Xiuqi Fang · Yun Su · Jingyun Zheng · Lingbo Xiao · Zhudeng Wei · Jun Yin

The Social Impacts of Climate Change in China over the Past 2000 Years

The Social Impacts of Climate Change in China over the Past 2000 Years

Xiuqi Fang · Yun Su · Jingyun Zheng · Lingbo Xiao · Zhudeng Wei · Jun Yin

The Social Impacts of Climate Change in China over the Past 2000 Years

Xiuqi Fang Faculty of Geographical Science Beijing Normal University Beijing, China

Jingyun Zheng Institute of Geographical Sciences and Natural Resources Research Chinese Academy of Sciences Beijing, China

Zhudeng Wei Department of Geographical Sciences Nanjing University of Information Science and Technology Nanjing, China Yun Su Faculty of Geographical Science Beijing Normal University Beijing, China

Lingbo Xiao Institute of Qing History Renmin University of China Beijing, China

Jun Yin Lhasa Tibetan Plateau Scientific Research Center Lhasa, China

ISBN 978-981-97-0201-5 ISBN 978-981-97-0202-2 (eBook) https://doi.org/10.1007/978-981-97-0202-2

Jointly published with Science Press

The print edition is not for sale in China (Mainland). Customers from China (Mainland) please order the print book from: Science Press.

Translation from the Chinese Simplified language edition: "Li Shi Qi Hou Bian Hua Dui Zhong Guo She Hui Jing Ji De Ying Xiang" by Xiuqi Fang et al., © 2019. Published by Science Press. All Rights Reserved.

© Science Press 2024

This work is subject to copyright. All rights are reserved by the Publishers, whether the whole or part of the material is concerned, specifically the rights of reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publishers, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publishers nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

Paper in this product is recyclable.

Preface

As the most active element in the natural environment, climate change has had wide and profound impacts on human society at multiple temporal and spatial scales, although it might not be a determinant driving force. A growing number of cases from all around the world have proven that there is a close and complex relationship between human history and climate change. How climate change has affected the human history is a key issue of the study of impacts of past climate change, which is also an important research topic of man-land relations in the time dimension, in Geography. As early as the beginning of the twentieth century, Huntington (1907), a famous American geographer, pointed out that climate change was indeed one of the driving forces in the development of human society in his famous book, The Pulse of Asia. His theory of climate cycle became a milestone in understanding the impact of natural environment from the perspective of environment change instead of an unchangeable environment. However, in Huntington's time and for a long period afterward, both his viewpoints and the evidence supporting his views had been questioned, because in the early twentieth century, the climate was generally believed to be stable with less change over the historical period, except in the distant geological period; and the evidence of climate change used by Huntington was not as reasonable as that we use today for the scientific study on climate change. The study on the impact of historical climate change was less developed for many years.

Today, more than 100 years later, the situation has become quite different. It has already become an important theme of past global change research, seeking to understand the processes and mechanisms of past human-climate-ecosystem interactions at multiple, spatial and temporal scales, so as to enhance our understanding of contemporary climate change impacts and human social adaptation. Thanks to significant advances in the study of past climate change and historical social development, it is increasingly recognized that climate change as one of basic driving forces had strongly, both positively and negatively, impacted the course of human civilization. Many historical events such as population fluctuations and migrations, economic fluctuations, social instabilities and even dynastic changes were closely and complexly connected with climate change. But, more than seeking to find the connections between climate change and specific historical events by direct comparisons of historical climate change events and related social phenomena occurring during the same period, there is now a lot of studies focusing on the impact mechanism of climate change aimed at learning from History as a key for a better understanding of the impacts of global climate change at the present and in the future times. Although today it is difficult to simply repeat the impacts of climate changes that occurred in the past, the facts of past climate change impacts can at least serve as an analogy to provide an early warning scenario for dealing with ongoing challenges of global climate change. In particular, the processes and mechanisms of human response to the impacts of climate change revealed by historical events have not changed significantly over time and location and thus represent an important value for human society to cope with the great challenges of global climate change in the future.

Instead of learning about the historic aspects, the main purpose of the studies on the impact of past climate change is to learn *from* History, revealing the general processes and mechanisms valuable for understanding the impact of climate change. The focus of current studies on the impact of historical climate change is no longer to provide more proof that climate change is able to affect history, but to indicate how climate change affects human society throughout history. The social impacts of climate change are not a simply cause-and-effect relationship but are a coupled result of the multiple factors in the natural and social systems at multiple spatial and temporal scales. So, we must, of necessity, get rid of the paradigm of geographic environmental determinism, thereby avoiding simply attributing climate change as a civilization-related determinant. More importantly, it is urgent that we develop a new research paradigm on the base of man-environment interactions. However, such a study is hard to implement and is still undergoing exploration, due to the difficulty of obtaining proxy of interpreting the interaction process between the impacts of past climate change and human responses, the multi-cause nature of the social events in historical periods, the complexity of the social responses process to climate change, in addition to the uncertainty of the results of past climate change reconstructions.

China is a country that has great potential for the research of impacts of past climate change. As an agriculture-intensive society bathing in the Asian monsoon climate regime, the History of China has been strongly impacted by climate change. Although historical China saw its borders vary from dynasty to dynasty, its core social-economics closely aligned with the major agricultural area throughout History. This geographic and temporal overlap allows for continuous comparison across the Chinese core areas. There are abundant historical records spanning thousands of years that relate the impacts of (and adaption to) climate change in China. These records provide the opportunity for studying the process and mechanism of the social impacts of past climate change and human adaptation.

In this book, we attribute the impacts of historical climate change on social development of China to the issue of food security. Taking long-term climate change and climate extremes as external forcing and adopting the core concepts of resilience, vulnerability and adaptation of human systems, we have analyzed the process and mechanism of historical climate change affecting China's socio-economic development over the past 2000 years by reconstructing the proxy series of various socioeconomic subsystems and case studies. The key topics include: the relationship Preface

between historical climate change impacts and the vulnerability of Society, how socio-ecological resilience has mitigated the impacts of climate change and maintained the continuity of Chinese civilization and how learning and innovation in the adaptation process have enhanced the capacity to copy with climate change by increasing China's resilience. The book contains 9 chapters covering the natural and historical background of China (Chap. 1), a summary of climate change in China over the past 2000 years (Chap. 2), conceptual models and reconstruction methods for studying historical impacts of climate change in China (Chap. 3), the relationship between changes of production, economy, population and social subsystems and climate change over historical periods (Chaps. 4–8) and processes and mechanisms of the impacts and adaptation to historical climate change in China (Chap. 9). As a cooperative work, all the authors, Xiuqi Fang, Yun Su, Jingyun Zheng, Lingbo Xiao, Zhudeng Wei, Jun Yin, Xudong Chen, and Xianshuai Zhai, involved have contributed their wisdom to the task. The book as a whole is coordinated by Xiuqi Fang and Yun Su.

The work embodied in this book is supported by the National Basic Research Program of China "Study of warm-period climate impacts on China's socio-economy and human adaptation" (2010CB950103) and the National Natural Science Foundation of China "Analysis of Synergistic Effects of Cyclical Changes in China's Historical Climate and Social Systems" (2010CB950103). The long-term funding support from the National Natural Science Foundation of China in this field has been an important basis for the completion of this book. As a mutual promotion of teaching and scientific research, the book also benefited from the courses of Global Change and Climate Change and Civilization taught at Beijing Normal University. We thank Jingchao Teng and Lu Liu for collecting some basic data for this book, Ran Jia and Xudong Chen for translating and polishing of part of the English manuscript and Shuaiying Yang, the book's editor. Lastly, we are grateful to Profs. Lansheng Zhang, Sumin Wang and Quansheng Ge for their long-standing help.

Beijing, China

Xiuqi Fang

Contents

1	Intr	oductio) n	1
	1.1	The N	atural Environment of China	1
		1.1.1	The Three Topographic Steps	1
		1.1.2	The Typical Monsoon Climate	3
		1.1.3	Three Partitions: The Basis of Geographical	
			Differences in China	5
		1.1.4	The "North" and the "South" in the Eastern Monsoon	
			Region	8
	1.2	The B	rief History of Socio-economic Development in China	9
		1.2.1	Continuously Expanding Farming Areas	10
		1.2.2	Large Population Size and Merging of Diverse Peoples	13
		1.2.3	The Economic Tradition: Emphasizing Agriculture	
			and Restraining Commerce	15
		1.2.4	Spiralling Change of Dynasties	17
		1.2.5	Chinese Traditional Thought of Man-Land	
			Relationship and Behaviour	20
	1.3	A Lite	erature Review on the Impacts of Historical Climate	
		Chang	ge in China	22
		1.3.1	Impacts on Agricultural Production	22
		1.3.2	Impacts on Economy and Livelihood	26
		1.3.3	Impacts in Terms of Unrest and War	29
		1.3.4	Combined Impact on the Social Vicissitudes	32
		1.3.5	Human Response and Adaptation to Climate Change	34
		1.3.6	Summary: Knowledge about Mechanism How	
			Climatic Impacts on Society Needs to Be Improved	36
2	Clin	nate Cl	nanges over the Past 2000 Years in China	39
	2.1	Tempo	erature Changes over the Past 2000 Years	39
		2.1.1	General Characteristics of Temperature Change	
			in China and Comparison with the Northern	
			Hemisphere	40

		2.1.2	Regional Differences and Uncertainties	44
	2.2	Dry/W	Vet Changes over the Past 2000 Years	60
		2.2.1	Dry/wet Changes in the Eastern Monsoon Region	61
		2.2.2	Dry/Wet Changes in Western China	70
3	The	Conce	ptual Model and Indicators of the Impacts	
	of H	listoric	al Climate Changes in China	77
	3.1	Mecha	anism for Climate Change Impacts	77
		3.1.1	Climate Change Impacts	77
		3.1.2	The Resilience, Vulnerability and Adaptation	
			of Socio-ecological System	82
		3.1.3	Patterns in Social Response to the Impacts of Climate	
			Change Related to Socio-ecological Resilience	90
	3.2	A Cor	nceptual Model of Historical Climate Change Impacts	
		in Chi	na Under the Framework of Food Security	94
		3.2.1	Global Environmental Change and Food Security	94
		3.2.2	Food Security under the Impacts of Climate Change	
			in the History of China	96
		3.2.3	Historical Climate Change Impact-Response	
			Processes Dominated by Food Security in China	99
		3.2.4	Hierarchy and Interregional Linkages of Historical	
			Climate Change Impact-Response	104
		3.2.5	The Complexity of Historical Climate Change	
			Impact-Response	108
	3.3	The P	roxy Indices of the Social Impacts of Historical Climate	
		Chang	ge and the Methodology for Reconstruction	110
		3.3.1	Proxy Indices of Social Impacts of Historical Climate	
			Change	110
		3.3.2	The Methodology for Gradation of Historical	
			Socioeconomic Indicators Based on Semantic	
			Differential	112
		3.3.3	The Methodology for Reconstructing Frequency	
			Series of Historical Socio-economic Indicators	116
4	Rela	tionsh i	ips between Climate Change and Grain Harvest	
	Fluc	tuatio	ns in China over the Past Two Millennia	119
	4.1	Recon	struction of Grain Yield Grades Sequence	119
		4.1.1	Sources of the Historical Records of Agricultural	
			Harvest	120
		4.1.2	Methods and Steps in the Reconstruction of Grain	
			Yield Grades Sequence	122
	4.2	The C	haracteristics of Grain Yield Grades Sequence	130
	4.3	Relati	onships between Climate Change and Grain Harvest	
		Fluctu	ations	133
		4.3.1	The Corresponding Relationship on a Centennial Scale	133
		4.3.2	The Corresponding Relationship on a Decadal Scale	134

5	Economic Fluctuation and Climate Change over the Past 2000					
	Yea	rs in Cl	hina	139		
	5.1	Backg	ground and Precondition	139		
	5.2	Recon	struction of the Macroeconomic Grade Series	141		
		5.2.1	Material and Pretreatment	141		
		5.2.2	Reconstruction of Macroeconomic Grade Series			
			with Decadal Resolution	144		
		5.2.3	Uncertainty Evaluation	151		
	5.3	Recon	struction of Fiscal Balance Grade Series	153		
		5.3.1	Material and Preprocessing	153		
		5.3.2	Reconstruction of Fiscal Balance Grade Series			
			with Decadal Resolution	155		
		5.3.3	Uncertainty Evaluation	160		
	5.4	Fluctu	ation of Macroeconomy and Fiscal Balance			
		over the	he Past 2000 Years in China	161		
		5.4.1	Stages of Macroeconomic Fluctuation	161		
		5.4.2	Stages of Fiscal Balance Fluctuation	164		
		5.4.3	Comparison of Fluctuation Characteristics			
			between Macroeconomy and Fiscal Balance	165		
	5.5	Clima	tic Impact on Economic Fluctuations	169		
		5.5.1	Economic Characteristics during Different Climatic			
			Phases at the Centennial Scale	169		
		5.5.2	Periodicity Relationship among Climate Change,			
			Macroeconomy and Fiscal Balance	175		
		5.5.3	Spatiotemporal Differences of the Correlation			
			between Climate Change and Economic Fluctuations	180		
		5.5.4	Granger Causality Tests for Climatic Impact	189		
		5.5.5	Combined Effects of Temperature and Dry/Wet			
			Changes	191		
6	The	Relati	onship between Famine, Peasant Uprisings			
	and	Climat	te Change in China over the Past 2000 Years	195		
	6.1	Brief	Introduction to the Famine and Peasant Uprisings			
		in the	History of China	195		
	6.2	Recon	struction of the Famine Index Sequence and Frequency			
		Seque	nce of Peasant Uprisings	198		
		6.2.1	Reconstruction of the Famine Index Sequence	198		
		6.2.2	Reconstruction of Peasant Uprisings Sequence	203		
	6.3	Fluctu	ations of Famine and Peasant Uprising	203		
		6.3.1	Fluctuation of the Famine Index	203		
		6.3.2	Fluctuation in the Frequency of Peasant Uprisings	206		
	6.4	Impac	ts of Climate Change on Famines and Peasant Uprisings	209		
		6.4.1	Relationship Between Famines, Peasant Uprisings			
			and Climate Change	209		

		6.4.2	Possible Mechanisms by Which Climate Change	
			Affects Famine and Peasant Uprisings	211
7	The	Relatio	onship between Climate Change and the Interaction	
	betv	veen Se	edentary and Nomadic Groups in Northern China	
	over	the Pa	st 2000 Years	215
	7.1	Brief l	History of the Relation between Sedentary and Nomadic	
		Group	os in Northern China	215
	7.2	Recon	struction of the Sequences on Interactions Between	
		Noma	dic and Sedentary Groups	219
		7.2.1	Reconstruction of War Sequences Between Sedentary	
			Farming and Nomadic Pastoral Groups	219
		7.2.2	Reconstruction of Peace-Making Event Sequences	
			Between Sedentary Farming and Nomadic Pastoral	
			Groups	220
	7.3	Fluctu	ations of Nomad-Sedentary Relations	222
		7.3.1	Fluctuations in the Frequency of Nomad-Sedentary	
			Wars	222
		7.3.2	Fluctuations in the Frequency of Nomad-Sedentary	226
	7.4		Peace-Making Events	226
	1.4	Impac	t of Climate Change on Nomad-Sedentary Relations	231
		7.4.1	Relationship Between Nomad-Sedentary Interaction	021
		742	and Climate Change	231
		7.4.2	Affasta Ethnia Dalations	222
				233
8	Clin	nate Cl	nange and Social Vicissitudes in China over the Past	
	2000) Years		239
	8.1	Recon	struction of Social Vicissitude Series	239
		8.1.1	Records for Social Series	239
		8.1.2	Methods and Steps in the Reconstruction of a Social	
			Vicissitudes Sequence	240
	8.2	The C	haracteristics of Social Vicissitudes of China	249
	8.3	Relati	onships between Climate Change and Social	
		Viciss	itudes	250
		8.3.1	Climate Change and Social Vicissitudes	250
		8.3.2	Climate Change and Dynastic Transition	254
		8.3.3	Climate Change and Dynastic Prosperity	255
		8.3.4	Climate Change and Dynastic Division and Unification	260
9	The	Social	-Ecological Resilience and the Coordination	
	of H	listoric	al Climate and Social and Economic Changes	
	in C	hina .		263
	9.1	Corres	spondence of Negative Society in Cold Periods	
		and Po	ositive Society in Warm Periods	264
		9.1.1	The Correspondence on the Centennial Scale	264

Contents

	9.1.2	The Correspondence on the 30-Year Scale	269
	9.1.3	The Cooperative Nature of Historical Climate Change	
		and Socio-economic Cycles	272
9.2	Impac	ts of Socio-ecosystem Resilience on the Transmission	
	Proces	ss of the Impacts of Climate Change	279
	9.2.1	Comparison of the Transmission of the Impacts	
		of Climate Change in 30-Year Cold and Warm	
		Segments along Individual Food Security Routes	280
	9.2.2	Comparison of the Transmission of the Impacts	
		of Climate Change in Cold and Warm Segments	
		along Social Food Security Routes	282
	9.2.3	Comprehensive Comparison of Transmission Routes	
		of the Impacts of Climate Change in the Cold	
		and Warm Segments	285
	9.2.4	Stepwise Decreases of the Impacts of Climate Change	
		in the Transmission	285
	9.2.5	Complexity of the Relationship Between the Famines	
		and the Impacts of Climate Change in the History	
		of China from the Perspective of Socio-ecological	
		Resilience	287
9.3	Stepw	rise Loss of Socio-ecological Resilience in Response	
	to the	Impacts of Climate Change in a Dynastic Cycle:	
	A Cas	e Study of the North China Plain in the Qing Dynasty	289
	9.3.1	The Social Impacts of Climate Change Changed	
		from Insignificant to Significant at the Turn of the 18th	
		to 19th Century	292
	9.3.2	The Loss of Socio-ecological Resilience and Its	
		Contribution to the Shift of the Impacts of Climate	
		Change at the Turn of the 18th and 19th Centuries	296
9.4	How (Climate Change Collapsed the Ming Dynasty: A Case	
	of the	Threshold of Dynastic Social-ecological Resilience	
	Being	Exceeded	304
	9.4.1	The Concrete Manifestation of Social Collapse	
		in the Late Ming Dynasty	304
	9.4.2	The Main Features of Climate Deterioration in Late	• • • •
		Ming Dynasty	308
	9.4.3	The Impacts of Climate Change on Social Collapse	• • • •
		in the Late Ming Dynasty	309
	9.4.4	Interaction of Climate and Socio-ecological	
		Resilience during the Collapse of the Ming Dynasty	320
	9.4.5	The Complexity of the Impact of the Socio-ecological	
		Resilience and Climate Change on Dynasty	
0.7	T TI ~	Replacement	322
9.5	The C	reation of Social-ecological Resilience by Adapting	0.05
	to Cli	mate Change in the History of China	- 327

9.5.1	The Jump of Socio-ecological Resilience of China	
	for the Extension of Main Agriculture Area	
	to Southern China	329
9.5.2	Improvement of Socio-ecological Resilience Brought	
	by the Establishment of a Continuous Rice–Wheat	
	Cropping System in the Southern China	333
9.5.3	The Role of the Creation of Social-ecological	
	Resilience in Southern China on Adaptation	
	to the Impacts of Climate Change Subsequently	338
References		341

List of Figures

Fig. 1.1	Topography of China and physiogeographical regionalization	2
Fig. 1.2	Historical chronology of China	10
Fig. 1.3	Changes of cropland area in China for the past 2000 years	11
Fig. 2.1	Temperature changes in China over the past 2000 years	42
Fig. 2.2	Reconstructed temperature changes in different regions	
	of China during the past 2000 years by proxy evidence	45
Fig. 2.3	The sequences of dry/wet changes and the corresponding	
-	power spectrums in Eastern China and its sub-regions	
	in the past 2000 years	63
Fig. 2.4	The drought/flood patterns in Eastern China in five	
	cold periods (C1-C5) and four warm periods (W1-W4)	
	during the past 2000 years	67
Fig. 2.5	The ensemble mean of DDF (difference in the ratio	
	of the occurrence of drought and flood) and its difference	
	distribution between cold and warm periods for each	
	station in Eastern China	68
Fig. 2.6	The changes of major drought and flood years in Eastern	
	China over the past 2000 years	69
Fig. 2.7	The changes in the number of major drought and flood	
	in Eastern China every 50 years over the past 2000 years	71
Fig. 2.8	The high-resolution standardized moisture (precipitation)	
	proxy records in the arid area of Northwest China	
	in the past millennium	72
Fig. 2.9	Precipitation sequences in the northeastern part	
	of the Qinghai-Tibet Plateau in the past 3500 years	
	reconstructed from tree rings	74
Fig. 2.10	The precipitation changes in the dry/wet seasons	
	in the southeast part of the Qinghai-Tibet Plateau	75
Fig. 3.1	Four milestones of the formation of the human ecosystem	
	and man-earth relationship	78

Fig. 3.2	Coupled human–environment system and hierarchy of climate change impacts	78
Fig. 3.3	The resource and hazards in relation to the coping range	/0
0	with the impacts of climate change	81
Fig. 3.4	General relationships between vulnerability, threats,	
U U	exposure and impact or system transformation of a system	
	(social, natural or social-social ecosystem)	87
Fig. 3.5	A conceptual model for environmental change and history	89
Fig. 3.6	The panarchy of adaptive cycles	90
Fig. 3.7	The main manifestations of climate change affecting	
	human social development of five categories	91
Fig. 3.8	The concept of food security	96
Fig. 3.9	A conceptual model and main indicators of climate change	
	impact-response in the history of China based on food	
	security	97
Fig. 3.10	The diagram of food security under the impact of climate	
	change in the Chinese historical period	98
Fig. 3.11	Hierarchy of response to the impact of climate change	
	in historical period (e.g., droughts in China's history)	105
Fig. 3.12	Methodology for quantifying historical social	
-	and economic series on the base of semantic differential	114
Fig. 4.1	Frequency of the grain yield index	130
F1g. 4.2	Grain yield grades sequence and the relationships	101
E' 4.2	to climate change	131
F1g. 4.3	The continuous wavelet power spectra for decadal Grain	120
Fig 4.4	Correlation between grain yield grade and temperature	152
F1g. 4.4	departure	12/
Fig 45	Linear fitting relationship of the mean values of the grain	154
11g. 4.5	vield grades and winter half-year temperature departure	135
Fig 46	Trend lines corresponding between precipitation variation	155
1 lg. 4.0	and grain yield grade	135
Fig 51	Diagram for different phases of economic cycle	155
1 19. 0.1	in historical China	146
Fig. 5.2	Reconstruction of the economic series for 220 BCE–1910	110
8	СЕ	149
Fig. 5.3	Time coverage and number of multi-time-resolution entries	152
Fig. 5.4	a Reconstructed initial fiscal sequence with no fixed	
U	temporal resolution; b possible error scope for interval's	
	level; c number of records for each interval	158
Fig. 5.5	Macroeconomic fluctuation during 220 BCE–1910 CE	
-	in China	161
Fig. 5.6	Fiscal balance series during 220 BCE–1910 CE in China	164
Fig. 5.7	Comparison between macroeconomic (black) and fiscal	
	balance sequences (red)	168

List of Figures

Fig. 5.8	Series comparison among climate change, macroeconomic and fiscal balance fluctuations in China from 220 BCE to 1910 CE	170
Fig. 5.9	Real part of Morlet wavelet spectrum using Continuous wavelet transformation for the macroeconomic series	170
	in China	176
Fig. 5.10	The continuous wavelet power spectra for macroeconomy, fiscal balance and temperature series in historical China	177
Fig. 5.11	Wavelet coherences between the 3-point FFT smoothing	170
Fig. 5.12	Wayalat coherences between the original decadal series	1/9
Fig. 5.12 Fig. 5.13	Moving correlations between the macroeconomy	160
Fig. 5.14	and climate change	181
	change	182
Fig. 5.15	Comparison between macroeconomic series and climate	184
Fig. 5.16	Leading/lagging correlation analysis between fiscal	104
1 Ig. 5.10	balance series and temperature and dry/wet	186
Fig. 5.17	Leading/lagging correlation analysis	100
	between macroeconomy	188
Fig. 5.18	Residual diagnostics for regression analysis of climatic	
	effects on macroeconomy	194
Fig. 6.1	The sequence of the years of famine per decade in China	
	from the Western Han Dynasty to the Qing Dynasty (206	
	BCE–1911 CE)	201
Fig. 6.2	The sequence of the frequency of famine events per decade	
	in China from the Western Han Dynasty to the Qing	202
Fig 63	The sequences of femine index and winter half year	202
Fig. 0.5	temperature anomalies in China over past 2000 years	204
Fig 64	Relationship between peasant uprisings and climate	204
1 15. 0. 1	change in the past 2000 years	206
Fig. 7.1	The sequences of the historical climate change	
0	and frequency of nomad-sedentary wars	222
Fig. 7.2	The sequences of the historical climate change	
	and nomad-sedentary peace-making events	228
Fig. 8.1	Number of records and the coverage of records for social	
	rise and fall from 210 BCE to 1910 CE	243
Fig. 8.2	Steps in the reconstruction of the social vicissitudes	
F '. 0.2	sequence	244
F1g. 8.3	Social vicissitudes grade in China over the past 2000 years	249
г1g. 8.4	a rede series of Chine over the past 2000 years	251
	grade series of China over the past 2000 years	231

Fig. 8.5	Comparison of climate changes with the social grade	
	over the past 2000 years	252
Fig. 8.6	Wavelet coherences between decadal series and climate	
	changes in China over the past 2000 years	253
Fig. 8.7	Relationship between climate change and dynastic division	
	and unification over the past 2000 years in China	261
Fig. 9.1	Comparisons of climate and socio-economic changes	
C	on centennial scales in the past 2000 years of China	266
Fig. 9.2	Radar chart of historical socio-economic conditions	
C	of China in different centennial cold and warm periods	269
Fig. 9.3	Proportions of the total decades for the cold and warm	
U	segments with different subsystem situations in China	
	during 210 BCE to 1910 CE	271
Fig. 9.4	Wavelet coherence analysis of each indicator of the social	
8 1.	subsystems and the temperature changes in China	
	during the past 2000 years	273
Fig. 9.5	Wavelet coherence analysis of each indicator of the social	
8. 7. 10	subsystems and the dry/wet changes in China	
	during the past 2000 years	274
Fig. 9.6	Differences in the possible transmission routes	- · ·
1 19. 7.0	of climate impacts for 30-year cold and warm segments	
	within the subsystems of Chinese society over the past	
	2000 years	281
Fig 97	Possible transmission routes of climate impacts	201
1 15. 7.7	along the food production economy and society	
	subsystems in cold (ton) and warm (bottom) segments	
	in China over the past 2000 years	283
Fig 98	Administrative division of the North China Plain in 1820 CE	290
Fig. 9.9	Social responses to the shift of climate to a colder state	220
1 15. 7.7	in the North China Plain at the turn of the 18th and 19th	
	century	294
Fig 9 10	Changes of grain yield per capita in Zhili under two	274
1 15. 7.10	scenarios	299
Fig. 0.11	Climate change extreme drought and its impact on social	277
115. 7.11	system in 1500–1650 CF	310
Fig 9 12	A comparison of drought-affected areas and peasant	510
1 15. 7.12	rebellion activities in 1627–1643 CF	317
Fig 9 13	The main driving factors leading to the collapse of Ming	517
i ig. 9.15	Dynasty and its response path	320
Fig 9 14	Climate change drought and flood disaster and social	520
1.18. 7.14	response in North China from 1470 CF to 1911 CF	324
Fig 0 15	The climatic change background of Tang Dynasty's decline	327
Fig 0 16	The social and economic background of Tang Dynasty's deenile	521
i ig. 7.10	decline	328
		J_0

List of Figures

Fig. 9.17	Spatial distribution of fractional cropland cover in China	
	in 1080 CE	330
Fig. 9.18	The resilience changes in the history of China in relation	
	to the development of southern China	331
Fig. 9.19	Dry and wet pattern in Eastern China during the warm	
	period of the Northern Song Dynasty (1000–1100 CE)	334
Fig. 9.20	Schematic diagram of the adaptation to the impacts	
	of climate change during the warm period of the Northern	
	Song Dynasty and Liao Dynasty	335

List of Tables

Table 1.1	The proportion of Chinese population in the world	
	in different periods	14
Table 2.1	The significant cold/warm fluctuations on a multi-decadal	
	scale during the centennial cold/warm period of China	
	over the past 2000 years	43
Table 2.2	Summary of proxy data indicating temperature changes	
	in North-East China over the past 2000 years	46
Table 2.3	The century variation of frequency of four types of rain	
	belts in Eastern China over the past 1000 years (%)	65
Table 2.4	The basic information high-resolution moisture	
	(precipitation) proxy records in the arid area of Northwest	
	China in the past millennium	72
Table 3.1	The three paradigms of resilience thinking and their	
	characteristics	83
Table 3.2	Indicators of socio-economic system in China for series	
	reconstruction over the past 2000 year	111
Table 4.1	Data sources for the reconstruction agricultural harvest	
	sequence for the past 2000 years	121
Table 4.2	Statistics of the original records (number and percentage)	122
Table 4.3	Differentiation of annual grain yield levels from wording	
	used in historical records	123
Table 4.4	Area divisions for distinguishing grain yield levels	126
Table 4.5	Distribution of the grain yield levels	128
Table 4.6	Distribution of the levels of grain yield in the Western	
	Han Dynasty and Modern times	129
Table 4.7	Statistics about 10-year grain yield grades	130
Table 4.8	The value range of the harvest percentage corresponding	
	to grades	130
Table 4.9	Structural proportion of grain yield grades in different	
	stages (%)	131

Table 4.10	Changes of grain yield grade in different warm and cold	124
Table 4.11	The grain yield grade under different temperature- dry/	154
	wet combinations	136
Table 5.1	Data source for the reconstruction of macroeconomic	
	series during 221 BCE–1910 CE	142
Table 5.2	Differentiation of macro-economic state phases	
	in imperial China based on the semantic analysis of words	
	used in books	145
Table 5.3	Data source for the reconstruction of fiscal balance series	
	during 221 BCE–1910 CE	154
Table 5.4	Differentiation of fiscal balance phase from the semantics	
	of words in imperial China	156
Table 5.5	Percentage of each decadal macroeconomic grade	
	during the four stages from 220 BCE to 1910 CE	162
Table 5.6	Stages of macroeconomic fluctuation during 220	
	BCE–1910 CE	163
Table 5.7	Percentage of each decadal fiscal grade during the seven	
	stages from 220 BCE to 1910 CE	164
Table 5.8	Stages of fiscal fluctuation during 220 BCE–1910 CE	166
Table 5.9	Leading/lagging correlation analysis	
	between macroeconomic and fiscal balance	
	series at different scales	168
Table 5.10	Macro-economic characteristics comparison	
	at the centennial-scale climate periods during 220	
	BCE–1910 CE in China	171
Table 5.11	Macro-economic characteristics in each centennial-scale	
	climatic period during 220 BCE–1910 CE in China	172
Table 5.12	Fiscal balance characteristics comparison	
	at the centennial-scale climate periods during 220	
	BCE–1910 CE in China	173
Table 5.13	Fiscal grades under different temperature-precipitation	
	combinations at the decadal scale	174
Table 5.14	Correlations between climatic indexes and	100
m 11 c 1c	macroeconomic short-/long-scale fluctuation	182
Table 5.15	Correlation analysis between economic series	
	and temperature and dry/wet indexes at different	104
TILL 516	frequency during 1–1910 CE	184
Table 5.16	Correlations between climatic indexes and fiscal balance	105
	at different scales over the past 2000 years	185
Table 5.17	Comparison for land taxation in the dynastic fiscal	
	revenue and population among three sub-regions	100
	Correlation between macroeconomy/fiscal balance	190
14010 3.10	and regional dry/wet on different scale	101
		171

Table 5.19	Granger causality tests for data of different frequency	192
Table 5.20	Regression analysis between macroeconomy and climate	
	change on the decadal scale	192
Table 5.21	Regression analysis between macroeconomy and climate	
	change on the three decadal scales	193
Table 6.1	Statistics of famine events in China from the Western	
	Han to the Qing dynasties	205
Table 6.2	Statistics of peasant uprisings in China from Western	
	Han to Qing dynasties	207
Table 6.3	Division of the phases in the frequency of peasant	
	uprisings in China from 1 CE to 1920 CE	209
Table 6.4	Correlation between the famine index, frequency	
	of peasant uprisings and climate change in the past 2000	
	years	210
Table 7.1	Frequency of Wars initiated and won by sedentary/	
	nomadic peoples	224
Table 7.2	Frequency of nomad-sedentary wars from the Western	
	Han Dynasty to the Qing Dynasty in China	226
Table 7.3	Frequency of peace-making events between sedentary	
	and nomadic peoples in China from Western Han to Qing	
	dynasties	229
Table 7.4	Frequency of nomad-sedentary wars by historical cold	
	and warm phases	232
Table 7.5	Frequency of nomad-sedentary peace-making events	
	by historical cold and warm phases	234
Table 8.1	Data source for the reconstruction of social vicissitude	
	series over the past 2000 years	241
Table 8.2	Classification of records for social rise and fall	243
Table 8.3	Dynastic peace and turbulence periods of China from 210	
	BCE to 1910 CE (Ge 2011)	245
Table 8.4	Types of the direct descriptions for social fluctuation	246
Table 8.5	Grading rulers and statistics of each grade over the past	
	2000 years for Step2	247
Table 8.6	Statistics for the resolutions of records in Step3	247
Table 8.7	Process and rulers for Step3	247
Table 8.8	Process and principles for Step4	248
Table 8.9	Distribution of the social grades from 210 BCE to 1910	
	CE in China	249
Table 8.10	Percentage of each social grade during the five stages	
	from 210 BCE to 1910 CE	250
Table 8.11	The rise and fall of Chinese dynasties in different cold	
	and warm periods	252
Table 8.12	Pearson correlations between climate change and social	
	vicissitudes	253
Table 8.13	Social grades under different climatic scenarios	254

Table 8.14	Social grades under different climatic combinations	255
Table 8.15	Dynastic transitions and prosperity over the past 2000	
	years in China	256
Table 8.16	Relationship between climate change and dynastic	
	division and unification over the past 2000 years in China	261
Table 9.1	The cold and warm periods and the transition periods	
	on centennial scale	265
Table 9.2	Statistics of socio-economic fluctuations in different cold	
	and warm periods at centennial scale	267
Table 9.3	Classification of 30-year cold and warm segments	
	in China from 210 BCE to 1910 CE	269
Table 9.4	Classification standards for each socio-economic index	
	in China from 210 BCE to 1910 CE	270
Table 9.5	Percentage-wise distribution of different situations	
	and mean values for each subsystem within cold	
	and warm Chinese segments from 210 BCE to 1910 CE	271
Table 9.6	Wavelet coherence statistics of indicators of the subsystem	
	and temperature in China during the past 2000 years	275
Table 9.7	Wavelet coherence statistics of the indicators	
	of the subsystem and dry/wet in China during the past	
	2000 years	277
Table 9.8	The main transmission routes of the impacts of climate	
	change in different cold and warm segments in the history	
	of China	282
Table 9.9	Cross-correlation analysis of temperature change	
	and social subsystems on a 30-year scale	282
Table 9.10	The rapid development of peasant uprisings in 1628	
	CE–1644 CE	308
Table 9.11	The increasing frequency of extreme drought and flood	
	disasters in late Ming Dynasty (1581 CE–1644 CE)	311
Table 9.12	Records about the abandoning of the north Juntun	
	in the late Ming Dynasty	313
Table 9.13	Estimation of per capita grain yield change in North	
	China during the late Ming Dynasty	314
Table 9.14	Similarities and differences of climate change impacts	
	on the replacement of Tang, Ming and Qing dynasties	322

Chapter 1 Introduction

1.1 The Natural Environment of China

China lies in Southeast Eurasia, with a large span from $73^{\circ} 40'E$ to $134^{\circ} 46'E$ and $3^{\circ} 52'N$ to $53^{\circ} 31'N$. Most of the country is located in the middle latitudes.

China has a vast territory including both land and sea. The land area is about 9.6 million square kilometres. China's mainland coastline measures approximately 18,000 km. It is flanked to the east and south by the Bohai, Yellow, East China and South China Seas, with a total maritime area of 3 million square kilometres under Chinese jurisdiction. The Bohai Sea is the continental sea, while the Yellow, East China and South China Seas are marginal seas of the Pacific Ocean (Fig. 1.1).

1.1.1 The Three Topographic Steps

The main characteristic of the Chinese landform is that the land surface decreases in a stepped pattern from west to east, which is known as the topographic steps of China.

The first step is formed by the Qinghai-Tibet Plateau in the west. It is the highest plateau in the world, with an average elevation of more than 4000 m. At 8848.86 m above sea level, Mount Qomolangma¹ is the world's highest peak. The boundary line between the first and second steps of the topographical staircase is formed by Kunlun Mountains, Qilian Mountains and Hengduan Mountains on the edge of the Qinghai-Tibet Plateau. To the east and north of the boundary is the second topographic step, with an average elevation of 1000–2000 m. It consists of vast plateaus (the Inner Mongolia, Loess and Yunnan-Guizhou Plateaus) and basins (the Junggar Basin, Tarim Basin and Sichuan Basin), separated from each other by high

¹ Mount Qomolangma, known in the West as Mount Everest, comes from Tibetan of China for "Goddess of the Universe".

[©] Science Press 2024

X. Fang et al., *The Social Impacts of Climate Change in China over the Past 2000 Years*, https://doi.org/10.1007/978-981-97-0202-2_1

Fig. 1.1 Topography of China and physiogeographical regionalization (Zheng et al. 2005)

mountains. The boundary of the second and third steps lies along the Greater Khingan Mountains, the Taihang, Wu and Xuefeng Mountains. The area east of this boundary to the sea coast is the third topographic step of China, with an average elevation less than 500 m. It consists of plains (Northeast China, North China and Middle-Lower Yangtze Plains), hills and low mountains. To the east and south of the coastline lie the seas of the continental shelf, with water depths generally less than 100–200 m. Overall, mountains, plateaus and hills account for about 67% of China's land area, while basins and plains account for about 33%. This means that flat and arable land is limited in China and this has placed a constraint on its agricultural and population distribution patterns.

Governed by the three-step landforms, China's major rivers, such as the Yellow the Yangtze Rivers, mainly originate from the Qinghai-Tibet Plateau or other mountainous areas that divide the topographic steps of the landform and flow into the ocean from the west to east. Therefore, the hydrological processes and soil erosion in the upper and middle reaches have a profound influence on the river channel evolutions and disasters (such as floods and droughts) in the eastern downstream plains. For example, the upper and middle reaches of the Yellow River flow through the Loess Plateau, which was one of the first areas where farming was developed in ancient China because of its deep, fertile soil. However, the soil erosion on the Loess Plateau has not only resulted in the landforms featuring numerous gullies and ravines but also in large amounts of loess sediment being carried through the Yellow River to the North China Plain. The accumulation of loess sediment caused the silting up of the riverbed and the formation of a "suspended Yellow River" above the ground in the lower reaches. The lower Yellow River was renowned for frequent channel migrations and levee breaches, which have had a profound impact on the North China Plain throughout history. The flooding of the Yellow River caused devastating blows several times to local agriculture, population, settlements and the economy.

1.1.2 The Typical Monsoon Climate

China is one of the regions with the most typical monsoon climates in the world. Taking the line along the Greater Khingan Range, Yin, Helan, Wushao, Bayan Har, Tanggula Mountains and the Kailash Range as the boundary, the area to the east and south of it is the Eastern monsoon region of China. In this region, influenced by the monsoon circulation systems in East Asia, South China Sea and India, the Winter and Summer monsoons are both prominent. The vast area north of the Leizhou Peninsula to the Qinling Mountain-Huaihe River in China has a humid subtropical climate, contrasting sharply with most arid desert belts of the same latitudinal zone on Earth that are under the control of the Subtropical High Pressures. This is the result of the monsoon circulations influencing the control of the planetary wind system over China's near-surface atmosphere.

In winter (roughly October to March), the Winter monsoon circulation dominates the weather system in China's monsoon region. The surface airflow below 2000 m in this place is mainly affected by the Siberian High Pressure. The near-surface wind is cold and dry and its direction is mainly North (Northwest, due North or Northeast). In summer (June to September), the Summer monsoon circulation dominates the weather system in the monsoon region and the direction of the near-surface wind is mainly South (Southeast, due South or Southwest), which carries a large amount of moisture from the ocean and makes the rainfall on the land.

The transitions of Winter and Summer monsoon during the year bring about significant seasonal changes in heat and humidity and in turn form the characteristics of the climate in the Eastern monsoon region, dominated by the four distinct seasons and the time overlap of rainy season and hot season. It is colder in winter and hotter in summer compared to other areas at the same latitude. Precipitation decreased from southeast to northwest, with great seasonal difference and inter-annual variation. In addition, China's meteorological disasters are characterized by various types, high frequency and high intensity, which are also closely related to the monsoon climate.

The precipitation in most parts of China is concentrated in the Summer monsoon period, while the Winter monsoon period is generally dry and less rainy. Most regions receive less than 5% of their annual rainfall in winter (December to February), while the middle and lower reaches of the Yangtze River and areas south of it, as well as the northern Xinjiang receiving more than 10%. The relatively low and flat topography of the eastern China allows the Summer monsoon to sweep in and bring monsoon rains. With the front of Summer monsoon pushing from south to north, the main rain belt

stepwisely shifts in the same direction in the Eastern monsoon region. Precipitation in South China increases significantly in April and by May the rain belt extends to the south of the Yangtze River. From early June to early July, the rain belt moves rapidly north to the Yangtze-Huai River Basin and stagnates, causing the "plum rain"² along the persistent stationary front. June and Julvare characterized by prolonged gloomy and rainy weather. After mid-July, the rain belt continues to move to North China and Northeast China. However, at this time in the South, the area around the southeastern coast is affected by precipitation brought by tropical cyclones, while the Jianghuai region is experiencing Summer drought under the control of the Subtropical Ridge. In September and October, the Summer monsoon withdraws southwards and, rapidly, the rain belt also retreats southwards to South China. Generally, the seasonal distribution of precipitation, droughts and floods in China are influenced by the passage of the rain belt. On the one hand, the concentration of precipitation in Summer is most pronounced in Northeast and North China, which makes them prone to spring droughts and summer floods. On the other hand, precipitation in southern China is distributed evenly throughout the year and common disasters include floods in summer and autumn and droughts in mid-summer in the Jianghuai region.

The combination of China's monsoon climate and topographic features makes the Eastern monsoon region a place of frequent and severe droughts and floods. The in the abnormal onset time, intensity, extent, duration and movement paths of the East Asian Summer monsoon could all lead to anomaly of inter-annual precipitation, resulting in successive drought and flood or alternating from drought to flood. In addition, the precipitation is too concentrated in Summer, the similar direction of the rain belt and the main river systems in distribution, leads to simultaneous abundance or shortage of water in both upper and lower reaches of the river. This makes it have to carry out both flood and drought prevention together on a regular basis. Organizing the construction and maintenance of flood and drought prevention and water conservation facilities has become an important responsibility of every government in the history of China. In the lower reaches of the Yangtze River, when the limited plain was reclaimed out, people gained new farmland by reclaiming land from lakes to alleviate the growing population pressure. This placed the agricultural production at a greater risk of flooding. Moreover, the high concentration and annual variability of precipitation are more significant in the North than in the South, making the former more prone to droughts and floods.

The development of the Winter monsoon in China is embodied in the outbreaks of cold air (a drop of 5–10 °C) and cold wave (a drop of more than 10 °C) events. There are usually 4–5 cold waves and 6–7 powerful cold air events in winter each year. A Winter monsoon activity includes 3 important stages: the onset of the Winter monsoon, the accumulation of cold air over Siberia and the intrusion of masses of cold air to the southeast. In China, cold waves are caused by the rapid and strong southward movement of cold air coming from the Mongolian plateau and Siberia. Generally, cold waves may occur between October and May. Late Autumn and early Spring are the seasons when most cold waves occur in China. Cold waves are related

² As these months are the ripening period of plums, it is called "plum rain" season.

to the intensity of the Winter monsoon, which can affect the winter temperature of China. When the Winter monsoon is strong, the number of cold waves hitting China in that year will increase and winter temperature will be lower than usual. Cold waves can cause widespread and intense cooling, as well as windy, rainy or snowy weather along their paths. After the passage of cold waves, the climate in North China will be dry with low precipitation. In Spring, cold waves are likely to cause sandstorms. However, after passing the Huai River, the cold air masses will meet with the warm and humid air masses, generating continual rain in the Yangtze River Valley (even in the Nanling region). A powerful cold wave can then cross the Nanling Mountains to reach the South China Sea and even the further south.

1.1.3 Three Partitions: The Basis of Geographical Differences in China

The interaction of topography and climate in China has made its natural geographical environment very distinctive. Three partitions, *the Eastern monsoon region, the arid and semi-arid areas in the Northwest* and *the high latitudes and cold region in Qinghai-Tibet Plateau*, were formed, based on the patterns of regional differentiation. They have substantially influenced the spatial distribution and characteristics of China's agriculture, population and economy. As for the boundaries of the three natural partitions, *the high latitudes and cold region in Qinghai-Tibet Plateau* are bounded by the 3000 m contour line, while the rest of the region is divided into *the arid and semi-arid areas in the Northwest* and *the Eastern monsoon region* by the 400 mm average annual rainfall isohyet.

(1) The Eastern Monsoon Region

The Eastern monsoon region is mainly located to the east of the 400 mm average annual rainfall isohyet. Its northernmost point is at Mohe in Heilongjiang Province and the southernmost point is at the Nansha Islands of Hainan Province. This region has a typical monsoon climate. Cold and dry Winter monsoon blows from the inland provinces at middle and high latitudes, while Summer monsoon brings warm and moist air from the Pacific and the Southwest Indian Ocean at low latitudes. In the Eastern monsoon region, winter is relatively dry and cold while summer is hot and humid. From the south to the north, there is a clear latitudinal zonation based on temperature differences. The main body of the Eastern monsoon region is located in Northern-, Middle- and Southern Subtropical zones and Middle- and Warm Temperate zones. The average annual temperature is about -4 °C in the northernmost point and more than 25 °C in the southernmost point. The temperature difference between the North and the South is large in winter (nearly 50 °C) and small in summer (about 10 °C). Besides, within the Eastern monsoon region, the annual precipitation is about 400-2000 mm. As the increasing distances from the sea, there is a meridional divergence of the humid and semi-humid climates and the biomes are forests and forest steppes, respectively.

The Eastern monsoon region includes not only the Loess Plateau, Sichuan Basin and Yunnan-Guizhou Plateau on the second topographic step, but also the Northeast China, North China, the Middle-Lower Yangtze Plains and the Jiao-Liao, Jiangnan and Zhejiang-Fujian Hills on the third topographic step. The regional climate differences are enhanced by significant landform differences, combined with the NE–SW, S–N and E–W running mountains within this region.

The Eastern monsoon region enjoys the best natural conditions in China. Since ancient times, it has been China's major farming area and densely populated area. It is also the seat of China's political, economic and cultural centres. Because of the diversity of the geographical environment and favourable climatic conditions, most grain crops, cotton plants, fruits and vegetables in the world can be produced here, with a high cropping index. About 88% of arable land and 94% of the population in modern China are located in the area east to the Heihe-Tengchong line (also known as the "Hu line") in the monsoon region. With a large population and a long history, human activities have exerted substantial and extensive influences, which have brought great changes in the natural landscape. Most of the plains and basin areas have been developed for arable or residential land and most of the native vegetation in mountainous and hilly areas has been cut down and replaced by terraced rice fields and plantation forests. Crops and human landscapes are widely distributed. In the process of adapting to the natural conditions in this area, the resident peoples have developed a prominent agricultural culture. They have formed a social consensus of attaching importance to agriculture and farming, a pragmatic spirit of emphasizing practicality and a peaceful and optimistic attitude towards life.

(B) The Arid and Semi-arid Areas in the Northwest

The arid and semi-arid areas in the Northwest are located in the inland regions west to the 400 mm average annual rainfall isohyet and north to the Qinghai-Tibet Plateau. The climate of this partition is relatively homogeneous. The average annual range of temperature is between 0 and 16 °C. Most of the region belongs to the mid-temperate zone and small parts to the warm temperate zone. Because they are quite some distance from the ocean, summer monsoon and moist air are difficult to reach, resulting in very little precipitation. Annual precipitation is around 400 mm in the east and decreases to 100 mm or even less than 50 mm in the west. Most of the region is with hot summer and cold winter, scarce precipitation and year-round dryness. Aridity is the most significant natural feature, but this region is rich in wind and solar energy resources.

The arid and semi-arid areas in the Northwest are located on the second topographic step. The altitude is generally between 1000 and 2000 m, but with a significant internal variation. The main body of the eastern part is formed by plateaus (e.g., Inner Mongolia Plateau, northwestern part of Loess Plateau). There are also mountain ranges (Yinshan and Helan Mountains, etc.) and several basins of varying sizes. The Summer monsoon can only affect the eastern and southern parts where the annual precipitation was 250–400 mm in the mid-summer. The climate here is semi-arid in the temperate zone or the warm temperate zone. The dominant landscape is steppe, studded with some lakes and fixed or semifixed sand dunes. This region was called the "northern farming-pastoral transitional zone", where has been half farming and half pasturing, and some time farming and other time pasturing in the history, as a transition area between the agricultural people of the Central Plains and nomadic people of the North.

While to the west of the Hexi Corridor, the regional morphological pattern shows an alternating distribution of large basins (e.g., the Tarim Basin and Junggar Basin) and high mountains (e.g., Tian Shan). The main climate type is the temperate arid climate. However, the southern part of Xinjiang is in the warm temperate zone with an arid climate. The landscape is mainly desert steppe, Gobi and desert. Influenced by the morphological pattern, there are usually significant high precipitation belt on the windward slopes of high mountains. And on the upper mountains, there are permanent snow and glaciers, which become the "solid reservoirs" in the desert. Rivers recharged by these "solid reservoirs" then formed oases of different sizes in the piedmont puluvial fan and along both sides of the rivers at their tails in the basins. Restricted by water resources, this region mainly develops animal husbandry. Pastures can be found on most of the steppes and desert steppes. This mode of production has given rise to the region's unique nomadic cultural identity and style. Agriculture, however, is confined to the oases with irrigation conditions, forming the "oasis agriculture". Agriculture in oases on the mountain fronts is quite well developed. The oases occupy less than 5% of the land area but with more than 90% of the population and social wealth. The farmland, villages and towns in this region are mostly distributed in dots or stripe patterns, as the water source is a decisive factor of agricultural development and the distribution of population and settlements.

(C) The High Latitudes and Cold Region in Qinghai-Tibet Plateau

The main body of this region is the Qinghai-Tibet Plateau. Covering about one-fourth of China's land area, where has an average elevation of more than 4000 m and is home to many high mountains, such as the Kunlun and Tanggula Mountains, the Kailash Range and the Himalayas.

The region's high altitude contributes to its cold climate. It is with the alpine climate, characterized by cold and dry natural conditions. The annual average temperature in most areas is below 0 °C, significantly lower than that in other places at the same latitude. The annual range of temperature is small but the daily range is large. The thermo-isopleths appear to be closed circles and the values decrease with the increase of altitudes. The average precipitation is around 400 mm. However, in the southern part of the plateau, the precipitation is more than 800 mm due to the warm and humid air from the Indian Ocean, yet in the landlocked northern part, the precipitation is less than 100 mm. On the plateau, wind and solar radiation are strong and the air is thin, resulting in lower air pressure and availability of oxygen. The cold climate results in the formation of a large number of glaciers and the world's widest and thickest permafrost at the middle and low latitudes. Besides, the seasonal and annual variability of snowpacks are also great. The redistribution of water and heat resources, due to the high elevation, has directly led to the altitudinal zonation and diversity of climate here. There is a plateau frigid zone, a plateau temperate zone and a plateau subtropical zone based on temperatures and four arid/humid types,

namely, humid, semi-humid, semi-arid and arid. From the east to west, or from the low to high altitude, the distribution of natural ecosystems showed obvious patterns of forest–grassland–meadow–desert.

This region contains main sources of several great rivers in Asia, such as the Yellow River, the Yangtze River, the Ganges, the Mekong, the Indus, the Salween and the Irrawaddy. The plateau is home to numerous endorheic lakes, where was the end of many rivers. Except for a few freshwater lakes, most of them are brackish or salt lakes.

The production of this area is mainly animal husbandry as the natural conditions are harsh for farming (cold climate with large variability, short frost-free period, etc.). The largest and most extensively used pastures are located in the alpine meadows and the steppes in wide plateau valleys. The obvious vegetation zonation is conducive to the implementation of seasonal transhumance. Pastures are mainly stocked with Tibetan sheep, yaks and other livestock adapted to this alpine environment. Agriculture production, however, is mainly distributed in the river valleys and basins, such as Yellow River-Huangshui River Valley, Qaidam Basin and Yarlung Tsangpo River Valley. Highland barley and wheat are the staple crops. River valleys are not only the main areas for agricultural development, but also where human activities are most concentrated. Other areas in the plateau are sparsely populated or uninhabited.

1.1.4 The "North" and the "South" in the Eastern Monsoon Region

Due to the large latitudinal span of the Eastern monsoon region, there are considerable differences between the North and the South within this partition. Consequently, this region can be further divided into the "South" and the "North", with the "Qinling (Mountains)-Huaihe (River) line" as the boundary. This line is an important natural geographical boundary in China.

In terms of climatology, the "Qinling-Huaihe line" is roughly equivalent to the 800 mm annual rainfall isohyet, the 0 °C isotherm in January, as well as the 4500 °C contour of ≥ 10 °C cumulative temperature. It is also the dividing line of the humid and semi-humid climate regions and the subtropical monsoon climate and warm temperate monsoon climate regions in China. In addition, the Qinling-Huaihe line is also the boundary between the subtropical broad-leaved evergreen forests and the red and yellow soils in the South and the warm-temperate deciduous forests and the brown soil in the North. To the North of this line, the rivers, such as the Yellow River, are featured by lower flow, shorter flood season, larger range in seasonal water level, frozen, high sediment concentration and a sparse river network. However, for the rivers to the South of the line, such as the Yangtze River, the features are complete opposite.

In terms of agricultural resources, the Qinling-Huaihe line has the significance of a division between different types of agriculture. The South has a better combination