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Preface 

The term “integrated system” refers to a seamless collaborative operation of a 
large number of (potentially unrelated) subsystems to achieve a specific goal. It 
involves combining multiple subsystems or components, such as hardware, soft-
ware, networks, and workflows, into one larger system that works as a whole. Inte-
grated systems, widely employed across various scientific and technological domains 
today, aim to enhance coherence, efficiency, and the overall quality of the system 
functionality. 

A familiar example of an integrated system is a smartphone, which, to deliver 
the expected smooth functionality, must have a consistent and flawless integration of 
various subsystems such as electronics, wireless technology, camera, software, user 
interface, energy management, heat control, smart materials and composite design, 
ergonomics, and more. Back in the old days, creation of most goods relied mainly on 
the skills of a single, or small group of artisans, with one (usually specific) expertise. 
A carpenter, for example, could craft most of the household items. In today’s world, 
however, a lot more is expected from a product than a mere functionality. Take a 
simple chair, for example. Modern chairs are expected to be ergonomic, necessitating 
extensive research into people’s habits and the health implications of factors like 
shape, height, and back angle adjustments. Furthermore, factors such as stability, 
quality, reliability, safety, production methodology, economic considerations, market 
competition, environmental impacts, and more must also be taken into account for a 
successful venture. 

The concept of “integrated systems” extends beyond consumer products and 
applies to most modern challenges in science, technology, and society. Astrophysics, 
for instance, relies on precise measurements primarily accomplished through highly 
accurate space telescopes fabricated using advanced manufacturing methods. Once 
constructed the entire telescope must be transported into orbit using efficient and 
powerful rockets. In the realm of medicine, surgical procedures increasingly depend 
on a variety of precision machines, ultrasonic devices, X-rays, MRIs, and modern 
nuclear technologies, bringing together various fields of science and engineering. 

As evident from the examples above, the swift pace of technological advance-
ment has heightened the demand for multidisciplinary approaches to tackle intricate
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vi Preface

and complex challenges of the modern world. In response, a successful strategy is 
the integration of systems and technologies that involves combining elements like 
human resources, technology, and environmental factors to attain a shared objective. 
Integrated systems and technologies yield numerous advantages, including increased 
efficiency, enhanced accuracy, higher flexibility, learning capability, adaptability of 
digital system, superior decision making, and cost savings. Through process stream-
lining, waste reduction, and overall efficiency improvement, integrated systems and 
technologies offer a more comprehensive and effective approach to problem-solving. 

Despite these advantages, there are still challenges and gaps in our understanding 
of how to effectively integrate various systems. These challenges include complexity, 
compatibility, security, cost, resistance to change, customized maintenance, and 
the need for regular updates while ensuring continued consistency. Addressing 
these challenges requires a collaborative approach that brings together experts from 
different fields to develop effective solutions. Enterprises and industrial parties must 
also stay vigilant and informed about key technologies in their respective fields and 
beyond to identify opportunities for integrating different technologies and systems. 

The Integrated Systems Design and Technology (ISDT) conference aims to facil-
itate collaboration among diverse disciplines in various sectors. The event features 
renowned scientists from around the globe who specialize in a wide range of fields, 
with the goal of fostering a deeper understanding of other disciplines and the 
approaches required for multidomain research and projects. The theme of 2023 
conference revolved around the pivotal role of data in engineering and knowl-
edge technology. As technology continues to advance, data driven approaches have 
become increasingly critical in shaping the future of engineering design and produc-
tion. This year’s conference aimed to delve into the various ways in which data and 
knowledge can be utilized to enhance and optimize engineering processes, improve 
precision, and facilitate innovation. 

The ISDT community is committed to establishing a network of professionals 
worldwide to foster international collaboration. This network will facilitate the 
exchange and sharing of ideas, best practices, and innovations among experts from 
different disciplines, resulting in the development of effective solutions for complex 
challenges, including those encountered in Industry 4.0 and Society 5.0. By bringing 
together scientists from different fields, ISDT aims to promote interdisciplinary 
collaboration and innovation, ultimately yielding improved outcomes and more 
efficient problem-solving. 

Berkeley, CA, USA 
Siegen, Germany 

Mohammad-Reza Alam 
Madjid Fathi
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Automated Photonic Waveguide Loss 
Measurement Using Out-scattering Light 
Method 

Xiangjian Zeng, Jay W. Reddy, and Maysamreza Chamanzar 

Abstract Characterization of optical waveguide propagation loss is fundamental to 
the practical realization of integrated photonics. Evaluating waveguide performance 
throughout the fabrication process enables rigorous quality control and rapid fabrica-
tion process development and optimization. Conventional measurement techniques 
such as the cutback and modified cutback methods directly measure the out-coupling 
light intensity from optical fibers and photonic waveguides of different lengths, and 
subsequently estimate the waveguide propagation loss. These methods are gener-
ally laborious, requiring many measurements for each device. Additionally, they 
are destructive to the device under test, as in the case of the cutback method, or 
require specially-designed arrays of various lengths, as in the case of the modified 
cutback method. In this work, we describe a method utilizing the out-scattering light 
intensity profile to efficiently assess multiple waveguides non-destructively and in 
a fully-automated manner to determine the individual waveguide propagation loss 
and identify faulty waveguide regions. The accuracy of the out-scattering method 
is validated using traditional modified cutback methods. Moreover, a comparative 
analysis of the two methods is presented, along with strategies to optimize their per-
formance. This study is performed using Parylene photonic waveguides, which we 
have recently demonstrated for light delivery into the brain for neural stimulation. 
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1 Introduction 

Optical waveguides are widely utilized in domains such as optical communications, 
integrated photonics, and biophotonics [ 1, 2]. A fundamental property of an optical 
waveguide is how quickly the optical power decays as light propagates through the 
waveguide (i.e., the propagation loss). The propagation loss ultimately determines the 
suitability of a given waveguide architecture for its intended application, depending 
on the requirements for the input/output power and the length of the waveguide. 
Therefore, characterizing the waveguide propagation losses is an essential part of 
quality control and performance optimization. 

Numerous waveguide propagation loss characterization methods have been 
demonstrated in the past. The direct cut-back method, in which a manufactured 
waveguide is cut shorter sequentially for each output power measurement, provides 
a straightforward probe into propagation loss by measuring the optical power attenu-
ation between each measurement [ 3]. However, such an approach is destructive to the 
waveguide sample and hence undesirable under many circumstances. For instance, 
in a research setting, fabricating many samples for repeated measurements can be 
inefficient. In addition, in a production line, destructive testing can only be used for 
spot-checking quality control, but can’t be used to validate the performance of every 
single device before use. The latter is especially problematic for critical systems, 
i.e., in biophotonics, where a defective device can put an implanted animal model or 
human being at risk. 

To preserve the samples under test, the modified cut-back method compares the 
output light intensity of multiple waveguides with different lengths [ 4]. However, 
these measurements require repeated alignment to many waveguides, which can 
introduce experimental error from trial-to-trial variance. Additionally, it requires 
specially-designed cutback structures of various lengths to be fabricated. Further-
more, it only measures the average propagation loss across a group of waveguides, 
meaning that the measurement accuracy will suffer from device-to-device variations, 
as well as variations in the coupling efficiency. Although cutback methods are the 
most prevalent, various other measurement techniques have been introduced in recent 
years to address their limitations, including using ring resonators [ 5], Fabry-Pérot 
resonators [ 6– 8], and electro-optic Mach-Zehnder interferometers [ 9] to estimate the  
propagation loss. Although these techniques are nondestructive and accurate, they 
nonetheless require the construction of a specialized structure in order to measure 
the propagation loss in an equivalent waveguide. Consequently, they cannot assess 
the in-situ performance of a functional device. More importantly, the performance 
characteristics of functional devices must be inferred from the specialized device 
under test, so these methods are poorly suited for characterizing the intra-batch vari-
ance during the fabrication, or for isolating localized defects within a single sample 
waveguide. To fill the gap of these existing methods, there is an outstanding need 
for a method to allow the accurate, high-throughput, in-situ characterization of the 
waveguide propagation losses.
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Due to the above constraints, the out-scattering method has been explored as 
a way to improve waveguide propagation loss characterization capabilities [ 10]. 
By observing the intensity profile of out-scattering light, this method estimates the 
optical power decay within the waveguide with high spatial resolution while being 
nondestructive. The propagation loss of individual regions within the waveguide 
can be obtained by a localized measurements of out-scattering light. Additionally, 
this method directly observes the waveguide itself, without the need for specialized 
structures. Because of these benefits, the out-scattering method has seen increasing 
used in recent years [ 11– 14]. 

However, key limitations to the out-scattering method have prevented its 
widespread adoption. The reliability of the out-scattering method hasn’t been vali-
dated using a rigorous comparison to the gold-standard techniques such as the cut-
back method. Prior published work has shown that the out-scattering light method 
and modified cutback method have good agreements for some cases [ 15]. However, 
to the best of the authors’ knowledge, there has not been extensive characterization 
of the regime under which out-scattering light methods can be considered reliable. 
In addition, the out-scattering light technique doesn’t inherently eliminate problems 
of repetitive re-coupling for each waveguide. These two issues need to be addressed 
to render the out-scattering method suitable for wider adoption. 

Here, we demonstrate the out-scattering method to characterize Parylene photonic 
waveguides. Parylene photonics is a flexible biocompatible material platform for 
biophotonic devices such as implantable optical brain-computer interfaces. Previous 
work has shown that the fabrication of low-loss (i.e., .< 5 dB/cm) Parylene photonic 
waveguides requires optimized etching conditions and an additional smoothing step 
to reduce scattering losses [ 13]. Since the out-scattering method is non-destructive, 
it may be used for intermediate process characterization between individual fabri-
cation process steps, i.e., before the smoothing step to characterize the waveguide 
performance in the middle of the fabrication process. This technique was previously 
used to characterize Parylene photonic waveguide performance [ 14] demonstrating 
losses of (3.2 dB/cm at . λ = 680 nm, 4.1 dB/cm at . λ = 633 nm, 4.9 dB/cm at . λ = 
532 nm, 6.1 dB/cm at . λ = 450 nm) after smoothing. Here, we provide a detailed 
description of the out-scattering method and demonstrate its utility for wafer-scale 
characterization during intermediate steps of the fabrication process. 

In this work, we validate the out-scattering light method by performing a rigorous 
characterization of integrated photonic waveguides using both the out-scattering light 
and modified cutback methods. Furthermore, we provide guidelines and constraints 
on when to utilize the out-scattering light method in order to obtain accurate results. 
This out-scattering characterization method, combined with a custom-designed hard-
ware and software system enables high-throughput and fully-automated measure-
ment of photonic waveguides on the wafer scale.
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2 Method  

To perform a rigorous comparison of the out-scattering method and the modified 
cutback method for assessing propagation loss, we constructed a custom-built robotic 
characterization system to perform high-throughput and low-variance measurements 
of micro-fabricated integrated photonic waveguides on the wafer scale (Fig. 1). A 
custom software pipeline was built to perform the automated measurements as well 
as the analysis. In this section, both the waveguide wafer design and acquisition setup 
are explained in detail. Subsequently, we discuss the software system and techniques 
for automated fiber alignment and imaging to obtain waveguide path images for 
propagation loss fitting. Finally, the experimental procedures for two propagation 
loss measurement methods—the modified cutback method and the out-scattering 
method—are presented. 

2.1 Waveguide Fabrication 

In this work, we utilized the micro-fabricated Parylene photonic waveguides as test-
ing samples to validate the performance of the proposed method. Here, a specific 
wafer layout is designed to facilitate the measurement process. 

Parylene photonic waveguides were fabricated using the microfabrication pro-
cess described in [ 14]. Briefly, 45-degree micromirror molds are etched in a silicon 
wafer at the input and output ports of the waveguides via anisotropic KOH etching to 
enable out-of-plane input and output coupling. Low refractive index polydimethyl-
siloxane (PDMS) is spin-coated as a lower cladding of the waveguides to a thickness 
of 1 µm, and high-index Parylene C is deposited via chemical vapor deposition to a 
thickness of 3.5 µm across the wafer surface, then etched in oxygen plasma to form 
the waveguide core using a lithographically-defined Chromium hard mask. Notably, 
to demonstrate the feasibility of nondestructive wafer-scale characterization of the 
waveguides during an intermediate process step, measurements are performed mid-
way through the process–before depositing the subsequent loss-reducing Parylene C 
smoothing layer described in previous work [ 13, 14] is applied. 

For the purposes of the analyses performed in this paper, we utilize a wafer 
layout that can be measured via either the modified cutback method or the out-
scattering method. This design allows results for both methods to be collected from 
the same samples to verify the accuracy of the out-scattering method. The wafer 
layout contains 200 waveguides in total. The waveguides are organized in groups of 
20 waveguides of the same length. Each group contains 4 sets of 5 waveguides with 
widths of 5 µm, 10 µm, 15 µm and 30 µm each. Each group of 20 waveguides are 
referred to as a waveguide batch and are linearly arranged on the wafer so that all of 
the input and output ports are aligned. Each subsequent batch of waveguides (5 mm 
longer) is placed adjacent to the previous batch, protruding 2.5 mm longer in both 
directions. This pattern is iterated until the 10th batch of waveguides reaches 50 mm
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Fig. 1 Diagram showing the full waveguide characterization pipeline. Initially, the input optical 
fiber is aligned to a single waveguide input, and the camera traverses the entire length of the 
waveguide to capture multiple images for out-scattering light loss measurements, which are shown 
in inset plots to the left. Once the out-scattered light of the entire waveguide has been measured, 
the output intensity is captured. The fiber is then moved to align to the next waveguide. The process 
is repeated until all waveguides are imaged. Multiple output measurements from waveguides of 
different lengths can be used to calculate the loss via the modified cutback method, which is shown 
in the inset figure on the right 

in length, providing a range of waveguide lengths to measure. Each waveguide on 
the wafer features monolithically-integrated micromirrors at the waveguide input and 
output ports to enable out-of-plane input and output coupling. Out-of-plane output 
coupling permits both the output port and out-scattering light path to be observed by 
a vertically-oriented camera, whereas out-of-plane input coupling allows coupling 
to a vertically-oriented input optical fiber. As will be discussed in later sections, a 
sufficiently long waveguide is essential for obtaining accurate results with the out-
scattering method. In this work, we have tailored our experimental protocol to our 
particular wafer layout design. However, in principle, this method is generalizable 
to any wafer that features out-of-plane coupling and waveguides of various lengths. 

2.2 Acquisition Setup 

To achieve robust, high throughput measurements, the waveguide characterization 
system is capable of automatically observing and adjusting the alignment of this 
input optical fiber onto the wafer via the integrated camera and motorized stages.
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Fig. 2 Diagram of the automatic characterization system, including the wafer holder, fiber holder 
motor system, and camera motor system. The wafer containing waveguides being characterized 
is secured using a 3D printed wafer holder. The fiber holder motor positions the fiber to couple 
light into the waveguide. The camera captures images for both automated alignment and automated 
imaging steps in the acquisition pipeline 

The waveguide characterization system consists of three modules: (1) wafer 
holder, (2) fiber holder stage and motor system, and (3) camera stage and motor 
system (Fig. 2). The fiber holder motor and camera holder motor each can move in 
the XYZ directions, and the camera holder can additionally rotate along the center 
axis. The input optical fiber is fixed in a vertical orientation above the wafer surface 
by the fiber holder. The fiber motor allows the fiber to not only travel in X and Y direc-
tion to align with individual waveguides, but also to adjust the distance to the wafer 
surface to efficiently couple to the waveguide input port. Light is coupled into the 
waveguides from a 633 nm 50 mW pigtailed laser diode (LP633-SF50, ThorLabs). 
Likewise, the camera holder moves the camera to locate and capture the output ports 
of the waveguides, while the rotation allows the camera to pivot to prevent collision 
with the input optical fiber while imaging near the input port. The camera system used 
for imaging consists of a CCD Camera (EO-5012M, Edmund Optics) and VZM. 

T M

600i Zoom Imaging Lens with a 60 mm working distance. This CCD camera was 
chosen since it provides low noise imaging in low-light conditions. The chosen lens 
provides an adjustable field of view (1.0–6.4 mm), suitable to image small segments 
of the waveguides (5–50 mm long). 

For each round of measurements, the waveguide wafer under test is secured using 
a 3D printed wafer holder. The initial position of the fiber holder is manually set to 
ensure all waveguides fall within the motor travel range.
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Fig. 3 Diagram of the automated alignment step. The fiber holder scans through a grid to find the 
optimum coupling position. For each position, an image containing waveguide path is taken by the 
camera to evaluate the signal-to-noise ratio (SNR). The system chooses the position corresponding 
to the highest SNR value for subsequent automated imaging 

2.3 Acquisition Pipeline 

After securing the waveguide wafer and setting the initial fiber location, the software 
system begins the image acquisition pipeline for each waveguide, which consists of 
two phases: automated alignment and automated imaging. 

During automated alignment, the system couples the fiber to the micro-mirror 
input port of the waveguide to maximize output intensity (Fig. 3). The fiber holder 
scans a positional grid around the starting location while monitoring the waveguide 
out-scattering brightness to discover the optimal waveguide coupling position, as 
described in our previous publication [ 16]. The system performs three rounds of 
grid search around the optimal coupling position with decreasing grid spacing each 
time to gradually approach the optimum coupling position. For our waveguide with 
a width of up to 30 µm, we chose 6 µm, 1 µm, and 0.2 µm grid spacing for each 
iteration and 6 by 4 grid positions in X and Y directions. For each position the holder 
moves to, the camera captures one image containing out-scattering light 5 mm from 
the input port. 

In our previous work [ 16], we used the intensity sum along the waveguide path 
as a measure of the coupling quality. Further investigation showed that the previous 
strategy would favor images with strong stray light reflections from the input port 
(Fig. 4 right) over high coupling efficiency (Fig. 4 left). 

To overcome this limitation, here the quality of the coupling in each image is 
evaluated via the Signal-to-Noise Ratio (SNR). Here SNR is defined as the average 
intensity of pixels in the waveguide path region over the average intensity of pixels 
in the non-path region (defined as more than 35 pixels away from the waveguide 
center): 

.SN R =
∑

n⊂WG In
|n⊂WG|
∑

n /∈WG In
|n /∈WG|

(1)
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Fig. 4 Comparison between waveguide path image with good coupling (left) and high stray light 
intensity (right). As shown here, SNR can effectively distinguish the good coupling scenario 

The SNR metric helps with the identification of fiber positions with high stray 
light intensity since the background light intensity is much higher than that of fiber 
positions with high coupling efficiency. After the positions are ranked, the fiber is 
moved to the optimal position. 

Once the input coupling is optimized, the system proceeds to the automated imag-
ing step. Propagation loss estimation via the out-scattering method requires imaging 
of regions of interest along the entire waveguide. The system automatically scans 
through the length of the waveguide, taking piecewise images. Each image covers 
5.6 mm of the waveguide length. These piecewise images are offset by increments of 
1 mm along the length of the waveguide, yielding a partially overlapping sequence. 

Optical power decays exponentially within the waveguide, so the corresponding 
out-scattering light and intensity at the output port will vary by several orders of 
magnitude along the length of long waveguides. Thus, it’s necessary to automatically 
adjust the camera exposure time to ensure the image intensity falls within the dynamic 
range of the camera sensor (0–255 pixel intensity in 8-bit encoding). To perform 
accurate high dynamic range imaging, we characterized the linearity of the sensor. 
We projected a 12 µW power laser light directly into the camera lens and varied 
the exposure time while measuring the peak brightness. As shown in Fig. 5, the  
peak brightness in the image exhibits nonlinear saturation behavior well before it 
reaches the peak 255 pixel intensity value. Thus, values in the image close to 255 
may underestimate the true brightness level of the waveguide. Intensity ranging 
between 50 to 200 appears to follow a linear relationship with the exposure. Thus, 
to ensure linearity across a high dynamic range, the exposure time of the camera is 
automatically adjusted for each image to maintain a peak pixel intensity between 
50–200. 

During automated imaging, for each new camera location, a trial image is taken 
for exposure adjustment. Exposure time is adjusted according to the maximum image 
intensity via a binary search. If the intensity is greater than 200, then the exposure 
time is halved; if the intensity is less than 50, the the exposure time is doubled for the 
next iteration. This process is repeated until an optimum brightness is reached or the
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Fig. 5 Pixel intensity does not scale linearly with the exposure time for the CCD camera used in this 
study. Saturation occurs for intensity values greater than 200, before the dynamic range maximum 
(255) of the image is reached. The linear region of the sensor is indicated in red 

camera exposure time reaches the hardware limit (0.6 µs–2.7 s). The final exposure 
time is stored alongside each image. In the following analyses, the system utilizes 
adjusted brightness.Iad justed to represent the true brightness of the waveguide, which 
is a product of the image brightness .Iimage and the camera exposure time .Texposure: 

.Iad justed = Iimage · Texposure (2) 

After the characterization system automatically aligns to and images each waveg-
uide, the fiber and camera motor will move to the position of the next waveguide 
based on the wafer layout to start another iteration of the acquisition pipeline. Due 
to the small size of the waveguide port and pitch (less than 40 µm), any in-plane 
angle mismatch between the fiber motor and wafer axes could significantly impact 
the movement accuracy and lead to misalignment for the subsequent input ports. 
Considering uni-directional target movement over distance . L , the resultant distance 
mismatch in two directions given angle mismatch . θ should be smaller than half of 
the maximum search grid range .LG : 

.L sin θ <
LG

2
(3) 

.L(1 − cos θ) <
LG

2
(4) 

For our setup with travel distance between waveguide batches of 2.5 mm in X 
direction, 0.7 mm in Y direction, and a maximum search grid range of 36 µm in X and 
24 µm in Y, the tolerance of angle mismatch is .0.27◦ (Constrained by Y mismatch: 
.2.5mm sin θ <

24μm
2 ), which is infeasible to reliably achieve via manual alignment. 

Thus, the pipeline employs automatic angle mismatch compensation. As shown in
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(a) (b) 

Fig. 6 a After acquisition of waveguides close to the initial fiber position, the actual alignment 
positions of waveguides on the wafer are captured. These positions are then compared with the 
reference position from the wafer layout. A mismatch angle . θ is computed accordingly, which 
will be continuously updated for all future motor movements. b An example position scatter plot 
showing the effect of angle adjustment. An alignment trial across 30 waveguides in 6 batches is 
performed to generate the above plot. The positional difference due to angle mismatch becomes 
more and more pronounced after each iteration. Thus, angle adjustment is necessary to ensure valid 
alignment for long-travel-range trials 

Fig. 6, after imaging initial sets of adjacent waveguides, the final alignment positions 
of waveguide input ports are recorded, which are compared to the known wafer layout 
to calculate the angle mismatch to correct subsequent motor movements. To learn the 
initial wafer orientation, the design features a batch of waveguides of the same length, 
which are close together (0 µm, 60 µm pitch for X and Y direction respectively). The 
fiber motor traverses these 5 initial ports that are 240 µm apart without adjustment 
for an initial orientation estimation. This relaxes the manual alignment constraint 
to .4.30◦ (Constrained by X mismatch: .240μm sin θ <

36μm
2 ). Following this initial 

batch, the system continually refines its estimate of the rotation mismatch as it aligns 
to additional waveguides. 

Subsequently, the acquisition procedure is iterated until all waveguides of interest 
on the wafer have been imaged. As in Fig. 6, with this method, the system is able to 
account for the angle mismatch to perform reliable alignment to many waveguides 
with input ports distributed across the wafer surface. 

2.4 Analysis Pipeline 

In order to validate the reliability of the out-scattering method, we performed mea-
surement of the test sample using both the modified cutback method and the out-
scattering method and compared their results. In addition, we investigate the per-



Automated Photonic Waveguide Loss Measurement … 13

formance of both measurement techniques under various imaging conditions and 
identify criteria (i.e., SNR and waveguide length) to ensure accurate measurement 
of the device under test. 

2.4.1 Modified Cutback Method Fitting 

We used the modified cutback method fitting as a reference method to measure the 
average waveguide propagation loss. The method measures the output intensity of 
waveguides of different lengths on the same wafer to estimate the propagation loss. 
Within the waveguide, the light intensity follows an exponential decay: 

.I = I0e
−αL , (5) 

where . I and .I0 are output and input intensity, . L is the light travel distance, and . α
is the propagation loss of the waveguide. With a constant input intensity, the output 
intensity will exponentially decay with waveguide length. Here, the output intensity 
of the waveguide is measured by imaging the output port and calculating the total 
intensity sum, subject to the linear camera sensor regime discussed previously. 

To obtain the output intensity necessary for calculating the propagation loss, the 
system first identifies the output port in acquired images containing the end of the 
waveguide. The system uses a predefined output port template to perform template 
matching to locate the center of the output port [ 17]. 

In an initial calibration step that only needs to be performed once per wafer layout, 
the input fiber is first manually coupled into one waveguide. An image of the output 
port with out-coupling light is captured, manually cropped to the region of interest, 
and defined as an output port template (Fig. 7). The template is cross-correlated with 
the image to obtain the corresponding correlation value map. The maximum value 
in that map represents the coordinates where the image region best resembles the 
template and is deemed the center of the output port. Subsequently, a circular mask 
of radius 22 pixels (empirically chosen to produce repeatable intensity readings from 
a single waveguide) is defined around the detected center. The final output intensity 
value is the sum of all pixel brightness values over the mask. Output intensities from 
different waveguides (of different lengths) are then fitted to an exponential curve to 
obtain the average propagation loss value of all waveguide batches on the wafer. In 
this method, we are assuming that different waveguides with the same widths but 
different lengths have the same propagation loss, which is a good assumption when 
the variation between the waveguides due to fabrication imperfections is relatively 
small. 

2.4.2 Out-Scattering Method Fitting 

The out-scattering method provides an estimation of the propagation loss from indi-
vidual waveguide images instead of an aggregate estimate from an entire batch of
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Fig. 7 Template matching to locate the waveguide output in the image. During template matching, 
predefined output template is cross-correlated pixel-wise with the raw image captured at the end of 
the waveguide. The maximum correlation value indicates the detected output port coordinates 

(a) (b) (c) 

Fig. 8 Pipeline performing the modified cutback method. a Example image containing the output 
region of waveguides under characterization. Output light reflected by the micromirror appears as 
a bright spot in the recorded image. b Output port detection using template matching. Its intensity 
is summed to measure the optical power. c For waveguides with various lengths, their output pixel 
intensity sums are fitted to an exponential decay to calculate the propagation loss 

waveguides (Fig. 8). Here, the out-scattering light from the waveguide is assumed to 
follow an exponential decay according to the propagation loss. In this analysis, the 
software utilizes a series of images taken along the waveguide path. For each image, 
the 1D Hough Transform is applied to identify the waveguide region [ 18]. In this 
step (Fig. 9), the image is first thresholded (at.70% of max intensity) to isolate bright 
pixels of interest. Then, the number of bright pixels is counted row-wise to vote 
for the waveguide region center row in the image. Its surrounding region containing 
70 rows of pixels in total (empirically chosen based on the waveguide width and 
magnification level) can be identified as the waveguide area in the image. Thus the 
intensities of the waveguide pixels are summed column-wise to fit an exponential 
decay curve. 

However, captured waveguide images may contain issues that skew the propa-
gation loss measurement. Consequently, more processing is required to obtain an 
accurate estimate of the propagation loss of waveguides. 

First, images captured within 15 mm distance of the input port are observed to 
have an unusually high propagation loss (Fig. 12). Since such high loss fails to agree 
with loss measured with the modified cutback method fitting, we hypothesize that it 
may be related to the out-scattering light associated with the rapid decay of spurious 
or higher-order modes of the waveguide which possess a higher propagation loss.
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(a) 

(b) 

(c) 

Fig. 9 Out-scattering method fitting on a single waveguide image. a Raw image containing the 
detected waveguide path. b 1D Hough transform of the raw image where bright pixels are counted 
row-wise. The peak row indicates the waveguide center. c Out-scattering method fitting result of 
the shown image. Pixel intensities in the region of interest are summed column-wise and fitted to 
an exponential decay curve. The fitted out-scattering intensity sum loss corresponds to the overall 
propagation loss of the waveguide 

Some optical power may be coupled into these modes at the input port, but due to 
their rapid decay, their affect is localized to near the input coupling region. Optical 
power lost due to coupling into higher-order modes should not be considered when 
measuring the propagation loss experienced by light that is effectively coupled to 
efficiently guided lower order modes. Else, the out-scattering fitted propagation loss 
will be heavily overestimated due to the rapid decay of higher-order mode power 
in images. Hence, we choose to ignore these near-input images for out-scattering 
fitting. 

Furthermore, we also need to remove artifact-contaminated and faulty waveguide 
images from fitting since these outliers can skew the overall loss estimates. This 
step is done by detecting and removing exponential fitting results with R-squared 
values smaller than 0.4. Lastly, we heuristically remove noisy images with SNR lower 
than 20 since they tend to underestimate the fitting loss by averaging background 
noise. A SNR threshold of 20 ensures minimal level of background noise in images, 
which is shown by numerical simulation to give a high confidence (p .< 0.05) of 
accurate estimation within 10% despite noise. Further examples and discussion of 
these conditions are included in Sect. 3.
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Fig. 10 Modified cutback 
method fitting result is shown 
above. 30 total 30 µm wide 
waveguides were measured 
(5 each of lengths of 25, 30, 
35, 40, 45, and 50 mm). 
Their output intensity are 
plotted in red in logarithmic 
scale. The fitted propagation 
loss plotted in yellow for the 
batch was 8.36dB/cm with a 
95% confidence interval (CI) 
of [3.60 dB/cm, 13.19 
dB/cm] (CI calculated based 
on Student’s t distribution) 

3 Results 

To validate the performance of out-scattering method, modified cutback method 
and out-scattering method were separately used to measure the propagation loss of 
the same wafer. Individual propagation losses obtained from out-scattering method 
were in good agreement with that of the modified cutback method. Other factors 
potentially compounding out-scattering measurement accuracy, such as alignment 
variance, SNR, and fitting R-squared value, are characterized and addressed in the 
following section. 

3.1 Modified Cutback Method Result 

We performed the characterization on the aforementioned wafer containing Parylene 
photonic waveguides [ 13]. We imaged thirty 30-µm-wide waveguides ranging from 
25 to 50 mm in length. We first obtained results using the modified cutback method. 
This widely-used method serves as a baseline to evaluate the accuracy of the out-
scattering method fitting. The modified cutback method fitting result is shown in Fig. 
10. Thirty total waveguides were measured (5 each of lengths 25, 30, 35, 40, 45, and 
50 mm). The fitting shows an average loss of 8.36 dB/cm with a 95% confidence 
interval of [3.60 dB/cm, 13.19 dB/cm] (Fig. 10). Confidence interval is computed 
as .x ± t · SE · x , where . x , . t , .SE are mean fitting coefficient, t-score and standard 
error, respectively. 

The wide confidence interval of the modified cutback method fitting is likely due 
to the large variance in sample measurements. To characterize the automated charac-
terization system measurement accuracy, a repeated alignment trial was performed. 
The system repeatedly coupled to four waveguides for 20 times each and measured 
the output port intensity profile. Between each run, a random perturbation up to 2
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Fig. 11 Repeated alignment over the same waveguides shows the stability of the system. Four 
waveguides were each aligned to the input port for 20 times each and the corresponding output 
intensity sum was computed as a measurement of the relative coupling efficiency. Vertical bars 
indicate the intensity standard deviation for each waveguide. Random perturbation is introduced 
between each alignment. The average measurement variance of the waveguides is 21% 

µm in X and Y direction was imposed on the fiber holder and the input coupling 
is restored via automated alignment. Figure 11 shows the intensity sum of output 
profile results. Intensity sum variance was computed for each waveguide based on 
20 different measurements. The average variance measured intensity sum for each 
waveguide is 21%. Thus, there is approximately 1 dB of variance in insertion loss 
due to automated alignment in the system. Notably, the waveguide-to-waveguide 
variation is also significant (40%, 2.24 dB), due to device-to-device variation of the 
fabrication process. Other factors contributing to large variance might also include 
wafer degradation over time and potential damage to individual waveguides due 
to particulates outside of a cleanroom environment. The modified cutback method 
computes the average loss across many waveguides regardless of coupling variation, 
which makes the cutback measurement vulnerable to errors. While this issue can 
be mitigated with measuring a large number of samples, the intra-batch waveguide 
performance variation further motivates the use of the out-scattering method, which 
has the unique advantage of assessing the individual waveguide performance. 

3.2 Out-Scattering Method Result 

The out-scattering method results for one example waveguide were shown in Fig. 
12, collected using the automated procedure described in Fig. 9. Sliding window 
sections with 1 mm intervals are taken along the waveguide path to produce localized 
measurements of the out-scattering method fitting propagation loss. This way, the 
localized propagation loss can be plotted along the distance from input port.
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Fig. 12 Out-scattering method fitting processing for one waveguide. Multiple sections were imaged 
along the waveguide length for scattering fitting loss calculation. The results were aggregated to a 
single line in plot 

For all Parylene photonic waveguides, a very high out-scattering fitting propaga-
tion loss around 80–100 dB/cm dominates the images captured near the input port, 
and declines very quickly until reaching 15 mm from the input port (Fig. 12). Prior 
work in the literature has also observed the same polymer waveguide propagation 
loss behavior [ 19]. The SNR of these images is in line with images further away 
from input port, which suggests that such a high loss is not introduced by stray light 
from the input port. We hypothesize that this is due to the higher-order modes which 
dominate near the input region of the waveguide as discussed in Sect. 2. Consider-
ing this loss is confined to the input region and does not scale with the waveguide 
length, we classify it as the insertion loss rather than propagation loss. Thus, the 
propagation losses obtained near the input region via the out-scattering method were 
not considered in the propagation loss evaluation. 

In addition, the out-scattering method fitting is capable of identifying faulty 
waveguide regions by using the fitting R-Squared metric. Such faulty waveguide 
regions can result from a defect in the waveguide, fabrication imperfections or exter-
nal debris on the surface of the waveguide, causing a localized outscattering of light. 
Faulty waveguide regions do not follow a standard out-scattering exponential decay, 
exhibiting a low R-Squared fitting. One example image having low R-Squared value 
is  shown in Fig.  13a. In the corresponding out-scattering method fitting (Fig. 13b), 
two peaks are visible in the intensity profile which contribute to the low R-Squared 
value. Subsequent manual inspection of wafer surface revealed that the two intensity 
peaks are because of the surface debris on the waveguide which caused out-coupling 
of light from the waveguide. Thus, thresholding R-Squared value of out-scattering 
measurements can identify particles or debris affecting the waveguide. This method 
provides a promising direction for future quality control to detect variations in mate-
rial quality and identify fabrication defects. 

Furthermore, high SNR is also essential to ensure accurate out-scattering method 
fitting. Due to the exponential intensity decay, the brightness of out-scattering light 
decreases significantly along the waveguide propagation direction. Since the baseline 
noise level in the CCD camera is constant, the SNR decreases in proportion to the
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(a) (b) 

Fig. 13 Example of R-squared threshold for defect detection. a Waveguide path image containing 
a faulty region. Two bright points on the waveguide path were identified to be surface debris causing 
out-coupling and optical power loss. b Out-scattering fitting of the left image. The fitting R-Squared 
value is 0.30, indicating a large deviation from an exponentially-decaying curve 

decreasing out-scattering light intensity level. When SNR is low, the out-scattering 
method fitting curve will be affected by a uniform baseline noise, which tends to 
skew the fit and underestimate the actual propagation loss. In the following section, 
we provide an analytical relationship to illustrate the effect of low SNR. We assume 
a waveguide with true propagation loss . α, an initial out-scattering intensity of .I0 at 
given length .L(z). Its out-scattering intensity at point z is given by 

.I (z) = I0e
−αL(z). (6) 

Then to model the impact of background noise, we assume noise as a positive 
half normal distribution with mean .μ and variance .σ 2 on intensity. The observed 
intensity is the sum of the two: 

.I (z) = I0e
−αL(z) + |N (μ, σ 2)|. (7) 

Since the background noise is non-negative, we want to ensure a lower bound 
propagation loss .ηα where .0 < η < 1 such that our observed intensity at that point 
will not be larger than a waveguide with propagation loss .ηα. Its corresponding 
intensity is defined as the bounded intensity. 

.I0e
−αL(z) + |N (μ, σ 2)| ≤ I0e

−ηαL(z)). (8) 

Then at the given point.L0, the probability of the observed intensity being smaller 
than the bounded intensity is: 

.P(|N (μ, σ 2)| ≤ I0(e
−ηαL(z) − e−αL(z))). (9) 

This equation applies to every point.L0 over the imaged waveguide length. L . The  
relationships between . L , . α, . μ, and . σ demonstrate the trends of fitting perfromance
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(a) (b) 

Fig. 14 Example of low-SNR image biasing out-scattering method fitting. a Waveguide path image 
containing low-SNR region. The background noisy spots have intensity comparable with waveg-
uide path due to low SNR. b Out-scattering fitting of the left image. The fitting is dominated by 
background noise. The underestimated out-scattering fitting loss is 5.8 dB/cm 

with background noise. Note that smaller propagation loss . α and shorter imaging 
distance . L are more easily skewed by background noise, requiring higher SNR. 

As a numerical example to demonstrate the effect of background noise on loss 
fitting, we chose .L = 5.6mm and .α = 10 dB/cm. For a distance . x that is small, 
the value of exponential term .e−αx is close (1) Thus we can model an SNR of 20 
by using a positive Gaussian noise model with zero mean and standard deviation 
.

√
π

SN R·√2
(which has an expected value of . 1

SN R ): 

. I (x) = e−αx + |N (0,
( √

π

SN R · √2

)2|

We simulated 10000 waveguides over . L with 457 data points/mm to match our 
imaging system. We chose an. η of 0.9 as the lower tolerance bound. In this setup, with 
a SNR of 20, 99.97% of the simulation trials produced an out-scattering propagation 
loss fitting result within the 10% error tolerance. Thus, with an SNR of 20, measure-
ment results using the scattering method are highly unlikely (less than 0.01% chance) 
to deviate by more than 10% from the true value under the simulated conditions. 

Consequently, to accurately perform out-scattering method measurements, the 
following steps should be followed: 

(1) Imaging waveguides longer than 35 mm to maximize regions unaffected by 
near-input high loss, (2) excluding waveguides with R-Squared values lower than 
0.4, and (3) excluding waveguide regions with SNR smaller than 20. 

Figure 14 shows an example image with low SNR. The image is taken 35 mm 
from input port, where out-scattering light has decayed to a level difficult to detect 
even for the maximum camera exposure time. Here, the background noise skews the 
exponential decay, which results in a fitted propagation loss lower than estimation 
(5.8 db/cm versus 8.36 db/cm from the cutback method). 

Seven 30 µm wide waveguides with lengths ranging from 35 mm to 50 mm 
passed the aforementioned criteria along their entire length. Their out-scattering
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Fig. 15 Aggregated out-scattering method fitting result is shown above. 7 waveguides passing all 
aforementioned criteria are demonstrated in the plot. The majority of waveguide propagation losses 
converge within the 3 dB of modified cutback measurement after travelling 15 mm from input port 

Table 1 Measurement time estimation for each waveguide 

Step Alignment 1–3 Imaging 

Time (min) 2/ea 3–10 

method fitting results are plotted for up to 27 mm from the input port (Fig. 15). 
The out-scattering method fitting for all qualifying waveguides have a majority of 
propagation losses stabilize to a value within the 3 dB of the cutback fitting result 
after travelling 15 mm from input port. This result demonstrates agreement between 
the the out-scattering fitting method compared to the gold-standard modified cutback 
method results. 

The processing speed of the automated waveguide characterization system was 
also assessed. Since the light intensity captured by the camera during alignment is 
fixed, no exposure time adjustment is necessary in this phase. The time for each 
step is shown in Table 1, when the exposure time for each image is 0.5 s, the input 
coupling step takes 2 min each for three grid iterations and the automated waveguide 
imaging step takes 3 to 10 min for each waveguide depending on its length. On 
average, characterizing each waveguide takes around 15 min and the system can 
finish characterizing the propagation losses of 30 waveguides on a wafer in 12 hours. 
This is all done in an automated fashion using the custom-designed robotic system 
and after initializing the process, no human supervision is required.
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4 Discussion 

We have demonstrated an automated waveguide characterization system capable of 
measuring propagation loss of many (greater than fifty) waveguides without human 
intervention using either the out-scattering method or modified cutback method. The 
out-scattering fitting provides inherent advantages due to it’s ability to character-
ize individual waveguides and provide a localized probe into individual waveguide 
propagation loss to detect faulty regions on the waveguide. 

However, the out-scattering method is sensitive to multiple factors that have been 
identified and analyzed. Rapid out-scattering light decay due to the presence of 
higher-order modes overestimates the waveguide propagation loss near the input 
port. Particles and other defects skew the exponential fitting of intensity decay but 
can be automatically detected via a low R-squared value. Lastly, low SNR in the 
captured image can cause underestimation of measured propagation loss values, 
necessitating a suitably high SNR. Therefore, we define a set of quality metrics to 
ensure accurate measurements: (1) Imaging at least 15 mm from the input port, (2) 
R-squared value less than 0.4, (3) SNR greater than 20. A majority of waveguides 
propagation losses that satisfied our quality metrics converge within a 3 dB of the 
modified cutback measurement result. Therefore, under proper conditions, the out-
scattering method provides a reliable assessment of propagation losses for waveguide 
samples compared to the gold-standard modified cutback method. 

Two remaining limitations to the characterization system demonstrated here are 
the requirement for initial manual alignment of the fiber to the wafer and speed of 
imaging. Currently, the fiber must be manually lowered to the wafer surface and 
aligned to the first waveguide input port. Additional capabilities to perform coarse 
fiber alignment via computer vision detection of fiducal marks on the wafer surface, 
and proximity detection for the fiber to avoid collision would allow for wafers to 
be automatically loaded and unloaded in a production environment. Furthermore, 
the imaging speed may also be a bottleneck for the performance of the system in a 
high-throughput setting. The current 15-minute-per-waveguide trials may not scale 
well with foundry-level production speed. To increase the processing speed of auto-
mated alignment step, exposure time can be further reduced, at the cost of higher 
noise provided the waveguide path images are bright enough to maintain sufficient 
SNR. In addition, adopting a low-noise camera would reduce the need for a long 
integration time and expedite the acquisition process in automated characterization 
pipeline. Furthermore, there is a trade-off between the number of images taken on 
each waveguide and the acquisition time. Increasing the field of view for each image 
and reducing the overlap overlap between adjacent images during the automated 
imaging step is also a viable way to improve the throughput.


