JavaScript,
will continue to gain traction due to their ability to deliver app-like experiences in web
browsers, enhancing user engagement and reducing load times [1, 14, 15]. Moreover, the
JavaScript role in serverless computing will expand, enabling developers to build scalable
and cost-effective backend services. Also, with libraries like TensorFlow.js, JavaScript is
making strides in the field of machine learning and artificial intelligence, opening up new
possibilities for web-based AI applications [16–18]. As expected, JavaScript will continue
to evolve with improved security features to combat emerging threats in the digital land-
scape. Nonetheless, the journey of JavaScript from its humble beginnings to its current
status as a fundamental language in web development has been nothing short of remark-
able. Its pivotal role in shaping the web evolution, from static pages to dynamic web
applications, underscores its enduring significance [1]. As JavaScript continues to adapt
and evolve, it will remain a driving force behind the ever-expanding realm of digital expe-
riences and innovations. Its versatility, combined with an active and passionate developer
community, ensures that the future of JavaScript is bright and full of possibilities.

1.2 The Content is Native

This work showcases native Javascript implementations from basic to complex, and is
addressed to a large audience, from beginners to PhD students and even mature scien-
tists and engineers. The first part of this book describes the use of variables, conditional
branching and loops. Variables, as foundational elements of programming languages, form
the focus of the first chapter. Topics covered include variable declaration and initialization,
nomenclature conventions, and the composition of a basic JavaScript program. Addition-
ally, discussions will encompass assignment, variable types (specifically the distinctions
between “let” and “var” declarations), fundamental arithmetic operations, and related
subjects. Also, conditional branching mechanisms, which facilitate decision-making pro-
cesses and the execution of divergent code segments based on predetermined conditions,
are explored in detail. Emphasis is placed on a variety of conditional statements such

1.2 The Content is Native 3

as “if-then,” “if-then-else,” “if-then-elseif-else,” and the “switch” construct. These con-
structs enable the manipulation of program flow and responsiveness to varying scenarios.
Next, the concept of loops is explored in detail, as it is instrumental in iteratively exe-
cuting code blocks and enhancing program efficiency. A comprehensive exploration of
both “While” and “For” loops is undertaken. Topics of interest include count-controlled
loops, array traversal, and intricate mathematical computations. The utilization of con-
trol statements like “break” and “continue” is also addressed. In a second part of the
book, more complex variables such as Arrays are described by example. The subject of
multidimensional traversal of arrays is also covered, and then some matrix operations
are shown. Arrays, as fundamental data structures for organizing and manipulating data
collections, are scrutinized in a dedicated chapter. Topics encompass basic array opera-
tions such as element addition and retrieval, length calculation, and array traversal. The
employment of various loop types for array traversal is discussed in detail. Moreover,
the traversal and manipulation of these multidimensional arrays are explored compre-
hensively. The discussion extends to encompass 2D and 3D arrays, matrix operations,
and transformations including transposition and rotation. Furthermore, matrix operations
are shown as pivotal in mathematical and graphical contexts by using specific examples.
Subjects addressed include summation, multiplication, diagonal extraction, transposition,
and related matrix operations. In a third part of this paper, functions, object construc-
tors, and methods are thoroughly explored from several angles, and the JSON method
is presented as an exchange medium between different data formats. Functions, instru-
mental in code reusability and modularity, are the primary focus of an extensive chapter.
Both built-in and user-defined functions are explored in depth. Topics encompass function
creation, parameterization, and return value handling. Additionally, discussions extend
to recursion, logical operations, sorting algorithms, statistical computations, and diverse
practical examples showcasing the versatility of functions in JavaScript. The conceptual-
ization and implementation of objects, their properties, and methods are expounded upon
in a separate chapter. Object constructors, object instantiation, and the inclusion of meth-
ods within objects are thoroughly explored. Practical examples underscore the principles
of object-oriented programming in JavaScript. Also, JSON (JavaScript Object Notation)
as a prevalent data interchange format is the central theme of this chapter. The chapter
addresses the conversion between JavaScript objects and JSON, manipulation of JSON
data, and the handling of complex JSON structures. In the fourth part of the book, the
reader encounters moderate and complex examples and, most importantly, cases related to
randomness and programming. The chapter on moderate and complex example serves as
a culmination of JavaScript knowledge, presenting intricate examples that demonstrate the
utility of the language in solving real-world problems. Topics include statistical analysis,
sequence alignment, and text processing, offering insights into advanced programming
techniques. Also, the chapter on randomness discusses methods that show how to model
a random process. In the last part of the book, the discussion focuses on javascript appli-
cations that are browser specific. The chapter explores JavaScript features specific to web

4 1 Introduction

browsers, encompassing base64 encoding and decoding using built-in functions and local
storage mechanisms. Among others, the final chapter also introduces readers to graphics
programming in JavaScript, covering the creation of visual elements, shape rendering, and
interactive graphics using technologies such as HTML5 Canvas.

2Variables

A variable can be conceptualized as a symbolic representation or an abstract entity that
holds information [1]. This information can take various forms, from simple numerical
values, strings of text, to more complex data structures. The central essence of a variable
lies in its ability to change or vary, making it indispensable in algorithms and computa-
tional processes [1]. Variables are foundational to computer programming because they
allow for the storage and manipulation of data. Each variable has an associated data type,
which dictates the kind of information the variable can store. For instance, an integer
data type variable can store whole numbers, whereas a floating-point data type might
store numbers with decimal points. When a variable is declared in a computer program,
a specific portion of the computer memory is allocated to store its value. This allocation
ensures that when the value of the variable is called upon or modified, the program knows
exactly where to look in memory. Each variable has a unique memory address, which acts
like a reference point for any computational operation involving that variable. Variables
also possess attributes such as scope (determining where in a program a variable can be
accessed) and lifetime (indicating how long the variable remains in memory). The impor-
tance of these attributes becomes evident in more advanced programming tasks, such as
managing memory or optimizing code for performance. In scientific computing, variables
often represent physical quantities or abstract mathematical constructs. Their ability to
change values dynamically allows for the simulation of real-world systems, from mod-
eling the motion of celestial bodies to predicting weather patterns. Scientists can run
multiple scenarios or simulations to analyze different outcomes and derive meaningful

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
P. A. Gagniuc, Coding Examples from Simple to Complex, Synthesis Lectures
on Computer Science, https://doi.org/10.1007/978-3-031-53820-9_2

5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-53820-9_2&domain=pdf
https://doi.org/10.1007/978-3-031-53820-9_2

6 2 Variables

conclusions just by adjusting the values of these variables. Thus, variables serve as the
backbone of computational algorithms and programs. Their dynamic nature, combined
with the precise control they offer over data manipulation, makes them a cornerstone in
the world of computer science and scientific computing. Thus, the examples shown below
start from basic exercises that familiarize the reader with the notion of variables.

// this is a comment in javascript Output:

2.1.1

In JavaScript, the // syntax is used to denote a single-line comment. Anything that
follows the // on that same line is treated as a comment and will not be executed or
interpreted as code by the JavaScript engine. Instead, it is meant to provide context or
explanations for developers reading the code.

A = 1;
a = 2;
a1 = 3;
a_1 = 4;

print(A);
print(a);
print(a1);
print(a_1);

Output:

1
2
3
4

2.1.2

2 Variables 7

This JavaScript code initializes four variables with distinct names and values. The
variable A is assigned the value 1, while the variable a is assigned the value 2. Similarly,
a1 is given the value 3, and a 1 is assigned the value 4. Following these assignments, the
values of these variables are printed out sequentially using the print function. First, the
value of A is printed, followed by the values of a, a1, and finally a 1. It is worth noting
that JavaScript is case-sensitive, so the variable A is different from the variable a.

Ex. (3) – Write your first Javascript program

a = 3;
b = 5;
c = a + b;
print(c);

Output:

8

2.1.3

The given JavaScript code from above initializes a variable a with a value of 3 and a
variable b with a value of 5. It then calculates the sum of these two variables and assigns
the result to a third variable named c. Next, the value of c is printed to the console or
displayed using a function named print. The output of this code is 8.

Ex. (4) – The meaning of “a = b”

a = 3;
b = a;
print(b);

Output:

3

2.1.4

The JavaScript code begins by assigning the value 3 to the variable a. Following that,
the value of a (which is 3) is assigned to another variable named b. Next, the print(b)
statement outputs the value of b, which would display 3. It is worth noting that while
print() is a common function in some programming languages, in standard JavaScript
used in web browsers, the typical way to output something to the console would be
console.log(b). However, print is used in the online compilers in which all the examples
of this book were formulated and tested.

8 2 Variables

//let allows for one time
//declaratin of a variable:
let a = "text";
//let a = 0;

//Var allows for data
//type change of a variable
var b = "text";
var b = 0;

Output:

2.1.5

The provided JavaScript code from above contains explanations and examples of how
let and var keywords work in variable declaration. Initially, there is a comment that
states that the let keyword allows for a one-time declaration of a variable. Following this
comment, a variable a is declared using let and assigned the string value “text”. After
this, there is another line where variable a is declared again with the value 0, but this line
is commented out. This might suggest that if this line were uncommented, it would result
in an error because with let, one cannot re-declare a variable within the same scope. The
code then continues to describe the behavior of the var keyword. The comment suggests
that var allows for changing the data type of a variable. A variable b is declared using
var and assigned the string value “text”. Following this, the same variable b is re-declared
with the value 0. Unlike let, var permits this behavior without throwing an error, hence
showcasing the flexibility (and potential pitfalls) of using var for variable declarations.

Ex. (6) – Basic mathematical operations

a = 3;
b = 2;
c = a + b / 2 - a * b;
print(c);

Output:

-2

2.1.6

2 Variables 9

The above JavaScript code first assigns the value 3 to the variable a and the value
2 to the variable b. Next, it performs a series of arithmetic operations using these two
variables. Specifically, it divides b by 2, then adds the result to a, and from that sum, it
subtracts the product of a multiplied by b. The final result of these calculations is assigned
to the variable c. Lastly, the value of c is printed out. However, again, it is worth noting
that in standard JavaScript, there is no print function. Instead, the typical methods for
outputting to the console are console.log(c) or displaying to the user with methods like
alert(c).

a = 3;
a = a % 2;
print(a);

Output:

1

2.1.7

The code starts by assigning the value 3 to the variable a. Next, it modifies the value
of a by setting it to the remainder when a is divided by 2, which is done using the
modulus (%) operator. The modulus operation determines the remainder of the division
of a by 2. Thus, 3 divided by 2 gives a quotient of 1 and a remainder of 1. Therefore,
after the modulus operation, the value of a becomes 1. Next, it uses a print(a) statement
to display the value of a. For using this example in the browser, typically, one would use
console.log(a) to output the value to the console.

a = 2;
a = a + 1;
print(a);

Output:

3

2.1.8

10 2 Variables

The given JavaScript code starts by assigning the value 2 to the variable a. It then
increments the value of a by 1. Next, it prints (console.log(a) for browsers) the value of
a, which would now be 3. Therefore, the output shows a value of 3.

a = 2;
a += 1;
print(a);

Output:

3

2.1.9

The given JavaScript code first assigns the value 2 to the variable a. Then, it increments
the value of a by 1 using the “+=” operator, which is shorthand for a = a + 1. After
these operations, the value of a becomes 3. Next, it prints the value of a using the print(a)
statement.

Ex. (10) – The post-decrement operator

a = 2;
a--;
print(a);

Output:

1

2.1.10

The given JavaScript code starts by assigning the value 2 to the variable a. After this,
the value of a is decremented by 1 using the decrement operator “–”. As a result, the
value of a becomes 1. Next, the print(a) statement is intended to display the value of a,
which is 1.

a = 2;
a = --a;
a = --a;
print(a);

Output:

0

2.1.11

2 Variables 11

The JavaScript code initializes a variable a with the value of 2. Then, it decrements
the value of a using the “–” prefix operator, which decreases the value of a by 1 before
assigning it back to a. This decrement operation is done twice in succession. Therefore,
after the two decrement operations, the value of a is decreased by a total of 2. Next, the
print(a); statement will display the final value of a, which is 0.

a = 2;
a += --a;
a += --a;
print(a);

Output:

5

2.1.12

The code from above performs a series of operations on the variable a. Initially, a is
assigned a value of 2. In the next line, a is incremented by the result of –a. The “–”
before a is a pre-decrement operator, which means it decreases the value of a by 1 before
the operation takes place. Thus, a becomes 1, and then 2 (the original value of a) is
incremented by this new value of 1, resulting in a being 3. In the following line, a similar
operation takes place. The value of a is decremented again by 1 (making it 2) and then 3
(the current value of a) is incremented by this new value of 2. This makes a equal to 5.
Next, the print(a) statement outputs the value of a to the console, which is 5.

let a = 3;
let b = 7;
let t = 0;

t = a;
a = b;
b = t;

print('a = ' + a);

Output:

a = 7
b = 3

print('b = ' + b);

2.1.13

12 2 Variables

The given code initializes three variables: a, b, and t, with the values 3, 7, and 0
respectively. The purpose of the code is to swap the values of a and b without using
any direct arithmetic operations or additional variables. To achieve this, the value of a is
first stored in the temporary variable t. Then, the value of b is assigned to a, effectively
overwriting a original value. Lastly, the value stored in t (which is the original value
of a) is assigned to b, completing the swap. After the swapping operation, two print
statements display the updated values of a and b, showing that their values have indeed
been exchanged. Thus, after the code executes, the output will be “a = 7” and “b = 3”.

a = 3;
b = a + 7;
a = null;
print(a);
print(b);

Output:

null
10

2.1.14

The JavaScript code initializes a variable a with the value 3. Then, it initializes another
variable b and assigns it the result of adding a to 7, making the value of b equal to 10.
Afterward, the value of a is set to null. Next, the code prints the value of a, which is null,
and then prints the value of b, which remains 10.

s = 1 + 2 + 3 +
4 + 5 + 6 + 7 + 8;
print(s);

Output:

36

2.1.15

The given code is performing an arithmetic operation where multiple numbers are
being added together. It starts by adding the numbers 1, 2, and 3. The addition then
continues on the next line with the numbers 4 through 8. After computing the sum, which
is stored in the variable s, the result is printed to the console using the print(s) statement.

var a = 3;
var b = 7;
var c = 10;
var r = "a = " + a + " and b = " + b;
var t = " is a number.\n";
var l = (a+b/c)+t;

Output:

3.7 is a number.
a = 3 and b = 7

print(l + r);

2.1.16

2 Variables 13

In this code snippet, several variables are declared and manipulated. First, variables
a, b, and c are declared and initialized with numerical values 3, 7, and 10, respectively.
Next, a string variable r is created and assigned a value that concatenates the string “a =
“ with the value of a, then “ and b = “ with the value of b. This will create a string that
describes the values of variables a and b. Another string variable t is initialized with the
string “ is a number.\n”, where “\n” is an escape character for a new line. The variable
l is then created, and it stores the result of an arithmetic operation that adds a to the
division of b by c. This result is then concatenated with the string stored in t. Next, the
print function is called to display the combined value of l and r.

