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The beauty of nonlinear approaches to 
engineering problems is that you must be 
talented to get even a wrong result.



Dedicated to Xinming and Mojgan



Preface 

This book is the eighth volume in the series of Nonlinear Approaches in Engi-
neering Applications, organized by the editors. This series is collecting individual 
application on engineering problems in which the nonlinearity is quite important. 
Those system have been introduced, and modeled mathematically, in such a way 
that their nonlinearities have been used to make the system to work better regarding 
the objectives of the problems. 

The nonlinear analysis, techniques, and applications have been developed in the 
past two to three centuries when the linear mathematical modeling of natural dynam-
ical phenomena appeared not to be exact enough for some practical applications. 
The positive aspects of linear approximation of dynamic phenomena are simplicity 
and solvability. Linear approximation of a system provides us with the simplest 
model acting as the base and standard for which other nonlinear models should 
approach when the nonlinearities become negligible. Solvability is another positive 
characteristic of all linear systems. These two characteristics provide us great ability 
and desire to model dynamic systems linearly. However, the linear model of many 
systems cannot provide solutions to be good enough approximation of the real 
system behavior. For such systems, considering nonlinearities of the phenomena 
is unavoidable. Although the nonlinear approximation of a system provides us with 
a better and more accurate model, it also provides us with several complications. 
One of them is that it makes us to search for indirect methods to gain some 
information of the possible solutions. Due to the nonlinearity and complexity of 
nonlinear systems, usually, it is very difficult or impossible to derive any analytical 
and closed-loop solutions for the systems. In solving or simulating the nonlinear 
systems, we have to rely on approximate or numerical methods, which may only 
provide approximate results while errors are unavoidable during the processes of 
generating the approximate results.
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Level of the Book 

This book aims at engineers, scientists, researchers, engineering, and physics 
students of graduate levels, together with the interested individuals in engineering, 
physics, and mathematics. This book focuses on application of the nonlinear 
approaches representing a wide spectrum of disciplines of engineering and science. 
Throughout the book, great emphases are placed on engineering applications, 
physical meaning of nonlinear systems, and methodologies of the approaches in 
analyzing and solving for the systems. Topics that have been selected are of high 
interest in engineering and physics. An attempt has been made to expose the 
engineers and researchers to a broad range of practical topics and approaches. The 
topics contained in the present book are of specific interest to engineers who are 
seeking expertise in modern applications of nonlinearities. 

The primary audience of this book are researchers, graduate students, and engi-
neers in mechanical engineering, engineering mechanics, electrical engineering, 
civil engineering, aerospace engineering, mathematics, and science disciplines. 
In particular, the book can be used for training graduate students as well as 
senior undergraduate students to enhance their knowledge by taking a graduate 
or advanced undergraduate course in the areas of nonlinear science, dynamics and 
vibration of discrete and continuous systems, structure dynamics, and engineering 
applications of nonlinear science. It can also be utilized as a guide to the readers’ 
fulfillment in practices. The covered topics are also of interest to engineers who are 
seeking to expand their expertise in these areas. 

Organization of the Book 

This book is a collection of 10 important problems set in 2 parts: Modeling Dynamic 
Systems and Applied Dynamic Systems. Both parts are focused on applications of 
practical engineering problems. There are five chapters in Part 1. Chapter 1 is on 
three-dimensional nonlinear vibration model and response characteristics of deep-
water riser-test pipe system, showing how mechanical vibrations can be used in 
extracting underground liquids such as water and oil. Chapter 2 deals with model-
prototype experiment in vehicle dynamics. Chapter 3 is on flexible mechanisms. 
Chapter 4 is on modeling and analysis of tire-road separation problem in vehicle 
vibrations. Chapter 5 is on employing neural network to solve nonlinear differential 
equations. There are five chapters in Part 2. Chapter 6 is on interesting engineering 
question from energy point of view, if writing from left to right is better or writing 
from left to right. This question has been answered by a robotic simulation. Chapter 
7 discusses the problems in measurement of the sea level rise. Chapter 8 is on further 
discussion on problems of sea level rise. Chapter 9 illustrates how game theory can 
be used in solving engineering problems. Chapter 10 studies the nonlinear pull-in 
instability problem in micro- and nano-mechanisms.
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Each of the chapters covers an independent topic along the line of nonlinear 
approach and engineering applications of nonlinear science. The main concepts in 
nonlinear science and engineering applications are explained fully with necessary 
derivatives in details. The book and each of the chapters are intended to be orga-
nized as essentially self-contained. All necessary concepts, proofs, mathematical 
background, solutions, methodologies, and references are supplied except for some 
fundamental knowledge well known in the general fields of engineering and physics. 
The readers may therefore gain the main concepts of each chapter with as less 
as possible the need to refer to the concepts of the other chapters and references. 
Readers may hence start to read one or more chapters of the book for their own 
interests. 

Method of Presentation 

The scope of each chapter is clearly outlined and the governing equations are derived 
with an adequate explanation of the procedures. The covered topics are logically and 
completely presented without unnecessary overemphasis. The topics are presented 
in a book form rather than in the style of a handbook. Tables, charts, equations, and 
references are used in abundance. Proofs and derivations are emphasized in such a 
way that they can be straightforwardly followed by the readers with fundamental 
knowledge of engineering science and college physics. The physical model and 
final results provided in the chapters are accompanied with necessary illustrations 
and interpretations. Specific information that is required in carrying out the detailed 
theoretical concepts and modelling processes has been stressed. 

Prerequisites 

The present book is primarily intended for researchers, engineers, and graduate 
students, so the assumption is that the readers are familiar with the fundamentals 
of dynamics, calculus, and differential equations associated with dynamics in engi-
neering and physics, as well as a basic knowledge of linear algebra and numerical 
methods. The presented topics are given in a way to establish as conceptual 
framework that enables the readers to pursue further advances in the field. Although 
the governing equations and modelling methodologies will be derived with adequate 
explanations of the procedures, it is assumed that the readers have a working 
knowledge of dynamics, university mathematics, and physics together with theory 
of linear elasticity.
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Nomenclature 

m∗ mass ratio of riser 
E elastic modulus of the RTS, Pa 
υ '

i , i  = x, y, z first-order derivative of riser displacements versus z 
υ̇i , i  = x, y, z first-order derivative of riser displacements versus time 
ρυ density of the riser, kg/m3 

Fx(z, t) contact/impact force of riser-test pipe in x-directions, N 
Fz(z, t) friction force of riser-test pipe in z-directions, N 
FL(z, t) lateral lift in the CF direction, N 
ωυ natural angular frequency of riser 
Lυ length of riser, m 
Do riser outer diameter, m 
mi the mass of the gas per unit length (kg) 
Si, i = x, y, z displacement components of the test pipe, m 
S''

i , i  = x, y, z second derivative of test pipe displacements versus z 
fx(z, t) high-speed fluid impact load in test pipe in x-direction, N 
fz(z, t) high-speed fluid impact load in test pipe in z-direction, N 
ωs natural angular frequency of test pipe 
ws(=msg) weight of test pipe per unit length, N 
Vr relative velocity between the fluid and the riser, m/s 
Uc outflow velocity of the riser, m/s 
FD

'
, CD component forces of the fluctuating drag force and corresponding 

coefficient 
qi, i = x, y dimensionless wake oscillator variables in IL and CF directions 
St Strouhal number 
Ri, i = 1, 2 radius of riser and test pipe, m 
ωi, i = 1, 2 axial displacements of the riser and test pipe, m 
Ei, i = 1, 2 elastic modulus of the riser and test pipe material, Pa 
q(x) uniform load distribution for riser and test pipe, N 
ρi density of gas in the test pipe, kg/m3 

α(t) deflection angles of test pipe in x- direction, rad 
α(s) inclination angle, rad 
KU rotational stiffness of the upper flexible joint 
uboat(t) heave displacement of the platform, m 
mp mass of platform, kg 
η(t) surface displacement of random wave, m 
ω̂i circular frequency of the ith harmonic, Hz 
ai amplitude of the ith harmonic component, m 
S(ω) random wave spectrum 
ω circular frequency, Hz 
T1/3 significant period of the wave, s 
Tp peak period of the wave, s 
σ peak shape coefficient
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Fp(t) exciting force of the random wave on the heave plate 
J1(·) first order Bessel function of first kind 
zplate depth of heave plate, m 
d displacement vector of riser unit 
ϕi, i = x, y, z vibration shape function of riser and test pipe unit 
F(t) load column vector 
M(t) matrices of the overall mass 
ρp density of the actual RTS 
ρm density of the RTS in the simulation experiment 
λ radial similarity ratio 
υi, i = x, y, z displacement components of riser, m 
Aυ cross-sectional area of the riser, m2 

υ ''
i , i  = x, y, z second derivative of riser displacements versus z 

Iυ polar moment of inertia of the riser, m4 

mυ mass of the per unit length riser, kg 
Fy(z, t) contact/impact force of riser-test pipe in y-directions, N 
cυ(=2mυωυζ ) structural damping coefficient of riser 
FD(z, t) drag force in the IL direction, N 
wg buoyant weight of riser per unit length, N 
ρw density of the sea-water, kg/m3 

As cross-sectional area of the test pipe, m2 

ms mass of the per unit length test pipe, kg 
S'

i , i  = x, y, z first-order derivative of test pipe displacements versus z 
Ṡi , i  = x, y, z first-order derivative of test pipe displacements versus time 
fy(z, t) high-speed fluid impact load in test pipe in y-direction, N 
cs(=2msωsζ ) structural damping coefficient of test pipe 
vi, i = x, y, z absolute velocities of the internal high-speed fluid (m/s) 
V fluid flow velocity in the test pipe, m/s 
Cd coefficient of steady-state drag force 
Cl coefficient of steady lift force 
FL

'
, CL fluctuating lift force and corresponding coefficient 

zi, i = 1, 2 radial distance from the contact point of pipe to the inner wall of 
riser, m 

ω'
s vortex shedding frequency 

r horizontal distance from the contact point to the test pipe axis, m 
F contact load of riser-test pipe, N 
μi, i = 1, 2 Poisson’s ratio of riser and test pipe material 
ξ friction coefficient between the riser and test pipe 
Ai cross-sectional area of the wellbore, m2 

ϕ(t) deflection angles of test pipe in y- direction, rad 
ϕ(s) azimuth, rad 
KL rotation stiffness of the BOP
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Bi, i = 1, 2 heave radiation and heave viscous damping 
Aw area of the platform at sea level, m2 

Fz random heave wave exciting force on platform, N 
εi initial phase of the ith harmonic component, rad
Δω frequency step 
f Frequency, Hz 
H1/3 significant wave height, m 
fp peak frequency of the wave, Hz 
γ peak parameter 
R platform radius, m 
Fs(t) exciting force of the random wave on the platform body 
d draft of platform, m 
Bplate width of heave plate, m 
d displacement vector of test pipe unit 
D matrix of overall displacement 
K(t) matrices of the overall stiffness 
C(t) matrices of the overall damping 
Ep elastic modulus of the actual RTS 
Em elastic modulus of the RTS in the simulation experiment 

1 Introduction 

With the increasing demand for oil and gas resources in the world, the exploitation 
trend of offshore oil and gas resources gradually develops from shallow water 
(water depth is less than 500 m) to deep water (water depth is between 500 m and 
1500 m). The riser-test pipe system (RTS) is the core equipment for deep-water 
oil and gas exploitation but the weakest equipment. Compared with conventional 
water depth testing conditions, the RTS is subjected to greater risks in deep-water 
test conditions; these risks are mainly caused by severe non-periodic vibrations of 
the riser and test pipe (RTS) induced by the vortex induced effect on riser, flow-
induced effect on test pipe, nonlinear contact/collision of the tube in tube, and 
longitudinal/transverse coupling effect, thereby making the RTS more susceptible 
to buckling deformation (Fig. 1a), fatigue fracture (Fig. 1b), and friction perforation 
(Fig. 1c) (Zhou et al. 2013). Once the system structure is damaged, it will lead to 
serious offshore oil and gas accidents, resulting in significant economic losses and 
environmental pollution. Therefore, the three-dimensional (3D) nonlinear vibration 
model and response characteristics for deep-water RTS should be investigated. 

In early vortex-induced vibration (VIV) studies, most of the work focused on 
rigid cylinders (Sarpkaya 1979; Govardan and Williamson 2000; Bearman 2003), 
in which the general VIV mechanism and law, such as the frequency-locked 
phenomenon (Dahl et al. 2010) and lagging behavior (Facchinetti et al. 2004). In 
recent years, driven by offshore oil and gas exploitation, more and more attention
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(a) (b) (c) 

Fig. 1 Failure forms of the riser-test pipe system (RTS). (a) Buckling deformation (b) Fatigue 
fracture (c) Friction perforation 

has been paid to the VIV problem of flexible cylinders in which the aspect ratio 
is a very important parameter. Physical experiments (Chaplin et al. 2005; Trim  
et al. 2005; Vandiver et al. 2009; Huera-Huarte et al. 2014; Gao et al. 2015) 
and computational fluid dynamics (CFD) numerical simulations (Newman and 
Karniadakis 1997; Bourguet et al. 2011, 2013; Mao et al. 2019, 2020) are  the  
two most common methods in these studies, and remarkable progress was made. 
However, when the aspect ratio of a cylinder is large or a solid model is used, 
physical experiments usually become very expensive and impractical, and CFD 
numerical simulation is too time-consuming and difficult. Therefore, in the VIV 
study of risers, there are relatively few works that consider a large aspect ratio or the 
actual size. In addition to a large aspect ratio, the impact of the ocean environment 
load on the VIV behavior of a riser is significant. The VIV response mechanism 
of a flexible riser under shear flow was examined by Mathelin and Langre (2005) 
using a wake oscillator model presented by (Facchinetti et al. 2004). Since the 
VIV amplitude in the crossflow (CF) direction is larger than that in the inline 
(IL) direction, most work has focused on the VIV in the CF direction (Khalak and 
Williamson 1999). The effects of the flow velocity, top tension, and pipe diameter on 
VIV behavior in the crossflow direction of a riser were studied by Xu et al. (2017) 
and He et al. (2017) using a VIVmodel. In the above studies, the VIV behavior in the 
IL direction and its influence were not taken into account. However, it was found in 
the work of Jauvtis and Williamson (2003) that as the mass ratio m∗ (=4ms/ρπD2), 
the ratio of the structural quality to the mass of discharged fluid was less than 6.0, 
and the IL vibration of a cylinder could not be neglected. The VIV characteristics 
study of a rigid cylinder presented by Gu et al. (2016), Martins and Avila (2019) and 
Gao et al. (2019) also showed that the effect of the IL vibration was significant. In 
our recent work (Liu et al. 2018a, b, 2019), the response characteristics of VIV of 
marine risers with consideration of the coupling effects of the CF and IL vibration 
were investigated. It was found that the frequency locking effect in the uniform flow 
and the multi frequency effect in the shear flow for the IL vibration. 

Vibration of tubular structure caused by inside flow has attracted some 
researchers’ attentions. In the early research, preliminary research was conducted 
on string vibration under the action of internal flow (Aitken 1878), and initially 
confirmed the phenomenon of pipe vibration induced by fluid in pipe without
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elaborating the interaction mechanism between fluid and pipe (Shilling and Lou 
1980). Subsequently, many scholars carried out detailed research on the string 
vibration model, and established the calculation method of fluid force (Deng 2006), 
the string vertical vibration (Paidoussis et al. 2008; Ju and Tong 2014), the lateral 
vibration (Zhang and Miska 2003; Bagdatli 2015), and the fluid-structure coupled 
vibration model (Dai et al. 2014; Yu  2017). In recent years, some scholars (Xing 
and Liang 2015; Li  2016; Liu et al. 2018a, b) have found that the longitudinal/lateral 
coupling effects of slender tubular columns cannot be ignored. Aimed at the static 
contact problems of slender structures, a few researchers (Hong et al. 1982; Ding  
et al. 1989; Shen and Ding 1990; Zhang and Song 2015) have tried to give the 
calculation methods of contact force between a beam and support structure, and 
the correctness of the methods was verified by experimental data. Moreover, the 
bracing effect of the outer pipe was taken into account by some researchers (Tan 
2005; Wang et al. 2015; Li  2017) to analyze the static buckling deformation of a 
tubing string. About the dynamic contact/collision problem of slender structures, 
the commercial software such as ANSYS and ABAQUS were used by researchers 
(Zhu et al. 2007; Liu et al. 2016; Yang et al. 2016) to investigate the impact force 
and friction force in the flow-induced vibration of slender structures in vertical 
well. Also, in our recent work (Liu et al. 2020; Guo et al. 2021a, b), the flow-
induced nonlinear vibration model of tubing string in conventional oil and gas wells 
was established using micro-finite element and energy methods along with the 
Hamilton variational principle, which considers the longitudinal/lateral coupling 
effect of tubing string and the nonlinear contact collision effect of tubing-casing. In 
summary, the interaction between riser and test pipe is ignored in the above studies, 
which make the calculation results by the single vibration model not in accordance 
with the actual. Especially in the deep water test condition, with the increase of 
length diameter ratio, the interaction between riser and test pipe cannot be ignored. 

In this study, the 3D nonlinear vibration model of deep-water RTS is established. 
The Lagrange and cubic Hermite functions are used to discretize the governing 
equations. Then, the incremental form of Newmark-β and Newton-Raphson are 
used to solve the 3D nonlinear vibration model. Meanwhile, a vibration test 
bench for the RTS is designed using similarity principle, and the correctness 
and effectiveness of the proposed 3D nonlinear vibration model are verified by 
comparing with experimental data. Finally, the vibration characteristics of the RTS 
in the South China Sea are analyzed. 

2 3D Nonlinear Vibration Model of the RTS 

2.1 Nonlinear Vibration Control Equation of the RTS 

In this section, the 3D vibration control equations of infinitesimal riser-test pipe 
(RTS) were established through the energy method and Hamilton variational
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Fig. 2 Structure diagram of 
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principle. The infinitesimal segment of the RTS is too short, such that it can be 
regarded as a straight segment. Therefore, a coordinate system is established in 
which the depth direction is set as z-axis, the horizontal direction (the IL direction) 
is set as x-axis and the y-axis (the CF direction) satisfies the right-hand rule (Fig. 2). 
The following basic assumptions are made before modeling. 

① The mechanical property of the material of riser and test pipe is ideal isotropic 
and elastic. 

② The gravity and frictional resistance are evenly distributed on the tubing element. 
③ The test pipe axis is coincided with the riser axis at initial moment, and the gravity 

of the RTS acts on itself at initial moment. 
④ The friction coefficient at each location of the system is constant. 

(1) Vibration control equation of riser 

Based on the small deformation hypothesis and the Kirchhoff hypothesis (Liu 
et al. 2019), the three displacement field components u1, u2, and u3 along the 
coordinates x, y, and z, respectively, can be written as:


