# lonic Liquids Further UNCOILED

Critical Expert Overviews



Edited by

NATALIA V. PLECHKOVA KENNETH R. SEDDON

#### Table of Contents

| 1.1 | $\sim$ | pa | ~      | ` |
|-----|--------|----|--------|---|
|     |        |    | ( ) (  | _ |
|     |        |    | $\sim$ |   |
|     |        |    |        |   |

Copyright page

**COIL Conferences** 

**Preface** 

<u>Acknowledgements</u>

**Contributors** 

**Abbreviations** 

## 1: Ionic Liquid and Petrochemistry: A Patent Survey

- 1.1 Introduction
- 1.2 New Formulations and Methods of Fabrication for an Improved Use of Ionic Liquids
- 1.3 Separation Processes Using Ionic Liquids
- 1.4 Use of Ionic Liquids as Additives with Specific Properties
- 1.5 Use of Ionic Liquids as Both Acidic Catalysts and Solvents
- 1.6 Applications of Ionic Liquids as Solvents for Catalytic Systems
- 1.7 Ionic Liquids and Biopolymers

#### 1.8 Conclusions and Perspectives

#### 2: Supercritical Fluids in Ionic Liquids

- 2.1 Introduction
- 2.2 Phase Behaviour of (Ionic Liquid + Supercritical Fluid) Systems
- 2.3 Chemical Processing in (Ionic
- <u>Liquid + Supercritical Fluid) Systems</u>
- 2.4 Conclusions and Outlook

#### 3: The Phase Behaviour of 1-Alkyl-3-Methylimidazolium Ionic Liquids

- 3.1 Phase Transitions Linked with Conformational Changes of Cations
- 3.2 Suitable Equipment for the Thermal Analysis of Ionic Liquids
- 3.3 The Phase Behaviour of [C4mim][PF6]
- 3.4 Novel Phase Transition Behaviours of Room Temperature Ionic Liquids
- 3.5 Concluding Remarks

#### 4: Ionic Liquid Membrane Technology

- 4.1 Ionic Liquids: Definitions and Properties
- 4.2 Structure and Morphology of Ionic Liquid Membranes
- 4.3 Characterisation of Ionic Liquid Membranes
- 4.4 Recent Applications of Ionic Liquid Membranes
- 4.5 Future Directions

#### 5: Engineering Simulations

- 5.1 Introduction
- 5.2 Engineering Computations for Process Design using Ionic Liquids
- 5.3 Thermodynamic Models for Ionic Liquids
- **5.4 Conclusions**

### 6: Molecular Simulation of Ionic Liquids: Where We Are and the Path Forward

- 6.1 Introduction
- 6.2 Goals of a Molecular Simulation
- **6.3 Property Predictions**
- <u>6.4 Gas-Liquid, Liquid-Liquid, and Solid-Liquid</u> Interfaces
- 6.5 Multi-Component Systems
- 6.6 Solubility in Ionic Liquids
- 6.7 What Needs to Be Done (and What Does Not)
- 6.8 Summary
- **Acknowledgements**

#### 7: Biocatalytic Reactions in Ionic Liquids

- 7.1 Introduction
- 7.2 Enzymes in Ionic Liquids
- 7.3 Single-Phase and Multiphase Systems for Biocatalysis in Ionic Liquids
- 7.4 Influence of Ionic Liquids on Enzyme and Substrate
- 7.5 Water Content and Water Activity
- 7.6 Impurities

- 7.7 Biocatalysis in Whole-Cell Systems
- 7.8 Environmental Impact of Ionic Liquids
- 7.9 Concluding Remarks and Future Aspects

## 8: Ionicity in Ionic Liquids: Origin of Characteristic Properties of Ionic Liquids

- 8.1 Introduction
- 8.2 Methodology
- 8.3 Physicochemical, Properties of [C<sub>2</sub>mim]<sup>±</sup>-Based Ionic Liquids
- 8.4 Transference Number and Ionicity
- 8.5 Correlation of Ionicity with Ionic Structures and Physicochemical Properties
- **8.6 Conclusions**
- **Acknowledgement**

## 9: Dielectric Properties of Ionic Liquids: Achievements So Far and Challenges Remaining

- 9.1 Introduction
- 9.2 A Glance at Dielectric Theory of Electrically Conducting Systems
- 9.3 Phenomenological Description of Dielectric Spectra of Ionic Liquids
- 9.4 Molecular Processes Affecting the Dielectric Response
- 9.5 Relation to Solvation Dynamics
- 9.6 The Static Dielectric Constant of Ionic Liquids
- 9.7 Conclusions

#### <u>Acknowledgements</u>

| 10: Ionic Liquid Radiation Chemistry |
|--------------------------------------|
|--------------------------------------|

- 10.1 Introduction: What Is Radiation Chemistry?
- 10.2 The Relevance of Radiation Chemistry to Ionic Liquid Science and Applications
- 10.3 A Brief Description of Fundamental Radiation Chemistry and Ionic Liquids
- 10.4 Would Ionic Liquids Be Stable Enough for Spent Nuclear Fuel Recycling?
- 10.5 Suitability of Ionic Liquid Preparations for Radiation Chemistry Studies
- 10.6 Practical Importance: Applying Fundamental Ionic Liquid Radiation Chemistry to Nanoparticle Synthesis
- 10.7 Future Prospects
  Acknowledgements

## 11: Physicochemical Properties of Ionic Liquids

- 11.1 Introduction
- 11.2 Melting Point
- 11.3 Density
- 11.4 Viscosity
- 11.5 Surface Tension
- 11.6 Conclusions
- <u>Acknowledgements</u>

#### <u>Index</u>

#### IONIC LIQUIDS FURTHER UNCOILED

#### **Critical Expert Overviews**

Edited by

Natalia V. Plechkova

The Queen's University of Belfast

Kenneth R. Seddon

The Queen's University of Belfast



Copyright © 2014 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at <a href="https://www.copyright.com">www.copyright.com</a>. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at <a href="http://www.wiley.com/go/permissions">http://www.wiley.com/go/permissions</a>.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No may created or extended be bv representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited special, to incidental. consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

#### Library of Congress Cataloging-in-Publication Data:

Ionic liquids further uncoiled : critical expert overviews / edited by Kenneth R. Seddon, Natalia V. Plechkova.

1 online resource.

Includes bibliographical references and index.

Description based on print version record and CIP data provided by publisher; resource not viewed.

ISBN 978-1-118-83961-4 (ePub) – ISBN 978-1-118-83971-3 (Adobe PDF) – ISBN 978-1-118-43863-3 (hardback) 1. Ionic solutions. I. Seddon, Kenneth R., 1950– editor of compilation. II. Plechkova, Natalia V., editor of compilation.

QD561

541'.372-dc23

2013043854

#### **COIL Conferences**

| COIL-1 | Salzburg    | Austria   | 2005 |
|--------|-------------|-----------|------|
| COIL-2 | Yokohama    | Japan     | 2007 |
| COIL-3 | Cairns      | Australia | 2009 |
| COIL-4 | Washington  | USA       | 2011 |
| COIL-5 | Algarve     | Portugal  | 2013 |
| COIL-6 | Jeju Island | Korea     | 2015 |
| COIL-7 | Ottawa*     | Canada    | 2017 |
| COIL-8 | Belfast*    | UK        | 2019 |

<sup>\*</sup> Precise location still to be confirmed.

#### **Preface**

This is the second of three volumes of critical overviews of the key areas of ionic liquid chemistry. The first volume is entitled *Ionic Liquids UnCOILed* (Wiley 2013), the current volume is *Ionic Liquids Further UnCOILed*, and the final volume, called *Ionic Liquids Completely UnCOILed*, will be published later this year. The history and rationale behind this trilogy was explained in the preface to the first volume, and so will not be repeated here.

Instead, we will use this space to expand on the subtitle, constant for all three volumes: Critical Expert Overviews.

#### critical, adjective

- **1.** Involving or exercising careful judgement or judicious evaluation
- **2.** Of decisive importance in relation to an issue; decisive, crucial

*Critical* has two, rather different, meanings—both are implied in the subtitle of this book. These reviews are both decisively important *and* written by top world experts (hence the second adjective), exercising the judicious evaluation that they are uniquely qualified to do.

#### overview, noun

- **1.** A general survey; a comprehensive review of facts or ideas; a concise statement or outline of a subject. Also: a broad or overall view of a subject.
- **2.** A view from above.

This book includes eleven critical expert overviews of differing aspects of ionic liquids. We look forward to the response of our readers (we can be contacted at <a href="mailto:quill@qub.ac.uk">quill@qub.ac.uk</a>). It is our view that, in the second decade of the 21st century, reviews that merely regurgitate a list of all papers on a topic, giving a few lines or a paragraph (often

the abstract!) to each one, have had their day—five minutes with an online search engine will provide that information. Such reviews belong with the slide rule, the fax machine, and the printed journal—valuable in their day, but of little value now. The value of a review lies in the expertise and insight of the reviewer—and their willingness to share it with the reader. It takes moral courage to say "the work of [...] is irreproducible, or of poor quality, or that the conclusions are not valid," but in a field expanding at the prestigious rate of ionic liquids, it is essential to have this honest feedback. Otherwise, errors are propagated. Papers still appear using hexafluorophosphate or tetrafluoroborate ionic liquids for synthetic or catalytic chemistry, and calculations on "ion pairs" are still being used to rationalise liquid state trust this volume, containing properties! We excellently perceptive reviews, will help guide and secure the future of ionic liquids.

> NATALIA V. PLECHKOVA KENNETH R. SEDDON

#### Acknowledgements

This volume is a collaborative effort. We, the editors, have our names emblazoned on the cover, but the book would not exist in its present form without support from many people. Firstly, we thank our authors for producing such splendid, critical chapters, and for their open responses to the reviewers' comments and to editorial suggestions. We are also indebted to our team of expert reviewers, whose comments on the individual chapters were challenging and thought provoking, and to Ian Gibson for producing the central image on the front cover. The backing from the team at Wiley, led by Dr. Arza Seidel, has been fully appreciated it is always a joy to work with such a professional group of people. Finally, this book would never have been published without the unfailing, enthusiastic support from Deborah and Sinead McCullough, whose patience Poland endurance never cease to amaze us.

> N.V.P. K.R.S.

#### Contributors

NORFAIZAH AB MANAN, QUILL Research Centre, School of Chemistry and Chemical Engineering, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK

**DIDIER BERNARD**, IFP Energies nouvelles, Rond-point de L'échangeur de Solaize, 69360 Solaize, France

**Philippe Bonnet**, ARKEMA Centre de Recherche Rhône-Alpes, Rue Henri Moissan, BP63, 69493 Pierre-Bénite cedex, France

**João G. Crespo**, REQUIMTE/CQFB, Department of Chemistry, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

**Liangliang Guo**, Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China

**UDO KRAGL**, Department of Chemistry, University of Rostock, 18051, Rostock, Germany

MAAIKE C. KROON, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands

**XINGMEI LU**, Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex System,

Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China

**EDWARD J. MAGINN**, Department of Chemical and Biomolecular Engineering, University of Notre Dame, 182 Fitzpatrick Hall, Notre Dame, IN 46556-5637, USA

**Keiko Nishikawa**, Division of Nanoscience, Graduate School of Advanced Integration Science, Chiba University, Chiba, 263-8522, Japan

**RICHARD D. NOBLE**, Alfred T. & Betty E. Look Professor, University of Colorado, Chemical Engineering Department, UCB 424, Boulder, CO 80309, USA

**HÉLÈNE OLIVIER-BOURBIGOU**, IFP Energies nouvelles, Rond-point de L'échangeur de Solaize, 69360 Solaize, France

**Cor J. Peters**, Chemical Engineering Program, The Petroleum Institute, P.O. Box 2533, Abu Dhabi, United Arab Emirates, and Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands

Anne Pigamo, ARKEMA Centre de Recherche Rhône-Alpes, Rue Henri Moissan, BP63, 69493 Pierre-Bénite cedex, France

**DAVID ROONEY**, QUILL Research Centre, School of Chemistry and Chemical Engineering, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK

JINDAL K. SHAH, The Center for Research Computing, University of Notre Dame, Notre Dame, Indiana, USA

**FLORIAN STEIN**, Department of Chemistry, University of Rostock, 18051, Rostock, Germany

**Нікочикі Токира**, Department of Chemistry and Biotechnology, Yokohama National University, 79-5 Tokiwadai Hodogaya-ku, Yokohama 240-8501, Japan

**Маsayosні Watanabe**, Department of Chemistry and Biotechnology, Yokohama National University, 79-5 Tokiwadai Hodogaya-ku, Yokohama 240-8501, Japan

**HERMANN WEINGÄRTNER**, Physical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, D-44780 Bochum, Germany

James F. Wishart, Chemistry Department, Brookhaven National Laboratory, Upton, New York, 11973-5000, USA

**Suojiang Zhang**, Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China

**QING Zhou**, Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China

#### **Abbreviations**

#### IONIC LIQUIDS

GNCS guanidinium thiocyanate

GRTIL gemini room temperature ionic liquid [HI-AA] hydrophobic derivatised amino acid

IL ionic liquid

poly(GRTIL) polymerised gemini room temperature ionic liquid

poly(RTIL) polymerised room temperature ionic liquid

[PSpy]<sub>3</sub>[PW] [1-(3-sulfonic acid)propylpyridinium]<sub>3</sub>[PW<sub>12</sub>O<sub>40</sub>]·2H<sub>2</sub>O

RTIL room temperature ionic liquid

#### **C**ATIONS

[(allyl)mim]<sup>+</sup> 1-allyl-3-methylimidazolium

 $[1-C_m-3-C_n \text{im}]^+$  1,3-dialkylimidazolium

[C<sub>2</sub>im]<sup>+</sup> 1-ethylimidazolium

 $[C_1 mim]^+$  1,3-dimethylimidazolium

[C<sub>2</sub>mim]<sup>+</sup> 1-ethyl-3-methylimidazolium

[C<sub>3</sub>mim]<sup>+</sup> 1-propyl-3-methylimidazolium

[<sup>i</sup>C<sub>3</sub>mim]<sup>+</sup> 1-isopropyl-3-methylimidazolium

[C<sub>4</sub>mim]<sup>+</sup> 1-butyl-3-methylimidazolium

 $[i-C_4 \text{mim}]^+$  1-isobutyl-3-methylimidazolium

[s-C<sub>4</sub>mim]<sup>+</sup> 1-secbutyl-3-methylimidazolium

 $[^tC_4mim]^+$  1-tertbutyl-3-methylimidazolium

[C<sub>5</sub>mim]<sup>+</sup> 1-pentyl-3-methylimidazolium

[C<sub>6</sub>mim]<sup>+</sup> 1-hexyl-3-methylimidazolium

[C<sub>7</sub>mim]<sup>+</sup> 1-heptyl-3-methylimidazolium

[C<sub>8</sub>mim]<sup>+</sup> 1-octyl-3-methylimidazolium

[Cgmim]<sup>+</sup> 1-nonyl-3-methylimidazolium

 $[C_{10} mim]^+$  1-decyl-3-methylimidazolium

| $[C_{11}mim]^+$ 1-undecyl-3-me | ethylimidazolium |
|--------------------------------|------------------|
|--------------------------------|------------------|

| [C <sub>12</sub> mim] <sup>+</sup> | 1-dodecyl-3-methylimidazolium |
|------------------------------------|-------------------------------|
| [CIZIIIIII]                        | i dodecy 5 methymmadzonam     |

$$[C_{17}mim]^+$$
 1-heptadecyl-3-methylimidazolium

$$[C_{18}mim]^+$$
 1-octadecyl-3-methylimidazolium

$$[C_n \text{mim}]^+$$
 1-alkyl-3-methylimidazolium

$$[C_1C_1mim]^+$$
 1,2,3-trimethylimidazolium

$$[C_2C_1mim]^+$$
 1-ethyl-2,3-dimethylimidazolium

$$[C_{12}C_{12}im]^+$$
 1,3-bis(dodecyl)imidazolium

$$[C_1OC_2mim]^+$$
 1-(2-methoxyethyl)-3-methyl-3H-imidazolium

$$[C_4C_1mim]^+$$
 1-butyl-2,3-dimethylimidazolium

$$[C_6C_{701}im]^+$$
 1-hexyl-3-(heptyloxymethyl)imidazolium

$$[C_2F_3mim]^+$$
 1-trifluoroethyl-3-methylimidazolium

$$[C_4m_Bpy]^+$$
 1-butyl-3-methylpyridinium

$$[C_4m_Vpy]^+$$
 1-butyl-4-methylpyridinium

$$[C_6(dma)_Vpy]^+$$
 1-hexyl-4-dimethylaminopyridinium

$$[C_1C_3pip]^+$$
 1-methyl-1-propylpiperidinium

 $[C_2C_6pip]^+$ 

[C<sub>8</sub>quin]<sup>+</sup> 1-octylquinolinium

[DMPhim]<sup>+</sup> 1,3-dimethyl-2-phenylimidazolium

[EtNH<sub>3</sub>]<sup>+</sup> ethylammonium

[Hmim]<sup>+</sup> 1-methylimidazolium

 $[H_2NC_2H_4py]^+$  1-(1-aminoethyl)-pyridinium

[H<sub>2</sub>NC<sub>3</sub>H<sub>6</sub>mim]<sup>+</sup> 1-(3-aminopropyl)-3-methylimidazolium

[Hnmp]<sup>+</sup> 1-methyl-2-pyrrolidonium

 $[HN_{2} \ 2 \ 2]^{+}$  triethylammonium

 $[N_{1} 1 1 2OH]^{+}$  cholinium

 $[N_{1\ 1\ 2\ 2OH}]^+$  ethyl(2-hydroxyethyl)dimethylammonium

 $[N_{1\ 1\ 4}]^+$  trimethylbutylammonium

 $[N_{1} \ 4 \ 4 \ 4]^{+}$  methyltributylammonium

 $[N_{1888}]^+$  methyltrioctylammonium

 $[N_{4} \ _{4} \ _{4} \ _{4}]^{+}$  tetrabutylammonium

 $[N_{6 6 6 14}]^+$  trihexyl(tetradecyl)ammonium

[NR<sub>3</sub>H]<sup>+</sup> trialkylammonium

 $[P_{2\ 2\ 2(101)}]^+$  triethyl(methoxymethyl)phosphonium

[P<sub>4 4 4 3a</sub>]<sup>+</sup> (3-aminopropyl)tributylphosphonium

[P<sub>6 6 6 14</sub>]<sup>+</sup> trihexyl(tetradecyl)phosphonium

[P8 8 8 14] tetradecyl(trioctyl)phosphonium

 $[P_n mim]^+$  polymerisable 1-methylimidazolium

[PhCH<sub>2</sub>eim]<sup>+</sup> 1-benzyl-2-ethylimidazolium

[pyH]<sup>+</sup> pyridinium

 $[S_{2\ 2\ 2}]^+$  triethylsulfonium

#### Anions

[Ala] alaninate  $[\beta Ala]$   $\beta$ -alaninate

tetra(hexafluoroisopropoxy)aluminate(III)

 $[Al(hfip)_4]^-$ 

[Arg] arginate

[Asn] asparaginate asparatinate

[BBB] bis[1,2-benzenediolato(2-)-*O*,*O*']borate

 $[C_1CO_2]^-$  ethanoate

 $[C_1SO_4]^-$ ,  $[O_3SOC_1]^-$  methyl sulfate

 $\hbox{$[\text{C}_8$O_4]^-, [\text{O}_3$OC}_8]^-$ octyl sulfate}$ 

 $[C_nSO_4]^-$  alkyl sulfate

 $[(C_n)(C_m)SO_4]^-$  asymmetrical dialkyl sulfate

 $[(C_n)_2SO_4]^-$  symmetrical dialkyl sulfate

[CTf<sub>3</sub>] tris{(trifluoromethyl)sulfonyl}methanide

[Cys] cysteinate

[FAP] tris(perfluoroalkyl)trifluorophosphate

[Gln] glutaminate [Glu] glutamate

[Gly] glycinate anion

[His] histidinate isoleucinate

[lac]lactate[Leu]leucinate[Lys]lysinate[Met]methionate

[Nle] norleucinate

[NPf<sub>2</sub>]<sup>-</sup>, [BETI]<sup>-</sup> bis{(pentafluoroethyl)sulfonyl}amide

 $[NTf_2]^-$ ,  $[TFSI]^-$  bis{(trifluoromethyl)sulfonyl}amide

 $[{\sf O}_2{\sf CC}_1]^- \qquad \quad {\sf ethanoate}$ 

 $[O_3SOC_2]^-$ ,  $[O_3SOC_2]^-$  ethylsulfate

[OMs] methanesulfonate (mesylate)

[ONf] perfluorobutylsulfonate

[OTf] trifluoromethanesulfonate

[OTs] 4-toluenesulfonate, [4-CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>SO<sub>3</sub>] (tosylate)

[Phe] phenylalaninate

[tfpb] tetrakis(3,5-bis(trifluoromethyl)phenyl)borate

[Thr] threoninate [Tos] tosylate

[Trp] tryphtophanate

[Tyr] tyrosinate [Val] valinate

#### **T**ECHNIQUES

AES Auger electron spectroscopy
AFM atomic force microscopy

AMBER assisted model building with energy refinement

ANN associative neural network

ARXPS angle resolved X-ray photoelectron spectroscopy

ASM Associated-Solution Model

ATR-IR attenuated total reflectance infrared spectroscopy

BPNN back-propagation neural network CADM computer-aided design modelling

CC Cole-Cole model

CCC counter-current chromatography

CD Cole-Davidson model
CE capillary electrophoresis

CEC capillary electrochromatography

CHARMM Chemistry at HARvard Molecular Mechanics

COSMO-RS **CO**nductor-like**S**creening**MO**del for Real Solvents

COSY COrrelation SpectroscopY

CPCM conductor-like polarisable continuum model

CPMD Car-Parrinello molecular dynamics

DFT density functional theory

DMH dimethylhexene

DRS dielectric relaxation spectroscopy
DSC differential scanning calorimetry

ECSEM electrochemical scanning electron microscopy
EC-XPS electrochemical X-ray photoelectron spectroscopy

EFM effective fragment potential method

El electron ionisation

EMD equilibrium molecular dynamics

EOF electro-osmotic flow

EPSR empirical potential structure refinement

ES electrospray mass spectrometry

ESI-MS electrospray ionisation mass spectrometry EXAFS extended X-ray absorption fine structure

FAB fast atom bombardment FIR far-infrared spectroscopy

FMO fragment molecular orbital method FTIR Fourier transform infrared spectroscopy

GAMESS general atomic and molecular electronic structure system

GC gas chromatography

GGA generalized gradient approximations

GLC gas-liquid chromatography GSC gas-solid chromatography

HM heuristic method

HPLC high-performance liquid chromatography

HREELS high-resolution electron energy loss spectroscopy

IGC inverse gas chromatography

IR infrared spectroscopy

IRAS infrared reflection absorption spectroscopy IR-VIS SFG infrared visible sum frequency generation

ISS ion scattering spectroscopy

L-SIMS liquid secondary ion mass spectrometry MAES metastable atom electron spectroscopy

MALDI matrix-assisted laser desorption
MBSS molecular beam surface scattering

MC Monte Carlo

MD molecular dynamics

MIES metastable impact electron spectroscopy

MLR multi-linear regression
MM molecular mechanics
MS mass spectrometry

NEMD non-equilibrium molecular dynamics

NMR nuclear magnetic resonance

NR neutron reflectivity
NRTL non-random two liquid

OPLS optimized potentials for liquid simulations

PCM polarisable continuum model PDA photodiode array detection PES photoelectron spectroscopy PGSE-NMR pulsed-gradient spin-echo PPR projection pursuit regression

QM quantum mechanics

QSAR quantitative structure–activity relationship QSPR quantitative structure–property relationship RAIRS reflection absorption infrared spectroscopy

RI refractive index

RNEMD reverse non-equilibrium molecular dynamics

RNN recursive neural network

RP-HPLC reverse phase high-performance liquid chromatography

RST regular solution theory

SANS small-angle neutron scattering SEM scanning electron microscopy SFA surfaces forces apparatus

SFC supercritical fluid chromatography

SFG sum frequency generation

SFM systematic fragmentation method SIMS secondary ion mass spectrometry soft-SAFT soft statistical associating fluid theory

STM scanning tunnelling microscopy

SVN support vector network

TEM tunnelling electron microscopy
TGA thermogravimetric analysis

THz-TDS terahertz time-domain spectroscopy

TLC thin layer chromatography

tPC-PSAFT truncated perturbed chain polar statistical associating fluid theory

TPD temperature programmed desorption

UHV ultra-high vacuum

UNIFAC UNIversal Functional Activity Coefficient

UNIQUAC UNIversal QUAsiChemical

UPLC ultra-pressure liquid chromatography
UPS ultraviolet photoelectron spectroscopy

UV ultraviolet

UV-Vis ultraviolet-visible

XPS X-ray photoelectron spectroscopy

XRD X-ray powder diffraction

XRR X-ray reflectivity

#### **M**ISCELLANEOUS

Å 1 Ångstrom =  $10^{-10}$  m ACS American Chemical Society

ATMS acetyltrimethylsilane

ATPS agueous two-phase system

BASF™ Badische Anilin- und Soda-Fabrik

BASIL Biphasic Acid Scavenging utilizing Ionic Liquids

BE binding energy

BILM bulk ionic liquid membrane

BNL **Brookhaven National Laboratory** 

b.pt. boiling point

BSA bovine serum albumin

BT benzothiophene

calculated calc.

CB Cibacron Blue 3GA CCD charge coupled device

CE crown ether

CEES 2-chloroethyl ethyl sulphide

CFC MC "continuous fractional component" Monte Carlo

CLM charge lever momentum critical micelle concentration CMC

octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide CMPO

 $[C_nMeSO_4]$  alkyl methyl sulfate

CNTs carbon nanotubes

COIL Congress on Ionic Liquids CPU central processing unit CWAs chemical warfare agents

doublet (NMR)

D°298 bond energy at 298 K

2D two-dimensional three-dimensional 3D DBT dibenzothiophene DC

direct current

DC18C6 dicyclohexyl-18-crown-6 Debye and Falkenhagen DF

Debye-Hückel DH diisopropylamine DIIPA

4,6-DMDBT 4,6-dimethyldibenzothiophene

dimethylmethanamide (dimethylformamide) DMF

deoxyribonucleic acid DNA

2DOM two-dimensional ordered macroporous 3DOM three-dimensional ordered macroporous

density of states DOS DPC diphenylcarbonate DRA drag-reducing agent DSSC dye-sensitised solar cell

Ε enrichment EDC extractive distillation column
EE expanded ensemble approach

EOR enhanced oil recovery
EoS equation of state

EPA Environmental Protection Agency

EPSR empirical potential structure refinement

eq. equivalent

FCC fluid catalytic cracking
FFT fast Fourier transform
FIB focussed ion beam
FSE full-scale error

ft foot

GDDI generalised distributed data interface

GEMC Gibbs ensemble Monte Carlo

HDS hydrodesulfurisation

HEMA 2-(hydroxyethyl) methacrylate HOMO highest occupied molecular orbital HOPG highly oriented pyrolytic graphite

HV high vacuum
IgG Immunoglobulin G
IPBE ion-pair binding energy

IPE Institute of Process Engineering, Chinese Academy of Sciences,

Beijing

ITO indium-tin oxide

IUPAC International Union of Pure and Applied Chemistry

J coupling constant (NMR)KWW Kohlrausch-Williams-WattsLCEP lower critical end point

LCST lower critical separation temperature
LEAF Laser-Electron Accelerator Facility
LF-EoS lattice-fluid model equation of state

LLE liquid-liquid equilibria

LMOG low molecular weight gelator

LUMO lowest unoccupied molecular orbital

m multiplet (NMR)
M molar concentration
MBI 1-methylbenzimidazole
MCH methylcyclohexane

MDEA methyl diethanolamine; bis(2-hydroxyethyl)methylamine

MEA monoethanolamine; 2-aminoethanol MFC minimal fungicidal concentrations MIC minimal inhibitory concentrations

MMM mixed matrix membrane

MNDO modified neglect of differential overlap

m.pt. melting point

MSD mean square displacement

3-MT 3-methylthiophene MW molecular weight

MWCNTs multi-walled carbon nanotubes

*m/z* mass-to-charge ratio NBB 1-butylbenzimidazole

NCA *N*-carboxyamino acid anhydride

NE Nernst-Einstein equation

equation

NES New Entrepreneur Scholarship

NFM *N*-formylmorpholine

NIP neutral ion pair
NIT neutral ion triplet
NMP N-methylpyrrolidone
NOE nuclear Overhauser effect

NRTL non-random two liquid

NRTL-SAC non-random two liquid segmented activity coefficients

OKE optical Kerr effect

*p* pressure

PAO polyalphaolefin

PDMS polydimethoxysilane

PEDOT poly(3,4-ethylenedioxythiophene)

PEG poly(ethyleneglycol)

PEM polymer-electrolyte membrane

PEN poly(ethylene-2,6-naphthalene decarboxylate)

PES polyethersulfone

pH  $-\log_{10}([H^+])$ ; a measure of the acidity of a solution

PID proportional integral derivative

 $pK_b$   $-log_{10}(K_b)$ 

PPDD polypyridylpendant poly(amidoamine) dendritic derivative

(PR)-EoS Peng-Robinson equation of state

PS polystyrene

PSE process systems engineering

psi 1 pound per square inch = 6894.75729 Pa

PTC phase transfer catalyst PTFE poly(tetrafluoroethylene)

PTx pressure-temperature composition

r bond length

RDC rotating disc contactor

REACH Registration, Evaluation, Authorisation and restriction of CHemical

substances

(RK) EoS Redlich-Kwong equation of state RMSD root mean square deviation

RT room temperature s singlet (NMR)

*S* entropy

scCO<sub>2</sub> supercritical carbon dioxide SDS sodium dodecyl sulphate

SED Stokes-Einstein-Debye equation

S/F solvent-to-feed ratio

SILM supported ionic liquid membrane SILP supported ionic liquid phase

SLE solid liquid equilibrium

SLM supported liquid membrane

t triplet (NMR)

TBP 4-(*t*-butyl)pyridine

TCEP 1,2,3-tris(2-cyanoethoxy)propane

TEA triethylamine

TEGDA tetra(ethyleneglycol) diacrylate

THF tetrahydrofuran

TIC toxic industrial chemical

TMB trimethylborate
TMP trimethylpentene
TOF time-of-flight

UCEP upper critical end point

UCST upper critical solution temperature

UHV ultra-high vacuum

VFT Vogel-Fulcher-Tammann equations

VLE vapour-liquid equilibria

VLLE vapour-liquid-liquid equilibria VOCs volatile organic compounds

v/v volume for volume
 w/w weight for weight
 wt% weight pe rcent
 X molar fraction
 γ surface tension

 $\delta$  chemical shift in NMR

## Ionic Liquid and Petrochemistry: A Patent Survey

Philippe Bonnet and Anne Pigamo

ARKEMA Centre de Recherche Rhône-Alpes, Rue Henri Moissan, Pierre-Bénitecedex, France

Didier Bernard and Hélène Olivier-Bourbigou

IFP Energies nouvelles, Rond-point de L'échangeur de Solaize, Solaize, France

#### **Abstract**

Industrial applications of ionic liquids in petrochemistry have been reviewed through the US and EP granted patents published from 1990 to 2010. A *Chemical Abstracts* search on the STN host retrieved about 300 patents, about 130 of them found relevant and are fully analysed in this chapter. This survey has been divided into six thematic sections: new formulations and methods of fabrication for an improved use of ionic liquids; separation processes using ionic liquids; use of ionic liquids as additives with specific properties; use of ionic liquids as both acidic catalysts and solvents; applications of ionic liquids as solvents of catalytic systems; and ionic liquids and biopolymers. Our study has been complemented by a short description of the emerging areas concerning ionic liquids using the patent applications published during the past five years.

#### 1.1 Introduction

Interest in ionic liquids has been growing rapidly worldwide, as demonstrated by the increasing number of publications and patents these last years. The applications and the prospects for ionic liquids are vast. In the chemical and petrochemical industries, numerous applications and

benefits of using ionic liquids have been described. However, it is difficult to know which applications have been translated into viable industrial and commercialised processes.

As news releases and scientific publications are a part of company strategic communication, relevant information is difficult to assess. We assumed that granted patents could be one of the most relevant sources of information. From our perspective, companies generally only devote human resources, and pay all the necessary fees to have their patents granted, if they expect an actual industrial development of the claimed invention.

A bibliographic search was performed on the *Chemical Abstracts* database using the STN host. It retrieved about 4000 patent families dealing with "ionic liquids." Among these patent families, about 500 contain a US or EP granted patent during the period from 1990 to 2010. After a keyword restrictive search to the petrochemicals and oil area, we selected about 300 documents. We then fully analysed the most relevant documents, and these are reported in this chapter.

# 1.2 New Formulations and Methods of Fabrication for an Improved Use of Ionic Liquids

In recent patents, improved ionic liquid formulations and new mode of preparations have been disclosed. Some ionic liquids have been claimed as new products. The aim of these inventions is generally to provide either new cations or new anions or both for ionic liquids with higher purity, such as halogen-free ionic liquids. These formulations are claimed to be advantageous when ionic liquids are used as solvents in catalytic reactions. The most cited reactions are

hydroformylation, hydrogenation, and oligomerisation or isomerisation. It appeared to be of interest to review here these new ionic liquids and their preparation processes.

#### 1.2.1 Alkyl Sulfate Ionic Liquids

Several patents devoted to halogen-free ionic liquid synthesis, mainly based on sulfate anions, have been filed by Merck GmbH or Solvent Innovation. In these patents [1], the use of onium alkyl sulfate ( $[C_nSO_4]^-$ ; n = 3 - 36) salts is claimed in various processes, including their use as solvents for catalytic reactions, such as hydroformylation, hydrogenation, oligomerisation, and isomerisation. Sulfate ionic liquids are described as being more friendly than halide ionic liquids, which often lead to corrosion and/or disposal issues. In particular, long chain alkyl sulfate ionic liquids are preferably claimed thanks to their improved stability to hydrolysis compared with the methyl sulfate analogues. Examples give a comparative hydrolysis stability of 1-butyl-3-methylimidazolium methyl [C<sub>4</sub>mim][C<sub>1</sub>SO<sub>4</sub>], and 1-butyl-3-methylimidazolium octyl sulfate, [C<sub>4</sub>mim][C<sub>8</sub>SO<sub>4</sub>]. At 80 °C, the octyl sulfate is stable for more than 2 hours, whereas methyl sulfate exhibits rapid degradation. These long chain dialkylimidazolium alkyl sulfates are prepared through ion exchange process between 1,3-dialkylimidazolium chloride and sodium alkyl sulfate salts.

New imidazolium and pyridinium ionic liquids bearing anions of general formula  $[Me(OCH_2CH_2)_nOSO_3]^-$  or  $[Me(OCH_2CH_2)_nSO_3]^-$  are also reported [2]. These sulfates and sulfonates are claimed to be more stable to hydrolysis than their methyl sulfate analogues, and to have higher thermal stability. Examples show a comparative hydrolysis stability study of 1-butyl-3-methylimidazoliummethyl sulfate