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Preface 

This book features high quality of research papers presented at the 5th Interna-
tional Conference on Energy Systems, Drives and Automations (ESDA2022). The 
book is organized in three subthemes as energy and drives, electronics and control, 
and computer and soft computing which includes research work of academicians 
and industrial experts in the field of electrical and electronics engineering, energy, 
mechanical, control, automations, IoT, and computers engineering. This proceedings 
includes full-length papers, research in progress papers, and case studies related to 
all the areas of above-mentioned topics. The book offers valuable assets for young 
researchers. In this book, 46 papers are included, and most of the papers are the 
outcome of study and research works of professors, Ph.D. students with their super-
visors as co-authors and of scientists. Most of the editors have contributed chapters 
for this series and have given their valuable suggestions and comments to improve 
the quality of this book. The editors are thankful to all the authors and specially 
research scholars and postgraduate students who have burnt their energy to compile 
this series of book. We thank all the contributors, authors, experts, and reviewers. We 
also thank Applied Computer Technology of Kolkata as an organizer of the confer-
ence ESDA2022 for collecting, gathering, and pre-processing all documents required 
for publishing this book. 

Afzal Sikander 
Marta Zurek-Mortka 

Chandan Kumar Chanda 
Pranab Kumar Mondal
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A New Criss-Cross-Based 
Asymmetrically Configured T-Type 
Multi-level Inverter 

Kailash Kumar Mahto, Priyanath Das, Durbanjali Das, Sudhanshu Mittal, 
and Bidyut Mahato 

Abstract Significant advancements in power electronics have led to the develop-
ment of a suitable platform for exploring various multilevel inverter (MLI) topolo-
gies. The paper introduces a novel asymmetrical multilevel inverter topology called 
“A new Criss-Cross based asymmetrically configured T-Type Multi-Level Inverter” 
that exhibits various beneficial features such as high-quality staircase sinusoidal 
output voltage, reduced number of power switches, and fewer filter requirements. 
The proposed topology is designed for 27 levels with a minimized number of inverter 
components, and its performance is evaluated using both simulation and experimental 
results. The simulation is conducted using MATLAB/Simulink with a sinusoidal 
pulse-width modulation (SPWM) technique, and the experimental results are vali-
dated using a dSPACE real-time controller. A comparative study is also conducted 
with other recent proposed topologies, which reveals that the proposed topology 
requires fewer total MLI components in terms of power switches, isolated DC 
sources, and main diodes. The simulation and experimental results are analyzed 
for two different modulation indices, i.e., 0.3 and 1. The output voltage contains 
14.89 and 3.36% total harmonic distortion (THD) for modulation indices of 0.3 and 
1, respectively. 

Keywords SPWM · Power electronics ·MLI · Power conversion · Reduced 
components
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2 K. K. Mahto et al.

1 Introduction 

There are a number of applications and advantages associated with multilevel 
inverters (MLIs), making their influence high among power electronics converters. 
To fulfill the gradually increasing power demand, the advent of MLI with other 
power electronics devices is crucial. MLI play an important role in variable-frequency 
devices, electrical vehicles, and high voltage DC power transmission [1–4]. Apart 
from this, it is also useful in renewable energy power conversion systems like those 
that use solar energy [5] and wind energy. MLI is suitable for high power and medium 
voltage application [6–8]. In MLI, a high value of voltage is achieved at the output 
sides in a staircase form by using numerous DC inputs [9]. The output voltage is 
nearly sinusoidal as a result of this staircase structure which lowers the total harmonic 
distortion [10–12]. Consequently, the need for filters can be significantly decreased 
[13]. Apart from that, the dv/dt [14] ratio gets reduced because of the staircase voltage 
output. Because the total standing voltage in the case of MLI is low, a low rated semi-
conductor switch is required, making it cost effective. It is possible to use several 
switching combinations to get a specific voltage level in many multilevel topologies. 
A fault-tolerant procedure can be built using these redundant states [15]. 

The three classes of conventional MLIs that were first introduced in 1981, 1990, 
and 1996, respectively, are neutral point clamps (NPC) [16], flying capacitors (FC), 
and cascaded H-bridges (CHB). Although classic MLIs have numerous benefits 
over two-level inverters, they also have some drawbacks, such as the high switch 
count needed. In some cases, high number of DC voltage sources and capacitors 
are needed. Due to the above-mentioned limitations, many new MLI topologies have 
been proposed with a lower number of components and higher efficiency. Several new 
MLI topologies have been developed with fewer components and greater efficiency 
as a result of the aforementioned restrictions. These suggested topologies can be 
further classified into two groups, symmetrical and asymmetrical, according to the 
value of the voltage source used in the MLI. The magnitude of each input DC source 
is the same in symmetrical MLI, whereas it varies in asymmetrical MLI. 

Selective harmonic elimination (SHE) [17], space vector pulse-width modulation 
(SVPWM), carrier-based pulse-width modulation, and nearest level control (NLC) 
[5] are a few modulation techniques that have been discussed in [5, 18]. The use 
of H-bridge for generating positive and negative polarities in MLI topologies is 
discussed by the authors in [12, 19]. In [20] and [21] authors also highlight that 
some MLI topologies require more DC sources than power switches, [22, 23]. An 
asymmetrical, 27-level MLI is proposed in this paper. To simulate the proposed 
MLI, MATLAB/Simulink is used which is also verified by the experimental setup. 
It has also compared to some recent MLI topologies. This paper has been arranged 
into four different sections. The modes of operation and the modulation technique 
of the proposed circuit are covered in Sect. 3. The comparative study is performed 
in Sect. 4. In Sect. 5, the simulation parameters and required outputs are covered. 
Section 6 subsequently presents a conclusion.
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Fig. 1 Proposed criss-cross multi-inverter topology 

2 Proposed Circuit Topology 

The proposed topology depicted in Fig. 1 includes a total of thirteen switches, with 
S2 as only bidirectional switch and the other twelve switches as unidirectional. The 
unidirectional switch has a two-quadrant operation, whereas the bidirectional switch 
has a four-quadrant operation. Here four isolated DC sources, V1u, V1l, V2, and V3, 
are used, which are working in an asymmetrical mode as the magnitude values of 
these voltage sources are different. The proposed MLI can produce an output voltage 
with 27-level when the values of isolated DC sources are used as V1u = 5 Vdc, V1l 

= 5 Vdc, V2 = Vdc, and V3 = 3 Vdc. 

3 Modes of Operation 

As multilevel inverters use many switches and generate staircase-type output through 
the controlled technique of various switches, as mentioned above in the introduc-
tion, different modulation techniques have been proposed by the researchers. Out of 
which the sinusoidal pulse width modulation (SPWM) technique is implemented in 
this literature. Here, 26 triangular carrier waveforms are considered to generate the 
PWM for the 27-level inverter as shown in Fig. 2a. The carrier signals and the refer-
ence signal are continuously compared using 26 comparators to generate the digital 
output. The output signals of the twenty-six comparators were combined together to 
generate the inverter switching signal, as depicted Fig. 2b. The corresponding real-
time simulation result of the generated switching signal for a single-phase, 27-level 
MLI is depicted in Fig. 2b. The gate pulses for the concerned switching devices of 
the proposed inverter can be obtained by further decoding the switching signals.

Figure 3 illustrates each mode of voltage generation for the 27-level MLI. The 
blue line represents the positive half-cycle of the voltage generation path, while the 
red line represents the negative half-cycle. The switching states for each switch of 
the proposed 27-level MLI have been explained.
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Fig. 2 PWM generation: a comparison of carrier signals with reference signal and b corresponding 
switching signal for the 27-level inverter

• The switches S1, S6, S8, S10, and S13 are made ON to achieve + 13 Vdc (maximum 
voltage level), as discussed in Fig. 3a, whereas S1, S4, S6, S9, and S13 are made 
ON to achieve − 13 Vdc (minimum voltage level).

• The switches S1, S5, S9, S10, and S13 are made ON to achieve + 12 Vdc, whereas 
S3, S4, S8, S11, and S12 are made ON to achieve − 12 Vdc, as depicted in Fig. 3b.
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Fig. 3 Modes of operation for the 27-level inverter
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Fig. 3 (continued)

• The switches S1, S6, S8, S11 and S13 are made ON to achieve + 11 Vdc whereas 
S3, S7, S9, S10 and S12 are made ON to achieve − 11 Vdc, as depicted in Fig. 3c.

• The switches S1, S5, S9, S11, and S13 are made ON to achieve + 10 Vdc whereas 
S3, S4, S8, S10, and S12 are turned ON to achieve − 10 Vdc, as depicted in Fig. 3d.

• The switches S1, S5, S9, S10, and S12 are made ON to achieve + 9 Vdc, whereas 
S3, S4, S8, S11, and S13 are made ON to achieve − 9 Vdc, as depicted in Fig. 3e.

• The switches S2, S6, S8, S10, and S13 are made ON to achieve + 8 Vdc, whereas 
S3, S7, S9, S10, and S13 are made ON to achieve − 8 Vdc, as depicted in Fig. 3f.

• The switches S2, S5, S9, S10, and S13 are made ON to achieve + 7 Vdc, whereas 
S3, S4, S8, S10, and S13 are turned ON to achieve − 7 Vdc, as depicted in Fig. 3g.

• The switches S2, S6, S8, S11, and S13 are made ON to achieve + 6 Vdc, whereas 
S2, S7, S9, S10, and S12 are turned ON to achieve − 6 Vdc, as depicted in Fig. 3h.

• The switches S2, S5, S9, S11, and S13 are made ON to achieve + 5 Vdc, whereas 
S2, S4, S8, S10, and S12 are made ON to achieve − 5 Vdc, as depicted in Fig. 3h.

• The switches S2, S5, S9, S10, and S12 are made ON to achieve + 4 Vdc, whereas 
S2, S4, S8, S11, and S13 are made ON to achieve − 4 Vdc, as depicted in Fig. 3j.

• The switches S1, S4, S8, S10, and S13 are made ON to achieve + 3 Vdc, whereas 
S3, S5, S9, S11, and S12 are turned ON to achieve − 3 Vdc as, depicted in Fig. 3k.

• The switches S3, S5, S9, S10, and S13 are made ON to achieve + 2 Vdc, whereas 
S3, S6, S8, S11, and S12 are turned ON to achieve − 2 Vdc, as depicted in Fig. 3l.

• The switches S3, S6, S8, S11, and S13 are made ON to achieve + Vdc, whereas S3, 
S6, S8, S11, and S12 are turned ON to achieve − Vdc, as depicted in Fig. 3m.

• The switches S3, S5, S9, S10, and S12 are made ON to achieve zero volt, as depicted 
in Fig. 3n.
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4 Comparative Study 

Nowadays, various recently developed MLI topologies are introduced in [24–30]. 
These MLIs have been analyzed for the different performance parameters such as total 
switches (M), capacitors and isolated DC sources (N), and main diodes (O). Gener-
alized formulas for the different topologies proposed have been shown in Table 1, 
where Vl represents the number of level of output voltage. For 27-level, the above-
mentioned references have been shown in Table 2. The number of gate driver circuits 
needed is equal to the number of switches used because each switch needs one to 
produce a gate pulse. The main diodes are the ones associated with the switches. One 
anti-parallel diode is connected in the case of a unidirectional switch, whereas two 
or four diodes are associated with a bidirectional switch. 

From the comparative study, it can be seen that to generate the 27-level output 
voltage, the required number of power switches and other components, like isolated 
DC sources and the main diode, is less than in the comparative papers.

Table 1 Generalized formulas for different components 

Cited papers Total switches (M) Capacitors/isolated DC sources (N) Main diodes (O) 

[24] (Vl + 3) (Vl − 1)/2 (Vl + 3) 
[25] 3(Vl − 1)/2 (Vl − 1)/2 3(Vl − 1)/2 
[26] 2(Vl − 1) (Vl − 1)/2 2(Vl − 1) 
[27] (Vl + 3) (Vl − 1)/2 (Vl + 3) 
[28] 7(Vl − 1)/8 (Vl − 1)/2 (Vl − 1)/8 
[29] (Vl + 1) (Vl − 1)/2 (Vl + 1) 
[30] (Vl + 5)/2 (Vl − 1)/2 4 

Table 2 Comparison chart for 27-level output voltage 

Cited papers Number of voltage 
levels (Vl) 

Total switches (M) Capacitors/isolated 
DC sources (N) 

Main diodes (O) 

[24] 27 30 13 30 

[25] 27 39 13 39 

[26] 27 52 13 52 

[27] 27 30 13 30 

[28] 27 23 13 4 

[29] 27 28 13 28 

[30] 27 16 13 4 

Proposed MLI 27 13 4 16 
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5 Simulation and Experimental Results 

The simulation and the experimental results of the proposed 27-level inverter have 
been discussed in this section. The simulation has been performed using MATLAB/ 
Simulink, and it has been validated by the experimental setup. The prototype model 
of the proposed MLI is developed in using dSPACE-1103 controller. The prototype 
model’s components consist of the power switch (IGBT-CT60AM), isolated DC 
voltage sources, gate driver circuits (TLP250), DSO-X 2024A, and RL load as shown 
in Fig. 4. For the proposed 27-level inverter, the magnitude of voltage sources is used 
as V1u = 5 Vdc, V1l = 5 Vdc, V2 = Vdc, and V3 = 3 Vdc. 

The simulation analysis and the experimental verification are performed at 
different modulation index. The simulation results at modulation index 0.3 for the 
proposed 27-level MLI are depicted in Fig. 5. The simulation is performed for RL 
load with R = 82.5 Ω and L = 75 MH. For the input DC voltage, Vdc = 23, 3 Vdc 

= 69, and 5 Vdc = 115, the simulation output voltage, Vo/p max, is 92 V as depicted 
in Fig. 5a, and the value of the load current, Io/p max, is 0.86 A as  shown in Fig.  5b. 
The value of THD for the given configuration is 14.89% as depicted in Fig. 5c.
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Fig. 4 Circuit of compared reduced switch topologies. a Proposed in [24], b proposed in [25], 
c proposed in [26], d proposed in [27], e proposed in [28], f proposed in [29], g proposed in [30] 
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Fig. 5 Simulation results for the a output voltage, b load current, c THD of the output voltage, d 
experimental result for the output voltage and the load current at MI = 0.3
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(d) Load Current 
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Fig. 5 (continued) 

The simulation result for the output voltage and the load current is validated by the 
experimental result depicted in Fig. 5d.

With the same set of loads and the input voltage, the performance of the proposed 
27-level MLI is evaluated with MI = 1, whose simulation and experimental result 
are depicted in Fig. 6. For modulation index 1, the simulation result for the output 
voltage, Vo/p max is 296 V as depicted in Fig. 6a, and the load current, Io/p max is 
2.9 A as shown in Fig. 6b The value of THD of the output voltage is 3.36%, as 
depicted in Fig. 6c. The experimental result for the output voltage and load current 
with modulation index 1 for the 27-level inverter is depicted in Fig. 6d.

6 Conclusion 

The literature presents a new criss-cross-based asymmetrically configured T-Type 
multi-level inverter that achieves 27 levels. MATLAB/Simulink is used to simulate 
the proposed topology, and an experimental setup is used to verify the results. Further 
the proposed topology is evaluated by comparing it with other recent MLI topologies 
with have 27-level of output voltage. The comparison is based on the overall count of 
essential components, such as power switches, main diodes, and isolated capacitors 
or DC sources that are required for the circuit. The analysis indicates that the proposed 
topology is more cost-effective since it requires a smaller number of power switches 
compared to the other compared topologies. In the final section of the literature, 
simulation and experimental results are presented and discussed for two different
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Fig. 6 Simulation results for the a output voltage, b load current, c THD of the output voltage and 
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Fig. 6 (continued)

modulation indices, 0.3 and 1. The THD values for MI = 0.3 and MI = 1 are found 
to be 14.89% and 3.36%, respectively. 
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Estimation of State of Charge 
for Lithium-Ion EV Battery Packs Using 
Passive Cell Balancing 

Prabhat Kumar, Naveenkumar Tadikonda, Pooja Kumari, Deepak Kumar, 
and Niranjan Kumar 

Abstract In order to advance the field of sustainable mobility, electric vehicles 
(EVs) need a battery, which is a key component. Lithium chemistry is presently 
regarded as the primary energy storage method for electric vehicles. Due to their 
high energy per mass compared to other electrical energy storage methods, lithium-
ion batteries are currently employed in the majority of portable consumer gadgets, 
including cell phones and laptops. Li-ion battery pack is a combination of number 
of cells connected according to the purpose of application. Since the manufacturing 
chemistry of each cell is exactly not similar so, their state of charge and depth 
of discharge capacity differs from each other to some extent. So, a proper battery 
management system is necessary to protect the life of Li-ion battery and their proper 
diagnosis during their usable life span to give them. Prior to discussing the most fasci-
nating modelling approaches for predicting battery performance, this study begins by 
outlining the stringent standards and requirements that apply to integrating battery 
management circuits and systems. Following that, a generic and flexible frame-
work for implementing BMS is provided, together with the passive method for cell 
balancing and SOC estimation under MATLAB environment. 

Keywords Battery management system (BMS) · Lithium chemistry · State of 
charge (SOC) · State of health (SOH) · Depth of discharge (DOD) · State of 
function (SOF) · C-rate · Passive cell balancing
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1 Introduction 

The largest source of climatic pollution, rise in global warming, unwanted change 
in environment, day to day rise in price of fossil fuels, crisis of crude and petroleum 
products, and cause of many diseases (i.e. asthma, bronchitis, cancer, lung damage, 
and Heart attacks) are good enough reasons to move towards sustainable mobility and 
zero-emission sources of energy when in use [1]. To solve this crisis, electric vehicles 
(EVs) is the key to eliminate the problems originated by using diesel and petroleum 
powered vehicles because these vehicles emit harmful gases (i.e. carbon monoxide— 
CO, hydrocarbons—HC, particulate matter—PM, and nitrogen oxides—NOx). One 
of the most important parts of EVs is battery which is solely responsible for deter-
mining the driving range capacity of electric vehicles. The selection of the battery 
technology and its efficient application are therefore of utmost significance [2, 3]. 
From today’s perspective, lithium chemistry is more preferable as compared to other 
batteries technology (i.e. lead acid battery) due to its following properties:

• High energy density: 250–693 Wh/L (0.90–2.43 MJ/L)
• Specific energy: 100–265 Wh/kg (0.36–0.875 MJ/kg)
• Charge/discharge efficiency: 80–90%
• Cycle durability: 1800–2000 cycles (LFP) & 2200–2400 (NMC)
• Specific power: ~ 250 to ~ 340 W/kg. 

A significant change in large-format battery systems has been brought about by 
the development of lithium-ion batteries. According to the application, a lot of cells 
are often connected in series to create a battery line with the necessary voltage 
amplitude (nearer to 400 V) [3]. Overcharging and deep drain can harm the battery, 
reduce its lifespan, and possibly create dangerous circumstances because chemistry 
of lithium ions is extremely fragile to these conditions. Therefore, a proper adoption 
of battery management system (BMS) is required to keep each cell of the lithium-
ion battery within its permissible range of safe operation. BMS may include the 
following functions as [4]:

• To prevent overcharging of each cell
• To prevent rise in temperature of each cell beyond their threshold limit
• To prevent over discharging of each cell
• To prevent exceeding of charging current beyond limit
• To prevent exceeding of discharging current under limit
• To monitor the battery pack
• To protect the battery
• Cell balancing.
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A BMS performs the primary task of guaranteeing battery safety in addition to 
evaluating the battery condition it also looks after the operating temperature, oper-
ating voltage, operating current, and charge quantity to keep the battery under safety. 
A BMS plays a critical role in extending battery life, or state of health, by assessing the 
condition of the cells and addressing the amount of charge underbalanced defects 
which can be arise in cells connected in series. This reduces the battery’s utility 
consumption capacity since the lowest charged unit controls when the discharge 
process ends even though the battery’s other cells still have energy. Because Li-ion 
batteries are subject to severe voltage restrictions, charge unbalancing cannot be 
resolved on its own and instead gets worse over time. In fact, the charging process 
must be paused when a cell hits the upper voltage limit, resulting in some batteries not 
being fully recharged. Diverse self-discharge rates among the cells can cause charge 
unbalancing even if they all have the same capacity. A temperature gradient along 
the battery string can also reveal this discrepancy. Therefore, a charge equalisation 
mechanism should be used by a BMS to periodically re-establish the balanced state 
[5]. 

In order to design and maintain a battery for an electric vehicle (EVs), this paper 
will outline the key problems. The passive cell balancing approach of a Li-ion battery 
for an e-mobility application is examined in this research using a MATLAB simu-
lation to estimate energy loss and cost. The design of a cutting-edge BMS that will 
be included into an electric vehicle is then influenced by them. The first virtually 
completely integrated active charge equaliser is part of the BMS that has been put 
into place. 

2 Various Modelling Methods 

The first strategy involves observing an electrochemical system from the outside 
(black-box approach). The voltage–current characteristics are used to obtain the 
parameters of the mathematical functions that define an electrochemical system. 
Models with quick computation are the result. These models frequently avoid 
changing a direct parameter without duplicating all the measurements required 
for configuring the modelling when a system changes, such as when separator 
thicknesses vary. 

The electrical lumped-model is a second strategy. Calculations can produce quick 
results thanks to this type of modelling. However, there are a number of disadvantages 
when the need for extensive operation region coverage in an automotive application 
arises. In order to adapt the model’s features into those of the cells, it is necessary to 
use relatively sophisticated look-up tables to address the parameter variance related 
to temperature, state of charge, current density, and longevity.


