TECHNOLOGY INNOVATION FOR THE CIRCULAR ECONOMY

Recycling, Remanufacturing, Design, Systems Analysis and Logistics

Edited By Nabil Nasr

WILEY

Technology Innovation for the Circular Economy

Scrivener Publishing

100 Cummings Center, Suite 541J Beverly, MA 01915-6106

Publishers at Scrivener
Martin Scrivener (martin@scrivenerpublishing.com)
Phillip Carmical (pcarmical@scrivenerpublishing.com)

Technology Innovation for the Circular Economy

Recycling, Remanufacturing, Design, Systems Analysis and Logistics

Edited by **Nabil Nasr**

REMADE Institute, Rochester, New York, USA

This edition first published 2024 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA

© 2024 Scrivener Publishing LLC

For more information about Scrivener publications please visit www.scrivenerpublishing.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

Wiley Global Headquarters

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www. wiley.com.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchant-ability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.

Library of Congress Cataloging-in-Publication Data

ISBN 978-1-394-21426-6

Cover images: Pixabay.Com Cover design by Russell Richardson

Set in size of 11pt and Minion Pro by Manila Typesetting Company, Makati, Philippines

Printed in the USA

10 9 8 7 6 5 4 3 2 1

Contents

Pr	eface		xxvii		
P	art 1	: Circular Economy	1		
1	Star	Standards as Enablers for a Circular Economy			
		. Morris, Vincenzo Ferrero, Buddhika Hapuwatte, Noah Last			
	and	Nehika Mathur			
	1.1	Introduction	4		
	1.2	Standards and Measures for the Transition	6		
		1.2.1 ISO TC 323 and its Working Groups	6		
		1.2.2 ASTM Committee E60	8		
		1.2.3 Metrics as Incentivization	10		
	1.3	Conclusions & Recommendations	13		
		Acknowledgements	14		
		References	14		
2	Circ	cularity Index: Performance Assessment of a Low-Carbon			
		Circular Economy	17		
	Luis	s Gabriel Carmona, Kai Whiting and Jonathan Cullen			
		Introduction	17		
	2.2	Circularity Index Approach	18		
		2.2.1 A More Comprehensive CI Approach	20		
		2.2.1.1 Alpha Indicator: Circularity Quantity	20		
		2.2.1.2 Beta Equation: Circularity Quality	21		
		2.2.1.3 Alignment with CE Principles	22		
	2.3	Case Study: UK Car-Based Passenger Mobility	23		
	2.4	Conclusions & Recommendations	26		
		Acknowledgements	26		
		References	27		
3	Bio	degradable Polymers For Circular Economy Transitions—Challenges			
		Opportunities	29		
	Kou	ishik Ghosh and Brad H. Jones			
	3.1	Introduction	29		
	3.2	Clarification of Confusing Terminologies	31		
	3.3	Structures, and Application-Space of Biodegradable Polymers	31		
	3.4	Knowledge Gaps and Research Needs	34		

vi Contents

		3.4.1 Structure and Properties	35
		3.4.2 Testing of Biodegradation	35
		3.4.3 Application Development	35
		3.4.4 Waste Management	35
	3.5	Biodegradable Plastics and Circular Economy Transitions	36
	3.6	Conclusions and Recommendations	37
		Acknowledgements	38
		References	38
4	Eval	luating Nationwide Supply Chain for Circularity of PET and Olefin Plastics	43
_		min Hossain, Damon S. Hartley, Utkarsh S. Chaudhari,	
		vid R. Shonnard, Anne T. Johnson and Yingqian Lin	
	4.1		44
	4.2	Methods	45
		4.2.1 Model Input	45
		4.2.2 Model Formulation	46
	4.3	Results and Discussion	48
	4.4	Conclusions and Recommendations	52
		Acknowledgements	53
		References	53
5	Nex	tCycle: Building Robust Circular Economies Through Partnership	
		Innovation	55
	Juri	Freeman	
	5.1	Introduction	56
	5.2	The NextCycle Concept	56
		5.2.1 How It Started	56
		5.2.2 The NextCycle Model	57
		5.2.3 Project Outcomes	59
	5.3	Conclusions & Recommendations	61
		Acknowledgements	62
6	Mv	So-Called Trash: Evaluating the Recovery Potential of Textiles	
	•	New York City Residential Refuse	63
	Sara	ah Coulter, Constanza Gomez, Agustina Mir and Janel Twogood	
		Introduction	64
		6.1.1 Background	64
		6.1.2 Project Goal	65
	6.2	Textile Sub-Sort of DSNY Waste Characterization Study, Fall 2022 Season	66
		6.2.1 Methodology	66
		6.2.2 Sorting Procedure	68
		6.2.3 Safety	69
		6.2.4 Results	69
		6.2.5 Fractions	69
		6.2.6 Item Level Data	71
	6.3	Conclusions & Recommendations	73

		vii
	Acknowledgements	74
	References	74
V	When is it Drofitable to Make a Droduct Sustainable? Insights	
	When is it Profitable to Make a Product Sustainable? Insights rom a Decision-Support Tool	75
	Karan Bhuwalka, Jessica Sonner, Lisa Lin, Mirjam Ambrosius and A. E. Hosoi	73
	.1 Introduction	75
, .	7.1.1 Literature Review	76
7.	.2 Main Content of the Chapter	78
	7.2.1 Methods	78
	7.2.1.1 Production Costs	80
	7.2.1.2 Demand Function	80
	7.2.1.3 Price Optimization	81
	7.2.2 Results	82
	7.2.2.1 Impact of Product Characteristics and Market Structure	85
	7.2.2.2 Full Substitution Case i.e. when f=1	86
	7.2.3 Case Study on Sneakers: Full Substitution of Virgin Polyester	
	Upper to Recycled Polyester	87
7.	.3 Conclusions & Recommendations	89
	References	91
C	Clean Energy Technologies, Critical Materials, and the Potential	
	or Remanufacture	95
T	E. Graedel	
8.	.1 Introduction	95
8.	.2 Modern Examples of Materials Complexity, and Their Implications	96
	.3 REMADE in the Advanced Technology World	98
	References	99
) a ref	t 2. Enabling a Circular Economy Through	
	t 2: Enabling a Circular Economy Through	101
71 S	& Machine Learning	101
T	owards Eliminating Recycling Confusion: Mixed Plastics and Electronics	
C	Case Study	103
\boldsymbol{A}	min Sarafraz, Nicholas Alvarez, Jonas Toussaint, Felipe Rangel,	
\boldsymbol{L}	amar Giggetts and Shawn Wilborne	
9.	.1 Introduction	103
9.	.2 Related Work	104
9.	.3 Object Recognition API	105
	9.3.1 Back-End Verification	105
	9.3.2 Software Architecture	106
	.4 UM-LV Recycling Dataset	106
	.5 Object Recognition Models	108
	,	
	.6 Results 9.6.1 Potential Impacts	109 111

viii Contents

		Acknow	ledgements	113	
		Referen	res	113	
10	Imag <i>Rahu</i>	e Recog Ilkumar	a and Separation of E-Waste Components Unition Model Based on Advanced Deep Lea Sunil Singh, Subbu Venkata Satyasri Harsh ee and Prashant K Sarswat	arning Tools 115	
	10.1	Introd	action	116	
	10.2	Materi	ıls & Methods	119	
	10.3	Results	& Discussion	120	
	10.4	Conclu	sions	125	
	Acknowledgment				
		Referei	ices	126	
11	Enha	nced Pr	ocessing of Aluminum Scrap at End-of-Life	via Artificial	
			x Smart Sensing	129	
	Sean	McCoy.	Langan, Emily Molstad, Ben Longo, Caleb R	Calphs,	
	Robe	rt De Sa	ro, Diran Apelian and Sean Kelly		
	11.1	Introd	action	130	
	11.2		and Discussion	134	
		11.2.1	Twitch Characterization	134	
			11.2.1.1 Compositional Evaluation	134	
			11.2.1.2 Contamination Evaluation	134	
		11.2.2	Next Generation Technology: VALI-Melt	136	
		11.2.3		137	
			11.2.3.1 Solid Scrap Quality Control	137	
			11.2.3.2 Molten Metal Quality Control	137	
		11.2.4	Optimal Decision Making	138	
	11.3		sions & Recommendations	139	
			vledgements	140	
		Referei	aces	140	
12	Deep	Learni	g for Defect Detection in Inspection	143	
	Moh	ammad .	Mohammadzadeh, Pallavi Dubey, Elif Elcin	Gunay,	
	John	K. Jackn	ıan, Gül E. Okudan Kremer and Paul A. Kr		
		Introdu		144	
			ire Review	145	
	12.3	Metho	0,	146	
			Dataset Preparation	146	
			Faster R-CNN	147	
		12.3.3		147	
			YOLO v5s	148	
			Data Pre-Processing and Experimental Sett		
			Performance Metric	149	
	12.4	Results		150	
	12.5	Conclu	sion and Future Work	153	

		Contents	ix
		Acknowledgements	153
		References	153
D۵	wt 2.		157
		8	137
13		lator for Sustainable Tradeoff Optimization in Multi-Generational	
		7 1	159
		nel Saidani, Xinyang Liu, Dylan Huey, Harrison Kim, Pingfeng Wang,	
	,	Anisi, Gul Kremer, Andrew Greenlee and Troy Shannon	1.00
	13.1	Introduction	160
		13.1.1 Context and Motivations	160 161
	12.2	13.1.2 Research Objectives and Industrial Relevance Design for Reliability Process Review and Re-X Interdependence	101
	13.2	Identification	162
	13.3	Integrated Tool for Quantifying Reliability and Re-X Performances	102
	13.3	During Product Design	164
		13.3.1 Working Principles of the Reliability, Re-X, LCA	104
		and LCC Modules	164
		13.3.2 Application	165
	13.4	Conclusion and Perspectives	168
	10.1	Acknowledgments	169
		References	169
	4.75		
14		ctical Methodology for Developing and Prioritizing	151
		8	171
		Hilton	171
		Introduction Delica Principles	171
	14.2	Design Principles	173
		14.2.1 Design Guideline and Heuristic Collection	173
		14.2.2 Sorting Design Guidelines and Heuristics	174
	14.3	14.2.3 Developing Design Principles DfReman Framework	176 176
	14.5	14.3.1 Reliability-Centered Maintenance (RCM)	177
		14.3.1 Aligning DfReman Principles with a Customized RCM Framework	
		14.3.3 DfReman Principles and Top-Level Guidelines	179
	14.4	Conclusions and Recommendations	180
	17,7	Acknowledgements	181
		References	181
	_		101
15	•	lability Feedback for Part Assemblies in Computer-Aided	100
	_	n Software	183
		Bras and Richard Lootens	107
	15.1	Introduction (DDD) I (184
	15.2	Current State of Design for Recycling (DFR) Integration	185
		15.2.1 CAD Vendor Developments	185
	15.0	15.2.2 Industry Organizations/Third Party Developments	185
	15.3	Our Approach for a DFR Evaluator CAD Plug-In	186

x Contents

	15.4	DFR Evaluator Plug-In Demonstration	188
		15.4.1 APR Design Guide Feedback	190
		15.4.2 Compatibility Matrix Feedback	192
		15.4.3 Embodied Energy/Carbon Dioxide Equivalent	193
	15.5	Conclusions & Recommendations	194
		Acknowledgements	195
		References	195
Pa	rt 4:	Systems Analysis	197
16		minary Work Towards A Cross Lifecycle Design Tool	
	for Ir	ncreased High-Quality Metal Recycling	199
	Dani	el R. Cooper, Aya Hamid, Seyed M. Heidari, Alissa Tsai	
	and I	Yongxian Zhu	
	16.1	Introduction	199
	16.2	A Quantitative Recycling Pertinent Model of Vehicle Design	201
	16.3	Modeling Existing and Emerging Recycling Systems and Processes	204
	16.4	Optimizing the Cross Lifecycle Supply Chain for Maximized Recycling	205
	16.5	Preliminary Results from the DMFAs and Potential Environmental	
		Benefits	206
	16.6	Conclusions & Recommendations	208
		Acknowledgements	208
		References	208
17	Asses	ssing the Status Quo of U.S. Steel Circularity	
	and I	Decarbonization Options	211
	Barb	ara K. Reck, Yongxian Zhu, Shahana Althaf and Daniel R. Cooper	
	17.1	Introduction	211
	17.2	Methodology	212
	17.3	Results and Discussion	213
		17.3.1 The 2017 U.S. Steel Cycle and Global Context	213
		17.3.2 Decarbonization Pathways for Steel	217
		17.3.3 Increasing the Efficiency in Steel Production and Shifting	
		from BOF to DRI Technology	217
		17.3.4 Material Efficiency and Demand Reduction	218
	17.4	Conclusions & Recommendations	219
		Acknowledgements	219
		References	219
18	Fiber	and Fabric-Integrated Tracing Technologies for Textile Sorting	
	and I	Recycling: A Review	223
	Briar	n Iezzi, Max Shtein, Tairan Wang and Mordechai Rothschild	
	18.1	Introduction	224
	18.2	Stakeholder Challenges in Textile Tracing and Sorting	224
		18.2.1 Fiber and Yarn	225

				CONTENTS	xi
		18.2.2	Fabric and Garment		225
		18.2.3	Brands/Retailers/Consumers		226
			Sorting/Recycling		226
	18.3		Markers for Tracing and Sorting		226
			Incumbent: Fiber Content and Care Label		227
		18.3.2	Quick Response (QR) Codes		227
			Radio Frequency Identification (RFID) and Near Field		
			Communication (NPB) Tags and Yarns		228
		18.3.4	DNA Tracers and Direct Fiber DNA Testing		228
			Fluorescent Inorganic/Organic Nanoparticles		228
			Polymeric Photonic Fiber Barcodes		229
	18.4		g Technology and Stakeholder Techno-Economic Assessmer	nt	230
			isions and Recommendations		232
			stimates from Techno-Economic Assessment		233
			Rare Earth Nanoparticle Cost Estimate		233
			DNA Tagging Cost Estimate		233
			QR/RFID Tagging Cost Estimate		234
			Photonic Barcode Tagging Cost Estimate		234
			wledgements		235
		Referei			235
19	A Svs	tems Aı	oproach to Addressing Industrial Products Circularity		
	•	enges	Francisco commences of the second control of		239
	Mani	sh Gupt	a and Umeshwar Dayal		
		Introdu			240
	19.2	Industr	rial Products Circularity		240
			s to Industrial Products Circularity		241
		19.3.1	Production Customers		242
		19.3.2	RE* Providers/Remanufacturers		243
		19.3.3	Core Brokers and Dealers		244
	19.4	A Syste	em for Addressing the Industrial Products Circularity Barrie	ers	244
			Trusted Platform for Shared Truth Between Stakeholders		245
		19.4.2	Big-Data Capability		245
		19.4.3	Product Lifecycle and Track and Trace		246
		19.4.4	AI/Analytics Enabled Process Optimization and Stakehold	ler	
			Decision-Support		247
		19.4.5	Product Customers		247
		19.4.6	RE* Providers/Remanufacturers		249
		19.4.7	Core Brokers and Dealers		252
		19.4.8	Circularity KPIs		252
	19.5	Conclu			253
	References			253	

20	Environmental and Economic Analyses of Chemical Recycling				
	via D	issoluti	on of Waste Polyethylene Terephthalate	255	
	Utka	rsh S. Cl	audhari, Daniel G. Kulas, Alejandra Peralta,		
	Robe	rt M. Ha	andler, Anne T. Johnson, Barbara K. Reck, Vicki S. Thompson,		
	Damon S. Hartley, Tasmin Hossain, David W. Watkins and David R. Shonnard				
	20.1	Introdu	action	256	
	20.2	Metho	ds	257	
		20.2.1	Process Simulation	257	
	20.3	Techno	peconomic Analysis (TEA)	258	
			cle Analysis (LCA)	260	
			and Discussion	261	
		20.5.1	Process Simulation	261	
		20.5.2	Technoeconomic Analysis Results for Dissolution	261	
			GHG Emissions and Energy Impacts of Dissolution Process	263	
	20.6		sions and Recommendations	264	
		Ackno	wledgements	264	
		Referei	· ·	265	
21	m 1	Б			
21			omic Analysis of a Material Recovery Facility Employing	260	
			ing Technology	269	
			r Rahman and Barbara K. Reck		
		Introdu		269	
	21.2	Metho		271	
			System Boundary	271	
		21.2.2	Data Collection and Assumptions for the Techno-Economic		
			Analysis (TEA)	272	
			and Discussion	274	
	21.4		sions & Recommendations	277	
			wledgements	277	
		Referei	nces	277	
22	Key S	Strategie	es in Industry for Circular Economy: Analysis		
	•	_	cturing and Beneficial Reuse	279	
			dhari, Sachin Nimbalkar, Bruce Lung, Marco Gonzalez,		
			Bryant Esch		
	22.1	Introdu	,	279	
		22.1.1	Background on Circular Economy	280	
		22.1.2	Barriers to CE Adoption	281	
		22.1.3	-	282	
	22.2	Pathwa	ys to CE in Manufacturing Operations	282	
			Source Reduction	283	
		22.2.2	Extended Life Cycle	284	
			Maximum Value Extraction	284	
	22.3		ufacturing	284	
			Remanufacturing in Different Manufacturing Sectors	284	
			Enablers and Barriers to Remanufacturing	287	

				Contents	xiii
		22.3.3	Case Study – I: Volvo Group – Remanufacturing		287
			22.3.3.1 Background and Description		287
			22.3.3.2 Benefits		288
	22.4	Benefic	cial Reuse		288
			Beneficial Reuse in Different Manufacturing Sectors		288
			Enablers and Barriers		290
		22.4.3	Case Study – II : Waupaca Foundry Beneficial Reuse		290
			22.4.3.1 Background and Description		290
	22.5	Divi	22.4.3.2 Benefits		291
		Discuss	sion isions & Recommendations		292 293
	22.0		wledgements		293
		Referer	· ·		293
					274
23			oral Life Cycle Assessment of NMC111 Hydrometallur	gical	207
	-	cling in			297
		is Hann Introdu	na, Luyao Yuan, Calvin Somers and Annick Anctil		298
		Method			298
	23,2		Goal & Scope of the Study		299
			System Boundary and Functional Unit		299
			Li-Ion Batteries Recycling		300
			23.2.3.1 Conventional Hydrometallurgy – Individual Salt Synthesis		300
			23.2.3.2 Novel (Truncated) Hydrometallurgy – No Int	ermediate	
			Sulfates Extraction		301
		23.2.4	Electricity Grid Modeling		301
		23.2.5	Life Cycle Inventory and Evaluation Methodology		301
			Life Cycle Impact Assessment		301
	23.3		& Discussion		302
			Grid Modelling		302
			Recycling Processes - Analysis Results and Comparison	<u>l</u>	302
	22.4	23.3.3	Spatio-Temporal Analysis		305
	23.4		sions & Recommendations		306
		Referer	wledgments		306
		Kelelel	ices		306
Pa	rt 5:	Mecha	anical Recycling		309
24	Dive	rting Mi	xed Polyolefins from Municipal Solid Waste to Feedsto	cks	
	for A	utomoti	ve and Construction Applications		311
	•		S. Muzata, Alexandra Alford, Laurent Matuana,		
			ayan, Lawrence Drzal, Kari Bliss and Muhammad Rabn	awaz	211
	24.1	Introdu			311
	24.2	-	mental Section		312
		24.2.1	Materials Processing of the Samples		312
		24.2.2	Processing of the Samples		313

xiv Contents

		24.2.3	Waste Plastic Separation and Milling	313		
		24.2.4	Characterization	313		
		24.2.5	Statistical Analysis	313		
	24.3		s and Discussion	314		
		24.3.1	MFI Values of L-PO/RM	314		
		24.3.2	Development of a Model Equation	315		
			Purity Analysis	317		
			MFI of m-PO	318		
	24.4	Conclu	ision	318		
		Referei	nces	319		
25	Ultra	high-Sp	oeed Extrusion of Recycled Film-Grade LDPE			
			n Molding Characterization	321		
	Peng	Gao, Jos	shua Krantz, Olivia Ferki, Zarek Nieduzak, Sarah Perry,			
	Davi	de Masa	to and Margaret J. Sobkowicz			
		Introd		321		
	25.2		als and Methods	323		
			Film-Grade Recycled LDPE Characterization	323		
			Ultrahigh-Speed Extrusion	323		
		25.2.3	Injection Molding	324		
			Approach and Characterization	324		
			Characterization Techniques	324		
	25.3		s and Discussion	326		
			Material Modification	326		
		25.3.2	Injection Molding and Characterization	328		
			25.3.2.1 Effects of Processing Techniques on Tensile Properties	328		
			Energy Consumption Analysis	330		
			sions & Recommendations	331		
	25.5		wledgments	331		
		Referei	nces	331		
26	6 Composites from Post-Consumer Polypropylene Carpet					
	and HDPE Retail Bags					
	Anuj	Mahesh	wari, Mohamadreza Youssefi Azarfam, Siddhesh Chaudhari,			
			zer, Jay C. Hanan, Sudheer Bandla, Ranji Vaidyanathan			
		Frank D.				
	26.1	Introd		334		
	26.2	Experi		335		
		26.2.1	Materials	335		
		26.2.2	Thermal Analysis	335		
		26.2.3	Compression Molding	336		
		26.2.4	Design of Experiments	336		

				CONTENTS	XV
		26.2.5	Characte	erization Techniques	337
	26.3	Results	and Discu	assion	337
		26.3.1	Compon	ents of HDPE Retail Bags and PP Carpet	337
		26.3.2	Mechani	cal Properties	338
			26.3.2.1	Flexural Testing	338
		26.3.3	Creep Be	ehavior	339
		26.3.4	Morphol	ogy in Composites	340
	26.4	Conclu	sions		341
		Acknow	wledgmen	t	341
		Referer	nces		341
27	Upcy	cling of	Aerospace	e Aluminum Scrap	343
				and David Weiss	
		Introdu			343
				nulations and Alloy Chemistry Optimization	344
		Casting	•		346
				Casting (CRC)	346
				erty Testing and Microstructural Characterization	346
			0,	onstration	351
	27.7			ecommendations	352
			wledgemei	nt	353
		Referer	nces		353
28	Stabi	lization	of Waste	Plastics with Lightly Pyrolyzed Crumb	
	Rubb	er in As	phalt		355
	Yueta	n Ma, H	Iongyu Zh	ou, Pawel Polaczyk and Baoshan Huang	
	28.1	Introdu	iction		355
	28.2	Main C	Content of	Chapter	356
		28.2.1	Raw Mat	rerials	356
				on of LPCR	356
		28.2.3	Producti	on of Polymer-Modified Asphalt	357
		28.2.4	-	ental Methodology	357
				Characterization of LPCR Solubility	357
			28.2.4.2	Fourier Transform Infrared Spectroscopy (FTIR) Test	358
			28.2.4.3	Dynamic Shear Rheometer (DSR) Test	358
			28.2.4.4	Cigar Tube Test	359
			28.2.4.5	Optical Microscopy Test	359
		28.2.5		nd Analysis	359
			28.2.5.1	LPCR Solubility Results	359
			28.2.5.2	Pyrolyzed Mechanisms for GTR	359
			28.2.5.3	Rheological Properties of Polymer Modified Asphalt	360
			28.2.5.4	Storage Stability of Polymer Modified Asphalt	362
			28.2.5.5	Polymer Micromorphology of Modified Asphalt	363
	28.3	Conclu	sions		363

xvi Contents

		Acknow Referen	vledgments aces	364 364
29	Analy	sis and l	Design for Sustainable Circularity of Barrier Films Used	
	•		ling Composites Production	365
			mi, Bhavik Bakshi, Jose Castro, Rachmat Mulyana,	
			es, Saikrishna Mukkamala, Kevin Dooley, George Basile,	
			anopoulos, Andrea Nahas, Aleen Kujur and Todd Hyche	
	_	Introdu		366
	29.2	Main C	ontent of Chapter	368
		29.2.1	SMC Barrier Film Supply Chain	368
			29.2.1.1 Life Cycle Assessment	368
			29.2.1.2 Techno-Economic Analysis	370
		29.2.2	Alternative Pathways for EoL Management of SMC Films	370
			29.2.2.1 Experimental Results	370
			29.2.2.2 Value Chain and Customer Preference	372
			29.2.2.3 Life Cycle Assessment	373
		29.2.3	Developing a Tool for Analyzing and Designing	
			a Sustainable Circular Economy	374
	29.3	Conclus	sions & Recommendations	374
	29.4		vledgements	375
		Referen	ices	375
30			PVC Plastic Circularity and Emerging Advanced Recovery	
		_	for End-of-Life PVC Materials	379
	Dome	enic DeC		
	30.1		action – Understanding PVC Materials	380
			nical PVC Recycling is Robust for Pre-Consumer Materials	381
			ocus on Post-Consumer Recycling of PVC Materials	383
	30.4		or Advanced Recycling Technology for Post-Consumer	
		PVC M		383
	30.5		al Advanced Recycling Technology for PVC-Rich Resource Streams	384
			Coupling and Compatibilizer Agents	384
			Catalytic Decomposition	385
			Microwave-Assisted Selective Decomposition	386
	20.6		Selective Solvent Dissolution Techniques	387
	30.6		al Advanced Recycling Technology for PVC-Lean Resource Streams	389
	30.7		rity is Achievable sions and Recommendations	390
	30.8			392
		Referen	vledgements aces	392 392
31	Dvna		esslinking for EVA Recycling	395
_	•		ler McLoughlin, Alireza Bandegi, Jayme Kennedy,	
		,	Oskouei, Sarah Mitchell, Michelle K. Sing, Thomas Gray	
			as-Zloczower	
	31.1	Introdu	iction	396

			Contents	xvii
	31.2	Vitrimer Technology		397
		Objective		398
		31.3.1 Experimental Materials		398
		31.3.2 Methods		398
	31.4	Results		399
		31.4.1 Crosslinking of EVA		399
		31.4.2 Vitrimerization of Crosslinked EVA		400
		31.4.3 Vitrimerization of EVA Foam		402
	31.5	Conclusions & Recommendations		403
		Acknowledgements		404
		References		404
Pa	rt 6:	Chemical Recycling		407
32		rming Poly(Ethylene Terephthalate) Glycolysis in a Torque		
		meter Using Decreasing Temperatures		409
	-	han Hatt, Karl Englund and Hui Li		
		Introduction		410
		Experimental		411
		Results and Discussion		414
	32.4	Conclusion		419
		Acknowledgements References		420 420
33	Sucta	inable Petrochemical Alternatives From Plastic Upcycling		421
33		A. Hackler and Robert M. Kennedy		721
	-	Introduction		422
		Details of Catalytic Hydrogenolysis		423
		Applications for Plastic-Derived Products		425
		Environmental and Emissions Ramifications from Catalytic Hyd	drogenolysi	
		Conclusions & Recommendations		430
		Acknowledgements		430
		References		430
34	PE U _l	pcycling Using Ozone and Acid Treatments		433
	Micha	ael S. Behrendt, Brandon D. Howard, Scott Calabrese-Barton,		
	John 1	R. Dorgan, Samantha Au Gee and Amit Gokale		
	34.1	Introduction		434
	34.2	Materials and Methods		434
		34.2.1 Materials		434
		34.2.2 Methods		435
	34.3	Main Content of Chapter		437
		34.3.1 Ozone Chemistry		437
	24.4	34.3.1.1 Chemistry of Oxidation Pathways		437
	34.4	Results and Discussion		439
		34.4.1 Ozonolysis of LDPE		439

xviii Contents

		34.4.2	Acid Activation of HDPE	441
	34.5	Conclu	sions	446
		Referer	nces	446
35	Enzvi	me-Base	ed Biotechnologies for Removing Stickies and Regaining Fiber	
	•		per Recycling	449
	_	•	ornellius Marcello, Neha Sawant, Swati Sood, Qaseem Haider,	
		_	and Kecheng Li	
		Introdu	· ·	449
	35.2	Materia	als and Methods	451
		35.2.1	Materials	451
		35.2.2	Enzyme Treatments	451
		35.2.3	Characterization of Contaminants	452
		35.2.4	Mechanical Properties of Remanufactured Papersheets	452
	35.3		and Discussion	452
		35.3.1	Characteristics of Sticky Contaminants	452
		35.3.2	Enzyme-Assisted Treatment for Contamination Removal	
			and Strength Improvement	456
	35.4	Conclu		459
			wledgements	460
		Referer	nces	460
36	Remo	oval of I	ron and Manganese Impurities from Secondary Aluminum	
			Microstructural Engineering Techniques	463
		_	B. Mishra, J. Hiscocks, B. Davi, S.K. Das, T. Grosko and J. Pickens	
	36.1	Introdu	action	464
	36.2	Results	and Discussion	465
		36.2.1	Low Si Aluminum Alloy Analysis by Thermodynamic Modeling	465
			36.2.1.1 Effect of Mn on Fe Removal	465
			36.2.1.2 Effect of Cr on Fe/Mn Removal	466
			Effect of Si as an Alloying Element	468
		36.2.3	Thermodynamic Analysis of the Effect of Mn on the Removal	
			of Fe from High Si Alloy	468
			36.2.3.1 Effect of Cr on Fe/Mn Removal from High Si Alloy	470
	36.3	-	mental Validation	471
		36.3.1	Removal of Fe/Mn from Low Si Alloys	472
	26.4	36.3.2	Removal of Fe/Mn from High Si Alloys	472
	36.4		sions & Recommendations	474
		Referer	ices	474
37	A No	vel Solv	ent-Based Recycling Technology: From Theory to Pilot Plant	477
	Ezra	Bar-Ziv,	Shreyas Kolapkar, George W. Huber and Reid C. Van Lehn	
	37.1	Introdu	action	478
	37.2	Main C	Content of Chapter	478
		37.2.1	Molecular Simulations and Experimental Verification	478
			Lab-Scale STRAP Results for Multi-Layer Flexible Films	482
		37.2.3	Polymer Characterization	485

		Contents	xix
		37.2.4 Scaling-Up	487
		37.2.5 Plastic Waste Dosing	488
		37.2.6 Dissolution Tank	488
		37.2.7 Hot Filter	488
		37.2.8 Precipitator	490
		37.2.9 Solvent Recovery and Solvent Purification	491
		37.2.10 Techno-Economic and Lifecycle Analysis	491
	37.3	·	493
		Acknowledgements	493
		References	493
38	Pascl Gabr	rization of Plastic Waste via Advanced Separation and Processing halis Alexandridis, Karthik Dantu, Christian Ferger, Ali Ghasemi, rielle Kerr, Vaishali Maheshkar, Javid Rzayev, Nicholas Stavinski, nas Thundat, Marina Tsianou, Luis Velarde and Yaoli Zhao	495
		Introduction	495
	38.2	Multi-Modal Sensor Recognition and Autonomous Sorting of Plastic Waste 38.2.1 Multi-Modal Sensor Development Using Mid-IR Standoff	
		Spectroscopy	497
		38.2.2 Spectral Database of Plastics and Plastic Type Classification	177
		Using Machine Learning	498
		38.2.3 Multi-Modal Classification of Plastics	499
	38.3	Physical and Chemical Molecular Valorization of Recovered Polyolefins 38.3.1 Environmentally Responsible Dissolution/Precipitation Recycling	500
		of Polyolefins	501
		38.3.2 Synthesis of Telechelic PE Waxes (t-PEW)	502
	38.4	Conclusions & Recommendations	503
		Acknowledgements	504
		References	504
Pa	art 7:	Innovations in Remanufacturing	507
39	Imag	ge-Based Machine Learning in Automotive Used Parts Identification	
	for R	emanufacturing	509
	Abu l	Islam, Suvrat Jain, Nenad G. Nenadic, Michael G.Thurston,	
	Justii	n Greenberg and Brad Moss	
	39.1	Introduction	510
	39.2	Literature Review	510
	39.3	Goals	511
		39.3.1 Experiment Description	513
		39.3.2 Model Used	513
	20.4	39.3.3 Results	513
	39.4	Combining Classifiers	522
	39.5	Conclusions and Recommendations	525 525
		Acknowledgements	525 526
		References	526

40	Imag	e-Based	Methods for Inspection of Printed Circuit Boards	527
	Nich	olas Gara	lner, Cooper Linsky, Everardo FriasRios and Nenad Nenadic	
	40.1	Introdu	ction	528
	40.2	System-	Level Approach to Introducing	
		Machin	e Learning-Based Automation	529
			System-Level Description	529
			Image Capture	530
		40.2.3	Part Number Identification	531
			LED Degradation Assessment	532
	40.3		sions & Recommendations	536
			vledgments	537
		Referen	ces	538
41			asonic Impact Treatment on the Fatigue Performance	
	of the	e High St	rength Alloy Steel	541
			joha, Shirley Garcia Ruano, Mark Walluk, Michael Thurston	
		M. Ravi S		F 41
		Introdu		541
	41.2		ls and Methods	543
			Materials Illument Tourisment (LUT)	543
			Ultrasonic Impact Treatment (UIT)	543
			Microstructure Evaluation Machanical Evaluation Handress & Fatigue Testing	544
			Mechanical Evaluation-Hardness & Fatigue Testing	544 545
	11.2		Design of Experiments and Discussions	543 547
	41.5		Surface Morphology	547 547
			Microstructures	548
			Microhardness	548
			Rotational Bend Fatigue	550
	41.4	Conclus	· ·	552
	11.1		vledgements	553
		Referen		553
42	Mech	anical P	roperties of High Carbon Steel Coatings on Gray	
12			med by Twin Wire ARC	555
			M. Walluk and L. P. Martin	
	42.1	Introdu		555
			ontent of Chapter	557
			Materials	557
			Coating Procedure	558
		42.2.3	e	559
	42.3	Results		560
		42.3.1	Adhesion and Hardness Testing	560
			Metallography	562
			Bend Testing	565

		Contents	xxi
		42.3.4 Wear	567
	42.4	Conclusion	569
		Acknowledgments	570
		References	570
43	Towa	ards Development of Additive Manufacturing Material	
		Process Technologies to Improve the Re-Manufacturing Efficiency	
	of Co	ommercial Vehicle Tires	573
		n Fu, Tadek Kosmal, Ren Bean, Robert Radulescu, Timothy E. Long	
	and (Christopher B. Williams	
		Introduction	574
	43.2	3D Scanning of Worn Tires	575
		43.2.1 Structured Light Scanning	576
		43.2.2 Structured Light Scanning for Tire Repair	576
		43.2.3 Tire Scanning Validation	578
		43.2.4 Next Steps	578
	43.3	Additive Manufacturing of Elastomeric Materials	
		via Photopolymerization of Latex Resins	579
		43.3.1 3D Printable Latex Rubber	579
		43.3.2 SBR Latex Resin Synthesis, Printing, and Characterization	579
		43.3.3 Next Steps	582
	43.4	Conclusions & Recommendations	583
		Acknowledgements	583
		References	584
Pa	rt 8:	Tire Recycling and Remanufacturing	585
44	Crun	nb Rubber From End-of-Life Tires to Reduce the Environmental	
	Impa	act and Material Intensity of Road Pavements	587
	Ange	la Farina, Annick Anctil and M. Emin Kutay	
	_	Introduction	588
	44.2	Materials and Methods	589
		44.2.1 Asphalt Mixtures Preparation	589
		44.2.2 Mechanistic-Empirical Pavement Design	590
		44.2.3 Life Cycle Assessment	592
	44.3	Results	593
	44.4	Conclusions	595
		References	596
45	Tire !	Life Assessment for Increasing Re-Manufacturing of Commercial	
	Vehic	cle Tires	599
	Vispi	Karkaria, Jie Chen, Chase Siuta, Damien Lim, Robert Radelescu	
	and \	Wei Chen	
	45.1	Introduction	600
	45.2	Method	601
		45.2.1 Description About the Tire Life Prediction Framework	602

xxii Contents

			45.2.1.1	Data Sources, Data Fusion and Data Reduction	
				for the Tire Life Prediction Framework	604
			45.2.1.2 45.2.1.3	Training the Machine Learning Model	604
				for the Tire Life Prediction	606
		45.2.2		Comparison	606
	45.3	Results			607
				n of the Tire Life Prediction Framework	607
			-	son for Tires at Different Truck Fleets	609
				son for Tires at Different Tire Location	609
	45.4	Conclu			610
			vledgemer	nts	611
		Referen			611
		Append	11X		612
46	Recyc	cling Wa	ste Tire R	ubber in Asphalt Pavement Design and Construction	613
	Dong	zhao Jin	and Zhar	iping You	
	46.1	Introdu	iction		614
		46.1.1	Waste Ti	re Rubber Materials	615
	46.2			bber in Asphalt Pavement	616
		46.2.1	•	Tire Rubber in Asphalt Overlay	
				ormance Evaluation	616
		46.2.2	•	Tire Rubber in Hot Rubber Chip Seal	
				ormance Evaluation	617
		46.2.3	•	Tire Rubber as Stress Absorbing Membrane Interlayer	
				ormance Evaluation	619
		46.2.4	•	Tire Rubber as TDA Subgrade and Performance	(10
	46.0	0 1	Evaluatio		619
	46.3			ecommendations	621
			vledgemer	nts	622
		Referen	ices		622
47	Chen	nical Pre	-Treatme	nt of Tire Rubbers for Froth Flotation Separation	
	of Bu	tyl and I	Non-Buty	l Rubbers	625
	Haru	ka Pineg	gar and Jej	ffrey Spangenberger	
	47.1	Introdu	iction		626
	47.2	Researc	h Work		627
		47.2.1	Materials	6	627
		47.2.2	Experime	ental Methods	629
		47.2.3		ental Results	630
	47.3			Recommendations	636
			vledgemer	nt	636
		Referen	ices		637

48		lopment of Manufacturing Technologies to Increase Scrap Recycling Into New Tires	639		
		araman Sridhar, Subramaniam Rajan, Robert Radulescu			
	and Narayanan Neithalath				
		Introduction	639		
	48.2	Technical Approach	642		
		48.2.1 Evaluation of Material Characteristics and Microstructure			
		Features of Embrittlement	643		
		48.2.2 Mechanical Property Tests to Elucidate the Influence of Straining	645		
		48.2.3 Thermal and Chemical Mitigation of Sensitized Features	647		
	48.3	Conclusions and Recommendations	648		
		References	649		
Pa	rt 9:	E-Scrap Recycling	651		
49		tive Leaching and Electrochemical Purification for the Recovery			
		ntalum from Tantalum Capacitors	653		
		lcock, T. Chen, N. Click, MF. Tseng and M. Tao			
		Introduction	654		
		Materials and Methods	656		
		Results and Discussion	657		
	49.4	Conclusions and Recommendations	662		
		Acknowledgement	662		
		References	662		
50	Reco	very of Lead in Silicon Solar Modules	665		
	Nata	lie Click, Randy Adcock and Meng Tao			
		Introduction	665		
		Methodology and Materials	666		
	50.3	Results and Discussion	667		
		50.3.1 Virgin Solder Leaching	667		
		50.3.2 Leached Solar Cell	669		
	50.4		674		
		Acknowledgement	674		
		References	674		
51	Ther	molysis Processing of Waste Printed Circuit Boards: Char-Metals			
	Mixt	ure Characterization for Recovery of Base and Precious Metals	677		
	Moha	ammad Rezaee, Joelson P. M. Alves, Sarma V. Pisupati, Charles Ludwig,			
	Henr	y Brandhorst and Ernest Zavoral			
	51.1	Introduction	678		
	51.2	Material and Methods	679		
		51.2.1 Thermolysis Process	680		
		51.2.2 Characterization	682		
		51.2.3 Size-Density Fractionation	682		
	51.3	Results and Discussions	684		
		51.3.1 Analysis of the Gas Product	684		

xxiv Contents

		51.3.2	Char-Metal Mixture Characterization	685
			51.3.2.1 Dioxin Content Analysis	685
			51.3.2.2 Elemental Content	685
			51.3.2.3 Characterization of Size Fractions	686
			51.3.2.4 Characterization of Size-Density Fractions	688
			51.3.2.5 Degree of Liberation Analyses	690
	51.4	Conce	otual Process Flowsheet for Liberation and Recovery of Base and	
		-	us Metals	691
	51.5	Conclu	isions	693
		Acknow	wledgment	693
		Referei	nces	694
52	Circu	ılar Eco	nomy and the Digital Divide: Assessing Opportunity	
-			tention Processes in the Consumer Electronics Sector	697
			Constanza Berrón, Chelsea Gulliver, Michael Thurston	0,7,
	,	Nabil Na		
		Introdu		698
			Consumer Electronics & The Circular Economy	698
			The Digital Divide	698
		52.1.3		699
	52.2	Metho	11 /	700
		52.2.1	Key Product Identification	700
			Domestic Material Flow Analysis (MFA)	700
		52.2.3	•	702
	52.3	Results	·	703
		52.3.1	Key Technologies	703
		52.3.2	Baseline MFA Models	703
		52.3.3	US Output Disposition MFA Models	705
		52.3.4	Transboundary Analysis	706
	52.4	Conclu	sions & Recommendations	707
		52.4.1	The Case for VRPs	707
		52.4.2	Capacity Limitations & Uncertainty Analysis	707
		52.4.3	e	709
		Referei	nces	709
Pa	rt 10	: Path	ways to Net Zero Emissions	713
53	Emis	sion Red	duction for an Imflux® Constant Pressure Injection	
		ing Pro	·	715
		_	Brandon, Lawless III, William F. and Santini, Kelly	
	53.1	Introdu	,	716
	53.2	Experi	mental Method and Results	717
		53.2.1	Experimental Approach	717
		53.2.2	± ± ±	717
		53.2.3	16 Cavity Deodorant Cap Energy Consumption Experiment	718
		53.2.4		720

		Contents	XXV
	53.3	Conclusions and Recommendations	720
		53.3.1 Summary of Results for All Experiments	720
		53.3.2 Summary of CO ₂ Emissions Reduction	723
		References	723
54	Circu	ılar Economy Contributions to Decarbonizing the US Steel Sector	725
	-	ı Walzberg and Alberta Carpenter	
		Introduction	726
		Method	727
	54.3	Results	728
		54.3.1 Bibliographic Summary	728
		54.3.2 Review of Material Efficiency Strategies in the Steel Sector54.3.3 Estimations of Greenhouse Gas Emission Reductions	730
		from Material Efficiency	734
	54.4	Conclusions & Recommendations	736
		Acknowledgements	736
		References	736
55		ronmentally Extended Input-Output (EEIO) Modeling for Industrial rbonization Opportunity Assessment: A Circular Economy Case Study	739
		uel Gause, Heather Liddell, Caroline Dollinger, Jordan Steen	139
		oe Cresko	
		Introduction	739
		Methods	742
		Results	744
		55.3.1 Case Study 1: Construction Improvements to Reduce	
		Cement Emissions	745
		55.3.2 Case Study 2: Improving Longevity of Motor Vehicles	747
	55.4	Conclusions and Recommendations	749
		Acknowledgments	750
		References	750
56		ways to Net Zero Emissions in Manufacturing and Materials	
	Prod	uction- HVAC OEMs Perspective	755
	Deba	Maitra, Swathy Ramaswamy, Cal Krause and Tiffany Waymer	
	56.1	Introduction	756
	56.2	Pathways to Net-Zero Solutions	757
	56.3	Establishing Pathways for Alternate Alloys	758
	56.4	Closing the Loop within the Supply Chain	760
	56.5	The Future of Low Carbon Aluminum	761
	56.6	The Future of Low Carbon Steel	762
	56.7	Conclusions	763
		Acknowledgements	764
		References	764
Inc	dex		767

The consensus that we need a circular economy is gaining speed. Decision-makers in government and industry increasingly see the immediate value that circularity can bring to the manufacturing sector, while addressing some of today's greatest global challenges. At the same time, academic research continues to investigate the tough technological and logistical questions that need to be answered for a circular economy to become reality.

At the REMADE Institute, my colleagues and I wanted to capture this gathering energy by bringing together the best research and innovation looking to solve circular economy implementations challenges. The result was the first-ever REMADE Circular Economy Tech Summit and Conference, which took place in March 2023 at the National Academy of Sciences building in Washington, D.C.

Attracting over 300 attendees, the scientific research, business models and logistics conference featured nearly 60 presentations of original research, as well as keynotes and plenaries from visionary thought leaders. The conference was held in partnership with the Ellen MacArthur Foundation, one of the most influential advocates for a circular economy at work today, and supported by the U.S. Department of Energy (DOE).

The following book compiles the peer-reviewed papers that were presented over the course of the conference. These materials cover in-depth areas of circular economy design, planning, business models, and enabling technologies.

The REMADE Institute is a public-private partnership, national institute, that focuses on the acceleration of circular economy implementations in the United States. REMADE is one of six U.S. manufacturing institutes that operate under the DOE's Advanced Materials and Manufacturing Technologies Office (*AMMTO*). REMADE is a consortium of 170 members (90 industry, 42 universities, 32 trade associations, and six national labs). It addresses knowledge gaps that, once overcome, can lead to faster adoption of circular economy practices. The 2023 conference included REMADE members, as well as non-members, and included international researchers from many countries including Japan, Germany, France, UK, and Ireland.

First, it is important to understand why circular economy has gained so much attention over the last decade and what role it can play in reducing the environmental footprint of industrial development. The future should be circular, and in the manufacturing economy this means that economic growth will come to depend more on extracting value from existing materials than securing new virgin material supplies. Remanufacturing, refurbishment, reuse, and recycling are processes that need more advancement and expansion to achieve this goal. In addition, our design methods have to evolve to ensure that these processes are effective and economical through design. In many industries, future survival will require

transformative redevelopment of business structures to create more inherently regenerative models — an idea that forward-thinking groups like the Ellen MacArthur Foundation are adamantly promoting.

Some of the greatest opportunities for innovation in the circular economy are in remanufacturing, refurbishment, reuse, and recycling. Critical to its growth, however, are developments in product design approaches and the manufacturing business model that are often met with challenges in the current, largely linear economies of today's global manufacturing chains. Beyond the technical and logistical, these processes also meet with both market and policy barriers that stifle its growth across the industrial economy. To combat these challenges, significant investments in technology research, both public and private, highlight the importance of and opportunities for innovation in pursuit of a more resilient, circular economy.

This book consists of 56 chapters in 10 parts covering broad areas of research and applications in the circular economy area. The first four parts explore the system level work related to circular economy approaches, models and advancements including the use of artificial intelligence (AI) and machine learning to guide implementation, as well as design for circularity approaches. Mechanical and chemical recycling technologies follow, highlighting some of the most advanced research in those areas. Next, Innovation in remanufacturing are addressed with descriptions of some of the most advanced work in this field. This is followed by tire remanufacturing and recycling, highlighting innovative technologies in addressing the volume of end-of-use tires. Pathways to net-zero emissions in manufacturing of materials concludes the book, with a focus on industrial decarbonization.

I would like to acknowledge the contribution of the conference Organizing Committee, as well as the Program Committee and its members who reviewed the papers. This book would not have been possible without their contributions. I also would like to acknowledge the following members of the REMADE Institute team (Magdi Azer, Michelle Schlafer, Ed Daniels, Megan Connor Murphy, Steve Remmler, Carrie Degláns, John Kreckel, Jared Ratzel, Michele Gibson, Bonnie Schiffmaker, Sarah Beisheim, Mike Haselkorn) for their support in every aspect of the planning and execution of the conference. Special thanks go to the REMADE Institute CTO, Magdi Azer, who was instrumental in leading and orchestrating the papers' peer reviews and finalization. Additions thanks go to Carrie Degláns from REMADE who assisted in the tracking and organization of submitted papers.

We also highly appreciate the dedicated support and valuable assistance rendered by Martin Scrivener and the Scrivener Publishing team during the publication of this book.