

Yifei Yu · Chaoqun Liu

Mechanism of Hairpin Vortex Formation by Liutex

Synthesis Lectures on Engineering, Science, and Technology

The focus of this series is general topics, and applications about, and for, engineers and scientists on a wide array of applications, methods and advances. Most titles cover subjects such as professional development, education, and study skills, as well as basic introductory undergraduate material and other topics appropriate for a broader and less technical audience. Yifei Yu · Chaoqun Liu

Mechanism of Hairpin Vortex Formation by Liutex

Yifei Yu Department of Mathematics The University of Texas at Arlington Arlington, TX, USA Chaoqun Liu Department of Mathematics The University of Texas at Arlington Arlington, TX, USA

 ISSN 2690-0300
 ISSN 2690-0327 (electronic)

 Synthesis Lectures on Engineering, Science, and Technology
 ISBN 978-3-031-53669-4

 ISBN 978-3-031-53669-4
 ISBN 978-3-031-53670-0 (eBook)

 https://doi.org/10.1007/978-3-031-53670-0

The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

Preface

"Turbulence" is still covered by a mystical veil and remains a mystery of nature after over a century of intensive study. The following comments are cited by Wikipedia web page at http://en.wikipedia.org/wiki/Turbulence. Nobel Laureate Richard Feynman described turbulence as "the most important unsolved problem of classical physics" (USA Today 2006). According to an apocryphal story, Werner Heisenberg was asked what he would ask God, given the opportunity. His reply was: "When I meet God, I am going to ask him two questions: Why relativity? And why turbulence? I really believe he will have an answer for the first." (Marshak, 2005). Horace Lamb was quoted as saying in a speech to the British Association for the Advancement of Science, "I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics, and the other is the turbulent motion of fluids. And about the former I am rather optimistic" (Mullin 1989; Davidson 2004). Note that both Heisenberg and Lamb were not optimistic for the turbulence study. Anyway, the mechanism of turbulence formation and sustenance is still a very tough question for research.

As widely observed by experiment and confirmed by direct numerical simulation (DNS), the hairpin vortex plays a critical role in flow transition from laminar state to a turbulent state at least for the type of the natural boundary layer transition (see Kleiser and Zang, 1991). Apparently, the mechanism of the hairpin vortex formation is the priority of research on flow transition and turbulence. It has been discussed for several decades that where and how the Λ -shaped vortex and hairpin vortex are generated, but there still has not been a convincing answer yet. Hama et al. (1963) described the process of formation of 'A-shaped vortex' in the vicinity of the Lambda vortex tip. They found that '...a simplified numerical analysis indicates that the hyperbolic vortex filament deforms by its own induction into a milk-bottle shape (the 'Lambda vortex') and lifts up its tip...' It was found by Knapp and Roache (1968) that the ring-like vortex rotates by about 90° to an upright position and then dissipates. Hama and Nutant (1963) suggested that '...the true cause... (of randomization) ...is in the complicated tangling at the neck of the Λ -shaped vortex loop which might have resulted from the higher-order deformations of a curved vortex filament by its own induction interacted upon by the high-shear layer.' The same idea was confirmed later by Moin et al. (1986) in a direct numerical simulation. They concluded "We have demonstrated by numerical experiments that a curved filament of concentrated vorticity evolves into a vortex ring as a result of self-induction effects." In the same paper, a hairpin vortex "pinch-off" was found and the vortex ring moves away rapidly after the vortex pinch-off, which indicates turbulence was produced by "vortex breakdown". It looks like that the mechanism of the Λ -shaped vortex and the hairpin vortex formation was discovered. These conclusions have dominated the turbulence community for several decades and cited by countless research papers.

However, if these conclusions were carefully checked, it would not be difficult to find that they have many self-contradictions. First, the target here is the mechanism of the Λ -shaped vortex and the hairpin vortex formation, but the mechanism given by Moin et al. (1986) is about vorticity. As Liu et al. (2014, 2018) pointed out that vorticity is a vector and vortex is another vector, but they are two totally different vectors with very weak correlation in lower boundary layer (Robison 1991). Liu et al. further clearly state that vortex is not "vorticity tube or vorticity filament." The self-deformation mechanism of vorticity has nothing to do with the mechanism. Second, in the paper by Moin et al. (1986), vorticity line development was simulated, but the divergence of vorticity is zero, which means vorticity filament or vorticity tube (they mistakenly called vortex filaments) can never be "pinch-off" or "breakdown", which is directly against the law of zero vorticity divergence everywhere.

Later it was shown by Borodulin and Kachanov (1995) that the spikes (associated with the ring-like vortices) represent very conservative, stable structures, which do not breakdown for a long distance downstream, including stages when the flow becomes strongly randomized in the near-wall region. The Lambda vortex legs turned out to be rather stable despite their shapes were distorted with some spiral non-uniformities in several quantitative experimental visualizations by Borodulin et al. (2003).

The goal of this book is trying to give a clear picture to reveal the mechanism of the Lambda vortex legs and hairpin vortex formation based on high-order DNS for flow transition and turbulence by using the Liutex theory which is the state-of-the-art tool of vortex definition and identification.

The key issue is still the conclusion made by Liu (2014) that "shear instability is the mother of turbulence" or in other words, how shear or vorticity becomes flow rotation or Liutex. This book will explain how hairpin vortex and Liutex structure are created in a boundary layer due to the noise environmental surroundings, step by step.

In writing this book, Yu would like to thank Dr. Chaoqun Liu's guidance and help during his Ph.D. student life. He also wants to thank his parents, Xiaofeng Yu, Qinghua Hou and girlfriend Yue Yang for their understanding and unconditional support. Liu appreciates the efforts made by the UTA Team including Zhining Liu, Li Jiang, Hua Shang, Ping Lu, Yonghua Yan, Yiqian Wang, Yisheng Gao, Xiangrui Dong, Jianming Liu. Liu is also deeply thankful to his wife, Weilan Jin, for her full support by taking care of all housework. He also thanks his daughter, Haiyan Liu, and his son, Haifeng Liu, for the support as well.

The authors welcome readers to provide feedback including criticisms and corrections.

Arlington, TX, USA

Yifei Yu Chaoqun Liu

Contents

1	Intr	oduction	1
	1.1	Classical Theory on Turbulence Generation Revisit	1
		1.1.1 Richardson Vortex Cascade Revisit	1
		1.1.2 Kolmogorov's Hypothesis Revisit	2
		1.1.3 Some Arguments	3
	1.2	A Short Review of Study on Turbulence Research	4
	1.3	A Short Review of Boundary Layer Stability and Transition	7
	1.4	Short Review on the Vortical Structure and Physics of Late	
		Boundary Layers Transition	11
	1.5	Liutex-The Rigorous Mathematical Definition of Vortex	
		and Unique Vortex Identification	20
	1.6	Motivations of This Book	21
2	Som	e Basic Knowledge	23
	2.1	Background Knowledge	23
		2.1.1 Continuous Medium Hypothesis	23
		2.1.2 Eulerian and Lagrangian Description	24
		2.1.3 Material (Substantial) Derivative	25
	2.2	Navier–Stokes Equations	25
		2.2.1 Continuity Equation	26
		2.2.2 Momentum Equation	28
		2.2.3 Energy Equation	31
		2.2.4 Governing Equations Expressed in the Cartesian Coordinate	
		System	33
	2.3	Non-dimensional Form	35
		2.3.1 Expansion in Curvilinear Coordinates	38
	2.4	Orr-Sommerfeld Equations	47
3	Reco	eptivity	51
	3.1	Introduction	51
	3.2	Numerical Simulation	55

		3.2.1 Governing Equation and Numerical Methods	55
		3.2.2 Numerical Results Validation	55
		3.2.3 Leading Edge Receptivity of Boundary Layer Over the Flat	56
		3.2.4 Receptivity to Acoustic Wave	58
		3.2.5 Receptivity to Vortical Disturbance	62
		3.2.6 Leading Edge Receptivity of Airfoil	63
		3.2.7 Receptivity Caused by the Surface Roughness	65
	3.3	Summary	77
4	Lint	tex and Third Generation of Vortex Definition and Identification	79
	4.1	First and Second Generation of Vortex Identification	80
		4.1.1 First Generation	80
		4.1.2 Second Generation	81
		4.1.3 Common Problems of the Second-Generation Methods	84
	4.2	Liutex and Third Generation of Vortex Definition and Identification	84
	4.3	Three Components of Velocity Gradient Tensor	87
	4.4	Liutex Core Line	88
	4.5	Contamination of the First and Second Generations	90
	App	endix	92
5	DNS	S Observation on Natural Hairpin Vortex	97
	5.1	Case Setup	97
		5.1.1 Governing Equation	97
		5.1.2 Numerical Method 1	00
		5.1.3 Case Description 1	01
		5.1.4 Code Validation 1	.03
	5.2	Spanwise Vortex 1	.03
	5.3	Lambda Vortex and Shear Layer Generation 1	.08
	5.4	Vortex Ring Formation 1	14
	5.5	Experimental Observation on Natural Hairpin Vortex 1	16
6	Mec	hanism of Spanwise and Lambda Vortex Formation 1	19
	6.1	Linear Stability Theory 1	20
	6.2	Mechanism of Spanwise Vortex Formation 1	.24
	6.3	Mechanism of Lambda Vortex Formation 1	28
	6.4	Comparison Linear Growth with DNS 1	29
	6.5	Inflection Point and Inviscid Instability 1	32
7	Swe	eps, Ejections and Shear Layer Formation 1	37
	7.1	Sweeps and Ejections by the Lambda Vortex 1	37
	7.2	Lambda Vortex Stretching and Rollup 1	41
	7.3	Shear Layer Formation 1	52

8	Vor	tex Ring Formation	159
	8.1	Shear Layer Instability	159
	8.2	Instability Analysis at Inflection Points	160
	8.3	Kelvin-Helmholtz Instability and Vortex Ring Formation	162
9	Son	e Conclusions on the Mechanism of Hairpin Vortex Formation	171
Re	References		

Nomenclature

M_{∞}	Mach number
Re	Reynolds number
δ_{in}	Inflow displacement thickness
T_w	Wall temperature
T_{∞}	Free stream temperature
Lzin	Height at inflow boundary
Lzout	Height at outflow boundary
Lx	Length of computational domain along x direction
Ly	Length of computational domain along y direction
x _{in}	Distance between leading edge of flat plate and upstream boundary of
	computational domain
A_{2d}	Amplitude of 2D inlet disturbance
A_{3d}	Amplitude of 3D inlet disturbance
ω	Frequency of inlet disturbance
α_{2d}, α_{3d}	Two and three dimensional streamwise wave number of inlet disturbance
β	Spanwise wave number of inlet disturbance
R	Ideal gas constant
γ	Ratio of specific heats
μ_∞	Viscosity
x, y, z	Stremwise, spanwise, normal directions
Ŕ	Liutex vector
R_x, R_y, R_z	Components of Liutex vector in the x, y, z directions

List of Figures

Fig. 1.1	a Sketch of vortex breakdown (Feynman, 1955; Tsubota et al.,	
	2009) b ketch of Richardson cascade process (Frisch et al., 1978)	2
Fig. 1.2	Sketch of the process of boundary layer transition (FTT 2009)	7
Fig. 1.3	Major steps of boundary layer transition from laminar	
	to turbulent flow (FTT 2009)	8
Fig. 2.1	Lagrangian and Eulerian descriptions	25
Fig. 3.1	Amplitude distributions in the wall-normal direction	
	at $Re_x = 339$	56
Fig. 3.2	Evolution of spatial growth rate of T-S wave	57
Fig. 3.3	Computational mesh for the flat-plate with super-ellipse	
	leading-edge	57
Fig. 3.4	Pressure gradient along the flat plate with super-ellipse	
	leading-edge	58
Fig. 3.5	Streamwise velocity profile at $x = 22.7$ of flat-plate	
	with super-ellipse leading-edge	59
Fig. 3.6	Pressure gradient along the flat-plate with ellipse leading-edge	59
Fig. 3.7	Streamwise velocity profile at different locations of flat-plate	
	with ellipse leading-edge	59
Fig. 3.8	Contours of vertical disturbance velocity	60
Fig. 3.9	Vertical disturbance velocity distribution along the flat plate at	
	y = 0.2	60
Fig. 3.10	Contours of the streamwise disturbance velocity	61
Fig. 3.11	Contours of the Fourier amplitude of the streamwise disturbance	
	velocity after the Stokes-wave is subtracted	61
Fig. 3.12	Amplification factor of T-S wave along flat-plate	61
Fig. 3.13	Amplitude profile of streamwise disturbance velocity	
	after Stokes-wave is subtracted	62

Fig. 3.14	Contours of streamwise disturbance velocity	63
Fig. 3.15	Distribution of streamwise disturbance velocity along the plate	
	at different vertical locations	63
Fig. 3.16	Grid distribution around the airfoil	64
Fig. 3.17	Pressure gradient along the airfoil	64
Fig. 3.18	Distributions of the stream-wise disturbance velocity versus x	65
Fig. 3.19	Contours of the streamwise disturbance velocity u'	65
Fig. 3.20	Sketch of the computational domain	68
Fig. 3.21	2D stretched grids	68
Fig. 3.22	Comparison of the normal direction distribution of the streamwise	
	velocity component of the base flow with a small-scale roughness	
	element and the Blasius profiles	70
Fig. 3.23	Comparison of the amplification factor of disturbance	
	for small-scale roughness element and smooth fiat plate	71
Fig. 3.24	Maximum streamwise and normal amplitudes of mean flow	
	distortion (u_0, v_0) , fundamental TS wave (u_1, v_1) , and the first	
	harmonic wave (u_2, v_2)	72
Fig. 3.25	Contour plots of steady base flow stream-functions	
	and instantaneous perturbation stream-functions at $t = 9 T$	
	for one single small-scale roughness case. Flow direction is	
	from left to right	73
Fig. 3.26	Stream function contours of the base flow for multiple distributed	
	roughness elements case (part of the domain is shown, flow	
	direction is from left to right)	73
Fig. 3.27	Streamwise distribution of amplification factors; a amplification	
	factors for u , b amplification factors for v	74
Fig. 3.28	Contour plots of the instantaneous perturbation stream functions	
	at $t = 10$ T for the distributed multiple roughness elements (part	
	of the domain is shown, flow direction is from left to right)	74
Fig. 3.29	Distribution of the 3-D distributed roughness surface	75
Fig. 3.30	Vector plots of velocity fields on $j = 2$ and $j = 3$ grid surfaces	
	for the small-scale 3-D distributed roughness case	75
Fig. 3.31	Amplification factor of the maximum perturbation velocity	
	for the small-scale 3-D distributed roughness obtained on an $82 \times$	
	34×18 (4.4 T-S wavelengths physical domain +0.6 wavelength	
	buffer) grid	75
Fig. 3.32	Amplification factor of the perturbation u-velocity	
	for the small-scale 3-D distributed roughness obtained on a 82 \times	
	34×18 (4.4 T-S wavelengths physical domain $\div 0.6$ wavelength	
	buffer) grid	76

Fig. 3.33	Vector plots of velocity fields on $j = 2$ and $j = 3$ grid surfaces	
	for the large-scale 3-D distributed roughness case	76
Fig. 3.34	Comparison of u-velocity profiles for the base flow. a Numerical	
	results for the large-scale 3-D distributed roughness case,	
	b experiment of Tadjfar et al. (1993, over the sphere roughness)	77
Fig. 3.35	Sketch of some important mechanisms of the boundary layer	
	receptivity (FTT09)	78
Fig. 4.1	Streamline in different coordinate systems	80
Fig. 4.2	<i>u</i> distribution in the Couette flow	81
Fig. 4.3	Coordinate transformation	85
Fig. 4.4	Liutex core lines of the plat plate boundary transition	
-	without iso-surface	89
Fig. 4.5	Liutex core lines of the plat plate boundary transition	
C	with iso-surface	89
Fig. 4.6	Correlations between Liutex and vorticity, Q, λ_{ci} , λ_2 and Δ	91
Fig. 4.7	Rotation around the z-axis	92
Fig. 4.8	Rotation around the y'-axis	93
Fig. 5.1	Physical domain of boundary layer flow transition simulation	102
Fig. 5.2	Schematics of coordinate transformation	102
Fig. 5.3	Log-linear plots of the time-and spanwise-averaged velocity	
0	profile in wall unit	103
Fig. 5.4	Vortex structures shown by Liutex iso-surface with the threshold	
0	R = 0.005 for $x < 380$ and $R = 0.07$ for $x > 380$ (top view)	104
Fig. 5.5	Vortex structures shown by Liutex iso-surface with the threshold	
0	R = 0.005 for $x < 380$ and $R = 0.07$ for $x > 380$ (side view)	104
Fig. 5.6	Vortex structures shown by Liutex iso-surface with the threshold	
0	R = 0.005 for $x < 380$ and $R = 0.07$ for $x > 380$	105
Fig. 5.7	Spanwise vortices shown by Liutex iso-surface with the threshold	
0	R = 0.005	105
Fig. 5.8	Spanwise vortices shown by Liutex iso-surface with the threshold	
0	R = 0.005 top view (left) and side view (right)	106
Fig. 5.9	The Liutex magnitude and spanwise vortices in the streamwise	
0	distribution	106
Fig. 5.10	The $\frac{dw}{dt}$ distribution and spanwise vortices on the middle way	
	of v-slice	107
Fig 5 11	The streamwise growths of u v w disturbances	107
Fig. 5.12	Vortex structures shown by Liutex core lines (black lines)	107
8. 0.12	and Lintex iso-surface (green iso-surface) with the threshold	
	R = 0.005	108
		100

Fig. 5.13	Vortex structure shown by Liutex core lines (black line), Liutex	
	iso-surface (sky blue iso-surface) with the threshold $R = 0.005$	
	and the roll up angle	108
Fig. 5.14	The distribution of <i>w</i> velocity in the wall normal direction	109
Fig. 5.15	The distribution of <i>u</i> velocity	109
Fig. 5.16	Vortex structures shown by (left) Liutex iso-surface	
	with the threshold $R = 0.005$ for $x < 380$ and	
	$R = 0.07$ for $x \ge 380$ and Liutex core lines. Color shows	
	the Liutex magnitude; (right) Liutex iso-surface with the threshold	
	$R = 0.005 \text{ for } x < 380 \text{ and } R = 0.07 \text{ for } x \ge 380 \dots$	110
Fig. 5.17	Shear region between two Lambda vortices	110
Fig. 5.18	Shear region between two Lambda vortices (top view)	111
Fig. 5.19	Shear region between two Lambda vortices (side view)	111
Fig. 5.20	Lambda vortex shown by Liutex iso-surface with the threshold	
	R = 0.07 and the positions of slice 1(S1) and Slice	112
Fig. 5.21	Streamlines on S1	112
Fig. 5.22	Lambda vortex and the streamlines on S2	113
Fig. 5.23	Streamlines on S2	113
Fig. 5.24	U distribution on S2	114
Fig. 5.25	Liutex core lines and Liutex iso-surface with threshold $R = 0.07 \dots$	115
Fig. 5.26	Liutex core lines and roll up angles	115
Fig. 5.27	Spanwise and Lambda vortices observed in the experiment done	
	by Guo et al	116
Fig. 5.28	Stretched Lambda vortex and vortex rings observed	
	in the experiment done by Guo et al.	117
Fig. 5.29	Ring-Like vortices observed in the experiment done by Guo et al	117
Fig. 6.1	Eigenvalues of 2D modes	124
Fig. 6.2	Eigenfunction of the unstable 2D modes ($v = 0$)	125
Fig. 6.3	Spanwise vortex direction	126
Fig. 6.4	Streamwise growth of u, v, w disturbances	126
Fig. 6.5	Eigenvalues of 3D modes at inlet	127
Fig. 6.6	Velocity profile at $x = 400$	127
Fig. 6.7	Eigenvalues of 3D modes at $x = 400$	128
Fig. 6.8	Eigenfunctions of 3D modes at $x = 400$	128
Fig. 6.9	Angle between Lambda vortex and spanwise direction	
	without iso-surface	129
Fig. 6.10	Angle between Lambda vortex and spanwise direction	
	with iso-surface	130
Fig. 6.11	Time and slice averaged streamwise distribution of percentage	
	of the ignored term in the linear stability theory	131

Liutex iso-surface (grey) with the threshold $R = 0.005$	
and iso-surface (red) on which error ration is 20%	132
Iso-surface (red) on which error ratio is 20%	132
Liutex iso-surface (grey) with the threshold $R = 0.005$	
and iso-surface (red) on which error ration is 20% (side view)	133
Liutex iso-surface (grey) with the threshold $R = 0.005$	
and iso-surface (red) on which error ration is 20%	
without regions near the bottom	133
Iso-surface on which $D^2 v_0 = 0$	134
Iso-surface on which $D^2 v_0 = 0$ and v_0 is nonzero	135
Iso-surface on which $D^2 v_0 = 0$ and v_0 is nonzero (top view)	135
Iso-surface on which $D^2 v_0 = 0$ and v_0 is nonzero (side view)	135
Sketch of u and v distribution	136
a Liutex iso-surface (green iso-surface) of the Lambda vortex	
with the threshold $R = 0.07$ and Liutex core line (black line)	
b Liutex iso-surface (green iso-surface) of the Lambda vortex	
with the threshold $R = 0.07$ and Liutex core line (colorful	
line) and the color shows the Liutex magnitude c Strength	
of the Liutex core (very strong in the Lamnda vortex necks	
d General structure of the Lambda vortex	138
Lambda vortex and the locations of the selected slices	139
Streamlines in S1	139
<i>u</i> distribution on S1	140
Lambda vortex and iso-surface of $u = 0.65$	140
Side view of w distribution on S2 and the Lambda vortex (drawn	
in two different figures)	141
Lambda vortex (grey) and the iso-surface on which $w = -0.02$	141
Lambda vortex (grey) and the iso-surface on which $w = 0.02$	142
Vortex iso-surfaces (grey) and the R_x distribution on the Liutex	
core lines	143
Vortex iso-surfaces (grey) and the R_z distribution on the Liutex	
core lines	143
R_z distribution on the Liutex core lines	143
Streamwise R_z on the line $y = 9.11$ and $z = 1.02$	144
z positions of the Liutex core line	144
Angles on the Liutex core line	145
Angles on the Liutex core line (side view)	145
<i>u</i> distribution in the normal direction of the mean flow	146
<i>u</i> velocity on the Liutex core line	146
	Liutex iso-surface (grey) with the threshold $R = 0.005$ and iso-surface (red) on which error ration is 20%

Fig. 7.18	Length of the curved spanwise vortex	147
Fig. 7.19	Length of the curved spanwise vortex after 0.2 T	147
Fig. 7.20	Selected point for analyzing stretching	148
Fig. 7.21	Stretching strength on the Liutex core line	149
Fig. 7.22	<i>u</i> velocity on the Liutex core line	149
Fig. 7.23	z position on the Liutex core line	150
Fig. 7.24	Length of the Lambda vortex	150
Fig. 7.25	Length of the Lambda vortex after 0.2 T	150
Fig. 7.26	Angle on the Liutex core line	151
Fig. 7.27	Lambda vortex and Liutex core line	151
Fig. 7.28	The roll up angle of the Lambda vortex	152
Fig. 7.29	Vortex iso-surface and the selected slice	153
Fig. 7.30	Contour of <i>u</i> velocity on the selected slice	153
Fig. 7.31	Distribution of $\frac{du}{dz}$ on the selected slice	154
Fig. 7.32	Contour of <i>u</i> velocity and distribution of $\frac{du}{dz}$ on the selected slice	155
Fig. 7.33	Distribution of $\frac{du}{dv}$ on the selected slice	155
Fig. 7.34	Liutex iso-surface of the Lambda vortex and shear iso-surface	156
Fig. 7.35	Liutex iso-surface of the Lambda vortex and shear iso-surface	
	(top view)	156
Fig. 7.36	Liutex iso-surface of the Lambda vortex and shear iso-surface	
	(side view)	157
Fig. 7.37	Lambda vortex and iso-surface of $u = 0.38$	157
Fig. 7.38	Lambda vortex and iso-surface of $u = 0.65$	158
Fig. 8.1	Illustration of the Couette flow	160
Fig. 8.2	Eigenvalues of Orr-Sommerfeld equation for the Couette flow	160
Fig. 8.3	Eigenvalues of Orr-Sommerfeld equation for the $u = \tanh(4y)$	161
Fig. 8.4	The corresponding eigenfunction of the unstable mode	
	for $u = \tanh(4y)$	161
Fig. 8.5	Veloicty profile at the shear layer	162
Fig. 8.6	Velocity profile of the Blasius solution and at the shear region	162
Fig. 8.7	Eigenvalues of the Orr-Sommerfeld equation	163
Fig. 8.8	Corresponding eigenfunctions of the unstable mode	163
Fig. 8.9	Numerical Simulation of Kelvin-Helmoholtz instability	164
Fig. 8.10	Vortex structure at $t = 6T$	164
Fig. 8.11	Vortex structure at $t = 6.1T$	164
Fig. 8.12	Vortex structure at $t = 6.2T$	165
Fig. 8.13	Vortex structure at $t = 6.3T$	165
Fig. 8.14	Vortex structure at $t = 6.4T$	165
Fig. 8.15	Vortex structure at $t = 6.45T$	166

Fig. 8.16	R_y distribution on the vortex iso-surface at t = 6T	166
Fig. 8.17	R_y distribution on the vortex iso-surface at t = 6.1T	167
Fig. 8.18	R_y distribution on the vortex iso-surface at t = 6.2T	167
Fig. 8.19	R_y distribution on the vortex iso-surface at t = 6.3T	168
Fig. 8.20	R_y distribution on the vortex iso-surface at t = 6.4T	168
Fig. 8.21	R_y distribution on the vortex iso-surface at t = 6.45T	169

Introduction

Turbulence remains an unsolved scientific puzzle, bearing immense importance not only in the realm of science but also in numerous engineering applications such as aerospace engineering, mechanical engineering, hydrodynamics, meteorology, and bioengineering. Despite its widespread relevance, the fundamental physics behind turbulence generation and maintenance continues to elude researchers, offering an ongoing and intriguing avenue for exploration.

1.1 Classical Theory on Turbulence Generation Revisit

1.1.1 Richardson Vortex Cascade Revisit

Classical turbulence theory, notably Richardson's work in 1924 (see Fig. 1.1a, b), introduced the concept of vortex chains. Richardson's famous poem states, "Big whirls have little whirls, which feed on their velocity; And little whirls have lesser whirls, and so on to viscosity in the molecular sense." However, despite this theoretical framework, the vortex chain generated by large vortex breakdown has never been observed in practice. Recent research, such as Direct Numerical Simulation (DNS) conducted by Liu et al. in 2014, has revealed that turbulence comprises vortices of various sizes, ranging from large to small. Remarkably, all these vortices are generated due to shear layer instability of the Kelvin–Helmholtz type, and no instances of vortex breakdown have been observed. In fact, neither experimental nor computational evidence of the so-called "eddy cascade" has been documented to date.

1