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Preface

Smart grid, as an emerging power technology, will gradually replace traditional grids
and become the development direction of future power systems. With the introduc-
tion of diverse renewable energy sources, battery energy storage systems, and other
new distributed energy resources, the power supply side of smart grids exhibits char-
acteristics such as diversity, intermittency, and randomness. At the same time, with
the emergence of new electric units like electric vehicles, the power consumption
side of smart grids displays characteristics such as diversity, randomness, and flex-
ibility. In order to establish friendly and flexible connections among various types
of distributed power sources, battery energy storage systems, and new electric units
with different attributes, it is necessary to achieve fast and precise energy conver-
sion and control through energy conversion equipment. Power electronic conversion
technology, based on power semiconductor devices, circuit topologies, and control
theories, is the key and foundation for realizing the aforementioned functionalities.
In this context, it is crucial to explore the latest advancements and trends in the field
of control technology for power electronics in smart grid applications, in order to
better understand how these technologies can be optimized to achieve maximum
efficiency and performance.

On the other hand, load frequency control, as an important means to achieve
dynamic balance between power generation and consumption in electrical systems,
holds significant importance in maintaining system stability and achieving high-
quality power output. However, the increasing adoption of plug-in EVs has brought
about significant challenges to the load frequency control (LFC) of power grid
systems. As the number of plug-in EVs participating in the power grid continues
to increase, it becomes increasingly difficult to achieve an economically viable and
effective load frequency control while maintaining satisfactory system performance.
The intermittent nature of the plug-in EV charging process, the uncertain driving
patterns of plug-in EV owners, and the potential impact of large-scale plug-in EV
participation on power system stability all pose significant challenges to LFC. In this
situation, new control strategies and technologies need to be developed to ensure the
efficient and reliable operation of power systems while accommodating the growing
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number of EVs. This requires a deep understanding of the interactions between plug-
in EVs and power systems, as well as the development of innovative solutions that
can mitigate the challenges posed by EV participation.

This book aims to provide readers with comprehensive insight into robust control
strategies for power electronics used in smart grid applications. The book is organized
as follows. Chapter 1 introduces some background knowledge of smart grid, the chal-
lenges and opportunities of plug-in EVs for the power system, and the control tech-
niques for smart grid applications. Chapter 2 showcases several control techniques
that can be implemented for the three-phase two-level AC/DC power converter.
Chapter 3 introduces a high-quality current control approach for the three-level AC/
DC power converter. Chapter 4 focuses on direct power control for the three-level
AC/DC power converter. Chapter 5 proposes a fuzzy sliding-mode control strategy
for the three-level AC/DC power converter. Chapter 6 provides a robust control
approach for the operation of two-level AC/DC power converter when subjected
to unbalanced grid conditions. Chapter 7 introduces an adaptive optimal control
strategy to efficiently alleviate disturbances and uncertainties for the permanent
magnet synchronous motor. Chapter 8 presents a distributed economic model predic-
tive control approach for load frequency control that incorporates large-scale plug-in
EV participation. Chapter 9 aims to secure the distributed frequency estimation of a
large number of plug-in EVs participating in the distributed frequency regulation.

In conclusion, this book provides the reader with an essential overview of the
latest developments in the control strategy for power electronics in smart grid appli-
cations. It serves as a valuable resource for researchers, engineers, and professionals
in the field, facilitating a deeper understanding of robust control techniques and their
practical implementation in shaping the future of smart grids.

Harbin, China Yunfei Yin
June 2023 Lei Liu
Zhijian Hu

Hao Lin

Ligang Wu
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