Lecture Notes in Electrical Engineering 1034

Yunfei Yin · Lei Liu · Zhijian Hu · Hao Lin · Ligang Wu

Robust Control Strategies for Power Electronics in Smart Grid Applications

Lecture Notes in Electrical Engineering

Volume 1034

Series Editors

Leopoldo Angrisani, Department of Electrical and Information Technologies Engineering, University of Napoli Federico II, Napoli, Italy

Marco Arteaga, Departament de Control y Robótica, Universidad Nacional Autónoma de México, Coyoacán, Mexico Samarjit Chakraborty, Fakultät für Elektrotechnik und Informationstechnik, TU München, München, Germany Jiming Chen, Zhejiang University, Hangzhou, Zhejiang, China

Shanben Chen, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China Tan Kay Chen, Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore

Rüdiger Dillmann, University of Karlsruhe (TH) IAIM, Karlsruhe, Baden-Württemberg, Germany Haibin Duan, Beijing University of Aeronautics and Astronautics, Beijing, China

Gianluigi Ferrari, Dipartimento di Ingegneria dell'Informazione, Sede Scientifica Università degli Studi di Parma, Parma, Italy

Manuel Ferre, Centre for Automation and Robotics CAR (UPM-CSIC), Universidad Politécnica de Madrid, Madrid, Spain

Faryar Jabbari, Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA, USA Limin Jia, State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China Janusz Kacprzyk, Intelligent Systems Laboratory, Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland

Alaa Khamis, Department of Mechatronics Engineering, German University in Egypt El Tagamoa El Khames, New Cairo City, Egypt

Torsten Kroeger, Intrinsic Innovation, Mountain View, CA, USA

Yong Li, College of Electrical and Information Engineering, Hunan University, Changsha, Hunan, China

Qilian Liang, Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX, USA

Ferran Martín, Departament d'Enginyeria Electrònica, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain

Tan Cher Ming, College of Engineering, Nanyang Technological University, Singapore, Singapore Wolfgang Minker, Institute of Information Technology, University of Ulm, Ulm, Germany

Pradeep Misra, Department of Electrical Engineering, Wright State University, Dayton, OH, USA

Subhas Mukhopadhyay, School of Engineering, Macquarie University, Sydney, NSW, Australia

Cun-Zheng Ning, Department of Electrical Engineering, Arizona State University, Tempe, AZ, USA

Toyoaki Nishida, Department of Intelligence Science and Technology, Kyoto University, Kyoto, Japan

Luca Oneto, Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genova, Genova, Genova, Italy

Bijaya Ketan Panigrahi, Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi, Delhi, India

Federica Pascucci, Department di Ingegneria, Università degli Studi Roma Tre, Roma, Italy

Yong Qin, State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China Gan Woon Seng, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore

Joachim Speidel, Institute of Telecommunications, University of Stuttgart, Stuttgart, Germany Germano Veiga, FEUP Campus, INESC Porto, Porto, Portugal

Haitao Wu, Academy of Opto-electronics, Chinese Academy of Sciences, Haidian District Beijing, China Walter Zamboni, Department of Computer Engineering, Electrical Engineering and Applied Mathematics, DIEM—Università degli studi di Salerno, Fisciano, Salerno, Italy

Junjie James Zhang, Charlotte, NC, USA

Kay Chen Tan, Department of Computing, Hong Kong Polytechnic University, Kowloon Tong, Hong Kong

The book series *Lecture Notes in Electrical Engineering* (LNEE) publishes the latest developments in Electrical Engineering—quickly, informally and in high quality. While original research reported in proceedings and monographs has traditionally formed the core of LNEE, we also encourage authors to submit books devoted to supporting student education and professional training in the various fields and applications areas of electrical engineering. The series cover classical and emerging topics concerning:

- Communication Engineering, Information Theory and Networks
- Electronics Engineering and Microelectronics
- Signal, Image and Speech Processing
- Wireless and Mobile Communication
- Circuits and Systems
- Energy Systems, Power Electronics and Electrical Machines
- Electro-optical Engineering
- Instrumentation Engineering
- Avionics Engineering
- Control Systems
- Internet-of-Things and Cybersecurity
- Biomedical Devices, MEMS and NEMS

For general information about this book series, comments or suggestions, please contact leontina.dicecco@springer.com.

To submit a proposal or request further information, please contact the Publishing Editor in your country:

China

Jasmine Dou, Editor (jasmine.dou@springer.com)

India, Japan, Rest of Asia

Swati Meherishi, Editorial Director (Swati.Meherishi@springer.com)

Southeast Asia, Australia, New Zealand

Ramesh Nath Premnath, Editor (ramesh.premnath@springernature.com)

USA, Canada

Michael Luby, Senior Editor (michael.luby@springer.com)

All other Countries

Leontina Di Cecco, Senior Editor (leontina.dicecco@springer.com)

** This series is indexed by EI Compendex and Scopus databases. **

Yunfei Yin \cdot Lei Liu \cdot Zhijian Hu \cdot Hao Lin \cdot Ligang Wu

Robust Control Strategies for Power Electronics in Smart Grid Applications

Yunfei Yin School of Transportation Science and Engineering Harbin Institute of Technology Harbin, China

Zhijian Hu School of Electrical and Electronic Engineering Nanyang Technological University Singapore, Singapore

Ligang Wu School of Astronautics Harbin Institute of Technology Harbin, Heilongjiang, China Lei Liu TUM School of Engineering and Design Technical University of Munich Munich, Germany

Hao Lin Laboratory of Aerospace Servo Actuation and Transmission Institute of Precision Mechatronics and Controls Beijing, China

ISSN 1876-1100 ISSN 1876-1119 (electronic) Lecture Notes in Electrical Engineering ISBN 978-3-031-53187-3 ISBN 978-3-031-53188-0 (eBook) https://doi.org/10.1007/978-3-031-53188-0

 ${\ensuremath{\mathbb C}}$ The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

Preface

Smart grid, as an emerging power technology, will gradually replace traditional grids and become the development direction of future power systems. With the introduction of diverse renewable energy sources, battery energy storage systems, and other new distributed energy resources, the power supply side of smart grids exhibits characteristics such as diversity, intermittency, and randomness. At the same time, with the emergence of new electric units like electric vehicles, the power consumption side of smart grids displays characteristics such as diversity, randomness, and flexibility. In order to establish friendly and flexible connections among various types of distributed power sources, battery energy storage systems, and new electric units with different attributes, it is necessary to achieve fast and precise energy conversion and control through energy conversion equipment. Power electronic conversion technology, based on power semiconductor devices, circuit topologies, and control theories, is the key and foundation for realizing the aforementioned functionalities. In this context, it is crucial to explore the latest advancements and trends in the field of control technology for power electronics in smart grid applications, in order to better understand how these technologies can be optimized to achieve maximum efficiency and performance.

On the other hand, load frequency control, as an important means to achieve dynamic balance between power generation and consumption in electrical systems, holds significant importance in maintaining system stability and achieving high-quality power output. However, the increasing adoption of plug-in EVs has brought about significant challenges to the load frequency control (LFC) of power grid systems. As the number of plug-in EVs participating in the power grid continues to increase, it becomes increasingly difficult to achieve an economically viable and effective load frequency control while maintaining satisfactory system performance. The intermittent nature of the plug-in EV charging process, the uncertain driving patterns of plug-in EV owners, and the potential impact of large-scale plug-in EV participation on power system stability all pose significant challenges to LFC. In this situation, new control strategies and technologies need to be developed to ensure the efficient and reliable operation of power systems while accommodating the growing

number of EVs. This requires a deep understanding of the interactions between plugin EVs and power systems, as well as the development of innovative solutions that can mitigate the challenges posed by EV participation.

This book aims to provide readers with comprehensive insight into robust control strategies for power electronics used in smart grid applications. The book is organized as follows. Chapter 1 introduces some background knowledge of smart grid, the challenges and opportunities of plug-in EVs for the power system, and the control techniques for smart grid applications. Chapter 2 showcases several control techniques that can be implemented for the three-phase two-level AC/DC power converter. Chapter 3 introduces a high-quality current control approach for the three-level AC/ DC power converter. Chapter 4 focuses on direct power control for the three-level AC/DC power converter. Chapter 5 proposes a fuzzy sliding-mode control strategy for the three-level AC/DC power converter. Chapter 6 provides a robust control approach for the operation of two-level AC/DC power converter when subjected to unbalanced grid conditions. Chapter 7 introduces an adaptive optimal control strategy to efficiently alleviate disturbances and uncertainties for the permanent magnet synchronous motor. Chapter 8 presents a distributed economic model predictive control approach for load frequency control that incorporates large-scale plug-in EV participation. Chapter 9 aims to secure the distributed frequency estimation of a large number of plug-in EVs participating in the distributed frequency regulation.

In conclusion, this book provides the reader with an essential overview of the latest developments in the control strategy for power electronics in smart grid applications. It serves as a valuable resource for researchers, engineers, and professionals in the field, facilitating a deeper understanding of robust control techniques and their practical implementation in shaping the future of smart grids.

Harbin, China June 2023 Yunfei Yin Lei Liu Zhijian Hu Hao Lin Ligang Wu

Acknowledgements

This monograph owes its completion to the invaluable contributions of many individuals, who provided constructive suggestions, insightful comments, and unwavering support throughout the entire process. We would like to express my deep appreciation to Prof. Zejiao Dong of Harbin Institute of Technology, whose guidance and mentorship have been invaluable to me as a researcher. He has shared his vast research experiences with me and encouraged me to develop my own research skills. I also want to extend my heartfelt gratitude to Prof. Jianxing Liu from Harbin Institute of Technology and Profs. Leopoldo G. Franquelo, Sergio Vazquez, José I. Leon, and Dr. Abraham Marquez from Universidad de Sevilla, whose encouragement and support enabled me to publish my work as a book. Without their kind suggestion and guidance, this book would not have been possible. I am grateful for the opportunity they have given me to share my research with a wider audience. Lastly, I want to express my heartfelt gratitude to my family. Their unwavering love, understanding, and support have been the driving force behind my work. Without them, I would not have been able to complete this book. I am grateful for their encouragement and motivation throughout the process.

The writing of this book was supported in part by the National Natural Science Foundation of China (No. 62303134, 62033005, 62320106001), the China Post-doctoral Science Foundation (No. 2022M710963), the Natural Science Foundation of Heilongjiang Province (No. YQ2022F008, ZD2021F001), and the Heilongjiang Postdoctoral Science Foundation (No. LBH-Z22160).

Contents

1	Gene	ral Introduction	1	
	1.1	Background and Definition of Smart Grid	1	
	1.2	The Role of Power Converters in the Smart Grids	2	
	1.3	Integrating Plug-in Electric Vehicles into Power System:		
		Challenges and Opportunities	4	
	1.4	Control Techniques in Smart Grid Applications	5	
		1.4.1 Classical Linear Control Methods	5	
		1.4.2 Sliding Mode Control	6	
		1.4.3 Adaptive Control	7	
		1.4.4 Disturbance Observer-Based Control	7	
		1.4.5 Model Predictive Control	8	
		1.4.6 Intelligent Control	9	
	1.5	Outline of the Book	10	
	Refer	rences	12	
2	Casc	Cascade Control for Three Phase Two-Level Power Converters		
	2.1	Introduction	15	
	2.2	Model of Three Phase Two-Level Power Converters	17	
	2.3	Control of Converter	19	
		2.3.1 Voltage Regulation Loop	19	
		2.3.2 Instantaneous Power Tracking Loop	25	
	2.4	Simulation Results	27	
	2.5	Conclusion	29	
	Refer	rences	31	
3	Robu	ist High-Quality Current Control for Three-Level NPC		
	Conv	verters	33	
	3.1	Introduction	33	
	3.2	System Description	36	
	3.3	Control Strategy Design	37	
		3.3.1 Current Tracking Loop Design	38	
		3.3.2 Voltage Regulation Loop Design	42	
		3.3.3 Voltage Balancing Loop Design	44	
		5.5.5 Voltage Datalieng Loop Design		

	3.4	Experimental Results 43	5
		3.4.1 An Overall Evaluation Comparison 40	6
		3.4.2 Performance Comparisons of Voltage Regulation 40	6
		3.4.3 Performance Comparison of Current Tracking 4'	7
		3.4.4 Performance Evaluation with Parametric	
		Robustness 49	9
		3.4.5 Performance Comparison of Grid Frequency	
		Variation	1
	3.5	Conclusions 5.	3
	Refe	ences 5.	3
4	Dire	t Power Control for Three-Level NPC Converters	5
	4.1	Introduction	5
	4.2	System Description and Preliminaries 55	8
		4.2.1 System Description and Modeling	8
		4.2.2 FLS Basic Concept 59	9
	4.3	Controller Design 6	1
		4.3.1 Power Tracking Loop 6	2
		4.3.2 DC-Link Voltage Regulation Loop	6
		4.3.3 DC-Link Voltage Balancing Loop	7
		4.3.4 Tuning Procedure of Control Parameters	8
		4.3.5 Discussion	9
	4.4	Experimental Results	1
		4.4.1 DC-Link Voltage Variation	1
		4.4.2 Active Power Variation	4
		4.4.3 Reactive Power Variation	6
		4.4.4 Computational Complexity Comparison	7
	4.5	Conclusion 7	7
	Refe	rences	8
5	Fuzz	v Sliding Mode Control for Three Level NPC Converters 8	1
5	5 1	Introduction 8	1
	5.2	System Description and Modeling 8	3
	5.3	Controller Design 8	5
	0.0	5.3.1 Power Tracking Loop 8	5
		5.3.2 DC-Link Voltage Regulation Loop	0
		5.3.3 DC-Link Voltage Balancing Loop	6
	5.4	Experimental Results	6
		5.4.1 DC-Link Voltage Variation	7
		5.4.2 Active Power Variation	8
		5.4.3 Reactive Power Variation	1
		5.4.4 Grid Voltage Variation 102	2
	5.5	Conclusion	5
	Refe	rences	5

6	Slidi	ng Mode Control for Power Converters Under	
	Unba	alanced Grid Conditions	109
	6.1	Introduction	109
	6.2	Problem Formulation and Preliminaries	111
		6.2.1 Model of the Three-Phase Two-Level	
		Grid-Connected Power Converter Under	
		Unbalanced Grid Voltage Conditions	111
		6.2.2 Control Objectives	112
	6.3	Control Strategies	113
		6.3.1 Positive and Negative Sequences of the Grid	
		Voltage Estimates	113
		6.3.2 Current Tracking Loop	114
		6.3.3 Voltage Regulation Loop	118
		6.3.4 Tuning of the Proposed Controllers	119
	6.4	Experimental Results	120
		6.4.1 The First Experiment Set	120
		6.4.2 The Second Experiment Set	124
		6.4.3 The Third Experiment Set	125
	6.5	Conclusions	127
	Refe	rences	128
7	Ada	otive Optimal Control for PMSM Servo System	131
	7.1	Introduction	131
	7.2	Problem Formulation and Preliminaries	133
	7.3	Control Strategy Design	134
	7.4	Experimental Results	144
		7.4.1 The First Experiment Set	144
		7.4.2 The Second Experiment Set	146
		7.4.3 The Third Experiment Set	148
	7.5	Conclusions	149
	Refe	rences	150
Q	Mod	al Prodictive Control for Load Frequency Doculation	
0	with	PFV _c	153
	8 1	Introduction	153
	8.2	DEMPC for LFC with PEV Participation	155
	0.2	8.2.1 Modeling of Multi-area Power Systems with PEVs	155
		8.2.2 DEMPC for LFC	158
		8.2.3 Power Constraints on Aggregator	160
	8.3	Model-Based χ^2 Intrusion Detection and Event-Triggering	100
	0.0	Scheme	161
		8.3.1 Modeling of Cyber Attacks	161
		8.3.2 Model-Based χ^2 Intrusion Detection	162
		8.3.3 Event-Triggering Scheme	163

	8.4	Validations	165
		8.4.1 Structure and Parameters of Multi-area Power	
		System	165
		8.4.2 Fast Response Validation with PEV Participation	
		Under Healthy Networks	166
		8.4.3 Effectiveness Validations on Model-Based χ^2	
		Intrusion Detection Unit and Event-Triggering	
		Scheme	167
		8.4.4 Discussion on Parameter Selecting	169
		8.4.5 Impact of False Detection on System Performance	172
	8.5	Conclusion	173
	Refer	ences	173
9	Cred	ibility-Based Distributed Frequency Estimation for PEVs	177
-	9.1	Introduction	177
	9.2	Credibility-Based Resilient Distributed Frequency	
		Estimation Scheme	179
		9.2.1 Credibility Metric Design	181
		9.2.2 Credibility Coefficient Calculation	182
		9.2.3 Adaptive Threshold Based Isolation Decision	182
		9.2.4 Estimate Weight Update	183
	9.3	Convergence Analysis of the Scheme	184
	9.4	Distributed Load Frequency Control with PEVs	186
		9.4.1 Modeling of Interconnected Power Systems	186
		9.4.2 DLFC with Output Feedback	188
	9.5	Simulation Validations	191
		9.5.1 Credibility-Based Resilient Distributed Frequency	
		Estimation Scheme Validation	191
		9.5.2 Performance Comparisons of DLFC With/Without	
		PEVs	193
	9.6	Conclusion	193
	Refer	ences	194
10	Conc	lusion and Further Work	197
	10.1	Conclusion	197
	10.2	Further Work	199

Notations and Acronyms

	Is defined as
\simeq	Approximately equals to
«	Is much less than
≫	Is much greater than
E	Belongs to
A	For all
\sum	Sum
·	Euclidean vector norm
∥ ∙ ∥	Euclidean matrix norm (spectral norm)
$\ \cdot\ _2$	$\mathcal{L}_2 - \operatorname{norm}: \sqrt{\int_0^\infty \cdot ^2} dt$ (continuous case)
	$\ell_2 - \text{norm:} \sqrt{\sum_{0}^{\infty} \cdot ^2}$ (discrete case)
$\mathcal{L}_2\{[0,\infty), [0,\infty)\}$	Space of square summable sequences on $\{[0,\infty), [0,\infty)\}$
	(continuous case)
$\ell_2\{[0,\infty),[0,\infty)\}$	Space of square summable sequences on $\{[0,\infty), [0,\infty)\}$
	(discrete case)
$\frac{\partial f}{\partial x}$ or $\frac{\partial}{\partial x} f$	The derivative of the function f with respect to x
R	Field of real numbers
\mathbf{R}^n	Space of <i>n</i> -dimensional real vectors
$\mathbf{R}^{n \times m}$	Space of $n \times m$ real matrices
X^{T}	Transpose of matrix X
X^{-1}	Inverse of matrix X
X > (<)0	X is real symmetric positive (negative) definite
$X \ge (\le)0$	X is real symmetric positive (negative) semi-definite
*	Symmetric terms in a symmetric matrix
0	Zero matrix
$0_{n \times m}$	Zero matrix of dimension $n \times m$
Ι	Identity matrix
In	$n \times n$ identity matrix
$\operatorname{col}\{x_1,\ldots,x_n\}$	Column vector $[x_1, \ldots, x_n]^T$ with <i>n</i> elements

$\det(\cdot)$	The determinant computed from the elements of a square
diag(V = V)	mainx Plack diagonal matrix with blacks V V
$\operatorname{unag}\{\Lambda_1,\ldots,\Lambda_m\}$	block diagonal matrix with blocks A_1, \ldots, A_m
lill	Limit
11111 1m()	Lillill The network locarithm of a number
$In(\cdot)$	I ne natural logarithm of a number
max	Maximum
min	
rank(·)	Rank of a matrix
sign(·)	The signum function of a real number
sup	Supremum, the least upper bound
$\lambda_{\min}(\cdot)$	Minimum eigenvalue of a real symmetric matrix
$\lambda_{\max}(\cdot)$	Maximum eigenvalue of a real symmetric matrix
3L - NPC	Three-level diode neutral point clamped
AC	Alternating Current
AFE	Active Front-End
AI	Artificial Intelligence
AO	Adaptive Observer
AOCS	Adaptive Optimal Control Strategy
DC	Direct Current
DEMPC	Distributed Economic Model Predictive Control
DLFC	Distributed Load Frequency Control
DOBC	Disturbance Observer-Based Control
DoS	Denial-of-Service
DSP	Digital Signal Processor
DSRF	Double Synchronous Reference Frame
DTC	Direct Torque Control
EMS	Energy Management System
ESMDO	Extended Sliding Mode Disturbance Observer
ESO	Extended State Observer
EVs	Electric Vehicles
FCR	False Connect Rate
FDI	False Data Injection
FDIA	False Data Injection Attack
FIR	False Isolate Rate
FLS	Fuzzy Logic System
FOC	Field Oriented Control
FSMC	Fuzzy Sliding-Mode Control
FSTA	Fuzzy Super-Twisting Algorithm
IGBT	Insulated Gate Bipolar Transistor
LFC	Load Frequency Control
10	Luenberger Observer
MATI	Maximum Allow Time Interval
MESs	Micro-Energy Systems
MPC	Model Predictive Control

NPC	Neutral Point Clamped
PEVs	Plug-In Electric Vehicles
PI	Proportional Integral
PID	Proportional-Integral-Derivative Control
PLL	Phase Locked Loop
PMSM	Permanent Magnet Synchronous Motor
PMUs	Phase Measurement Units
PR	Proportional-Resonance
PWM	Pulse-Width Modulation
RES	Renewable Energy Sources
RMS	Root Mean Square
RTUs	Remote Telemetry Units
SMC	Sliding Mode Control
SOSM	Second-Order Sliding Mode
SRF	Synchronous Reference Frame
STA	Super-Twisting Algorithm
STD	Super-Twisting Differentiator
STESO	Super-Twisting Extended State Observer
STO	Super-Twisting Observer
THD	Total Harmonic Distortion
V2G	Vehicle-to-Grid

List of Figures

Fig. 1.1	Smart microgrid	3
Fig. 1.2	DC charging systems	4
Fig. 1.3	Two common AC-DC bidirectional power flow and energy	
	power converters topologies	4
Fig. 2.1	Power electrical circuit of the converter	17
Fig. 2.2	Control structure of PI control	20
Fig. 2.3	Control structure of fuzzy PI control	22
Fig. 2.4	Control structure of PI control plus extended state observer	23
Fig. 2.5	Control structure of adaptive control	25
Fig. 2.6	Instantaneous power tracking loop	26
Fig. 2.7	Curves of dc-link capacitor voltage a PI control, b fuzzy	
	PI control, c ESO-based PI control, d adaptive control	28
Fig. 2.8	Curves of instantaneous active power a PI control, b fuzzy	
	PI control, c ESO-based PI control, d adaptive control	29
Fig. 2.9	Curves of instantaneous reactive power a PI control,	
	b fuzzy PI control, c ESO-based PI control, d adaptive	
	control	30
Fig. 2.10	Curves of input current (i_a) and grid voltage (e_a) a PI	
	control, b fuzzy PI control, c ESO-based PI control,	
	d adaptive control	30
Fig. 3.1	Grid-connected 3L-NPC power converter with L filter	36
Fig. 3.2	The lab-constructed 3L-NPC power converter prototype	45
Fig. 3.3	An overall evaluation comparison	47
Fig. 3.4	Performance comparison of voltage regulation	
	when the capacitor voltage reference v_{dc}^* steps from 400	
	to 450 V again back to 400 V	48
Fig. 3.5	Performance comparison of voltage regulation	
	when the dc-link load steps from 120 to 80 Ω again back	
	to 120 Ω	48

Fig. 3.6	Performance comparison of current tracking i_{α} and i_{β}	
	when reactive power reference steps from $q^* = 0$ var to $e^* = 2000$ Ver	40
Eig 27	$\log q = 2000$ var	49
Fig. 5.7	viber the conscitor valtage reference v^* store from 400	
	when the capacitor voltage reference v_{dc} steps from 400	50
Eig 29	Current errors performance comparison when evist	30
Fig. 5.6	inductance deviation: (1) STA LO (max current	
	inductance deviation. (1) STA-LO (max current error): $\mathbf{a} : \frac{ierr}{i} : \frac{ierr}{i} = 0.28 \text{ A} \mathbf{b} : \frac{ierr}{i} : \frac{ierr}{i} = 0.25 \text{ A}$	
	end). a l_{α} / l_{β} = 0.28 A, b l_{α} / l_{β} = 0.55 A, and a i^{err}_{α} / i^{err}_{β} = 0.40 A; (2) PB (max surrent error);	
	and $\mathbf{c} \mathbf{i}_{\alpha} / \mathbf{i}_{\beta} = 0.49 \mathrm{A}, (2) \mathrm{FK}$ (max current error). $\mathbf{d} i^{err} / i^{err} = 0.41 \mathrm{A}, \mathbf{o} i^{err} / i^{err} = 0.48 \mathrm{A}$ and \mathbf{f} work	
	u $l_{\alpha} / l_{\beta} = 0.41$ A, e $l_{\alpha} / l_{\beta} = 0.46$ A, and I work	51
Eig 20	Derformance comparison of grid frequency variation	51
Fig. 5.9	of current error i^{err} and i^{err} with combined ective power	
	of current error t_{α} and t_{β} with combined active power and reactive power injection under u^* store from 450	
	to 400 V at 0.1 s, then a^* steps from 0 to 2000 Var at 0.6 s	
	$dc \log dR_{2} = 120 \Omega$	52
Fig 11	Membership functions: a Membership functions	52
1'ig. 4.1	of the input fuzzy sets E^{l_0} for a b Membership functions	
	of the output fuzzy sets F^{l_0} for μ	60
Fig 12	Control structure of the proposed strategy $\frac{1}{2}$	61
Fig. 4.2 $\operatorname{Fig} 4.3$	Control structure of nower tracking loop	62
Fig. 4.4	Membership functions of fuzzy sets for power tracking	02
1 15. 4.4	loop: a Membership functions of the input fuzzy sets	
	for s _m b Membership functions of the output fuzzy sets	
	for u_{-}	63
Fig. 4.5	Control structure of dc-link voltage regulation loop	66
Fig. 4.6	Membership functions of fuzzy sets for dc-link voltage	00
0	regulation loop: a Membership functions of the input	
	fuzzy sets for s_n , b Membership functions of the output	
	fuzzy sets for u_{usmc}	67
Fig. 4.7	Prototype of NPC converter system	72
Fig. 4.8	Experimental results under dc-link voltage variation: a PI.	
U	b Observer-based STA. c DOB-SMC. d The proposed	
	FLS-based SMC strategy	74
Fig. 4.9	Experimental results under active power variation: a ,	
-	e, i, m DC-link voltage, active power, reactive power	
	and dc-link voltage difference of PI. b, f, j, n DC-link	
	voltage, active power, reactive power and dc-link voltage	
	difference of observer-based STA. c, g, k, o DC-link	
	voltage, active power, reactive power and dc-link voltage	
	difference of DOB-SMC. d, h, l, p DC-link voltage, active	
	power, reactive power and dc-link voltage difference	
	of the proposed FLS-based SMC strategy	75

xviii

List of Figures

Fig. 4.10	Current harmonic spectrum with $p = 5.31$ kW and $q = 0$	
	VAr: a PI. b Observer-based STA. c DOB-SMC. d The	
	FLS-based SMC strategy	75
Fig. 4.11	Experimental results under reactive power variation: a ,	
	e, i, m DC-link voltage, active power, reactive power	
	and dc-link voltage difference of PI. b , f , j , n , DC-link	
	voltage, active power, reactive power and dc-link voltage	
	difference of observer-based STA. c, g, k, o DC-link	
	voltage, active power, reactive power and dc-link voltage	
	difference of DOB-SMC. d, h, l, p DC-link voltage, active	
	power, reactive power and dc-link voltage difference	
	of the proposed FLS-based SMC strategy	76
Fig. 4.12	Current harmonic spectrum with $p = 0$ W and $q = -5$	
U U	kVAr: a PI. b Observer-based STA. c DOB-SMC. d The	
	FLS-based SMC strategy	77
Fig. 5.1	Topology of the three-phase three-level NPC AFE rectifier	84
Fig. 5.2	Control structure of the proposed strategy	85
Fig. 5.3	Membership functions for the DC-link voltage regulation	
	loop. a Membership functions of fuzzy sets for s_v .	
	b Membership functions of fuzzy sets for u_v	92
Fig. 5.4	Prototype of the NPC AFE rectifier system	96
Fig. 5.5	Experimental results of two strategies under a DC-link	
	voltage step at 1 s: a The observer-based STA. b The	
	proposed FSMC strategy	98
Fig. 5.6	Experimental results of two strategies under a reactive	
	power variation at 1 s: a, c, e, g, i DC-link voltage, active	
	power, reactive power, phase currents and control signals	
	of the observer-based STA. b, d, f, h, j DC-link voltage,	
	active power, reactive power, phase currents and control	
	signals of the proposed FSMC strategy	100
Fig. 5.7	Current harmonic spectrum of two strategies with $q = -5$	
	kVAr: a The observer-based STA. b The proposed FSMC	
	strategy	101
Fig. 5.8	Grid voltage variation at 1 s. Case 1: $v_{abc,RMS} = 400$ V.	
	Case 2: $v_{abc,RMS} = 390 \text{ V}$	101
Fig. 5.9	Experimental results of two strategies under a grid voltage	
	variation at 1 s: a, c, e, g, i DC-link voltage, active	
	power, reactive power, phase currents and control signals	
	of the observer-based STA. b, d, f, h, j DC-link voltage,	
	active power, reactive power, phase currents and control	
	signals of the proposed FSMC strategy	102

Fig. 5.10	Experimental results of two strategies under an active power variation at 1 s: a , c , e , g , i DC-link voltage, active power, reactive power, phase currents and control signals of the observer-based STA. b , d , f , h , j DC-link voltage, active power, reactive power, phase currents and control signals of the proposed FSMC strategy	103
Fig. 5.11	Current harmonic spectrum of two strategies with $R_{dc} = 106 \ \Omega$: a The observer-based STA. b The	105
F: 5.10	proposed FSMC strategy	104
Fig. 5.12 Fig. 5.13	Current harmonic spectrum of two strategies with $u_{1} = 390$ V: a The observer based STA b The	104
	with $v_{abc,RMS} = 390$ v. a The observer-based STA. b The proposed FSMC strategy	104
Fig 61	Electrical circuit of the system under study	111
Fig. 6.2	Proposed cascaded control structure: a voltage regulation	114
Fig 63	Laboratory prototype of the three phase two level power	114
11g. 0.5	converter	121
Fig 64	Unbalanced grid voltage applied during the experiments	121
Fig. 6.5	The responses of three-phase currents and active	122
1 15. 0.5	and reactive powers under different load cases	
	with $\xi = -1$, $\xi = 0$ and $\xi = 1$, a b : Only active power	
	load case $\mathbf{c} \cdot \mathbf{d}$: Only reactive power load case $\mathbf{e} \cdot \mathbf{f}$: Mixture	
	of active and reactive powers case	123
Fig 66	The responses of grid voltage, three-phase currents	125
1 15. 0.0	and active and reactive powers under different power factors	124
Fig. 6.7	Grid current and tracking errors when the reactive power	
0	changes from 0 to 8 kVAr: a PR controller response.	
	b proposed controller response. c tracking error \tilde{i}_{α} .	
	d tracking error \tilde{i}_{B}	125
Fig. 6.8	Grid current and tracking errors when the grid frequency	
0	changes form 50 to 49 Hz, and then to 45 Hz; a PR	
	controller response. b proposed controller response.	
	c tracking errors \tilde{i}_{α} and \tilde{i}_{β} for the PR controller and.	
	d tracking error \tilde{i}_{α} and \tilde{i}_{β} for the proposed controller	126
Fig. 6.9	DC-link voltage and current waveforms when the load	
0	changes using the proposed and the PI controller:	
	a DC-Link voltage, b grid currents for the conventional	
	PI in the voltage regulation loop, c grid current	
	for the proposed P+STO controller in the voltage	
	regulation loop, d detail of the grid currents	
	for the conventional PI solution and e detail of the grid	
	currents for the proposed controller	127
Fig. 7.1	Block diagram of AOCS	134

List of Figures

Fig. 7.2	Control block diagram of speed regulation loop	136
Fig. 7.3	The responses of current i_{dq} and current error using	
	the proposed current control strategy	138
Fig. 7.4	Control block diagram of current tracking loop	141
Fig. 7.5	Case I: Variation of moment of inertia: performance	
	comparisons of speed response using a AOCS, b STA	
	and c PI control	142
Fig. 7.6	Case II: Variation of viscous friction coefficient:	
	performance comparisons of speed response using	
	a AOCS, b STA and c PI control	142
Fig. 7.7	Case III: Variation of rotor flux linkage: performance	
	comparisons of speed response using a AOCS, b STA	
	and c PI control	143
Fig. 7.8	Case IV: Variation of load torque: performance	
	comparisons of speed response using a AOCS, b STA	
	and c PI control	143
Fig. 7.9	Laboratory prototype of PMSM	144
Fig. 7.10	The response of speed when motor startup using	
	the proposed and classical control strategies	145
Fig. 7.11	The response of speed when load torque change using	
	the proposed and classical control strategies	146
Fig. 7.12	The responses of current i_{dq} when load torque change	
	using the proposed and classical control strategies	146
Fig. 7.13	The response of speed using four different controllers	
	under speed command steps from 1500 rpm to 1200 rpm	148
Fig. 7.14	The response of speed using four different controllers	
	under speed command steps from 1200 rpm to 1500 rpm	148
Fig. 7.15	The response of speed using three different controllers	
	under 0 to 12 N m	149
Fig. 8.1	DEMPC diagram of area <i>i</i> with PEVs under potential	
	cyber attacks	156
Fig. 8.2	Model-based χ^2 intrusion detection	162
Fig. 8.3	Event-triggering scheme	164
Fig. 8.4	Interconnected four-area power system	165
F1g. 8.5	Comparisons of frequency deviation dynamics	
	without/with PEV participation. Green lines indicate	
	the conventional DEMPC with only generators while red	
-	lines indicate our proposed DEMPC with PEV participation	166
F1g. 8.6	<i>Case</i> 1: Blue lines indicate frequency deviation	
	dynamics without model-based χ^2 intrusion detection	
	unit while magenta lines indicate frequency deviation	
	dynamics with model-based χ^2 intrusion detection unit	167

Fig. 8.7	Case 2: Blue lines indicate frequency deviation	
	dynamics without model-based χ^2 intrusion detection	
	unit while magenta lines indicate frequency deviation	
	dynamics with model-based χ^2 intrusion detection unit	168
Fig. 8.8	Case 1: Event-triggering instants and intervals	169
Fig. 8.9	Case 2: Event-triggering instants and intervals	169
Fig. 8.10	<i>Circumstance</i> 1: Impacts of δ_2 on Δf_2 under constant	
	FDI attacks with $g_2(k) = 0.005$ from $k = 50$	170
Fig. 8.11	<i>Circumstance</i> 2: Impacts of δ_2 on Δf_2 under time-varying	
	FDI attacks with $g_2(k) = 0.0001k$ from $k = 50$	171
Fig. 8.12	Impacts of different false detection rates on Δf_2	
	under constant FDI attacks with $g_2(k) = 0.005$ from $k = 50 \dots$	172
Fig. 8.13	Impacts of different false detection rates on Δf_2	
	under time-varying FDI attacks with $g_2(k) = 0.0001k$	
	from $k = 50$	173
Fig. 9.1	Structure of a common distribution system	180
Fig. 9.2	Flow diagram of the credibility-based resilient distributed	
	frequency estimation scheme	181
Fig. 9.3	Diagram of the <i>i</i> -th control area	186
Fig. 9.4	a Strongly connected \mathcal{G} . b Non-strongly connected \mathcal{G}	191
Fig. 9.5	Case 1: Strongly connected \mathcal{G} . a $G_1(k) = 0.2$ from $k = 100$,	
	$G_2(k) = 0.1$ from $k = 300$ without the credibility-based	
	resilient distributed frequency estimation scheme.	
	b $G_1(k) = 0.2$ from $k = 100$, $G_2(k) = 0.1$ from $k = 300$	
	with the scheme. c $G_1(k) = 0.002k$ from $k = 100$,	
	$G_2(k) = 0.001k$ from $k = 300$ without the scheme.	
	d $G_1(k) = 0.002k$ from $k = 100, G_2(k) = 0.001k$	
	from $k = 300$ with the scheme	192
Fig. 9.6	Case 2: Non-strongly connected \mathcal{G} . a – d are same as those	
	in Case 1	192
Fig. 9.7	Dynamics of frequency deviations in four areas. Solid	
	lines represent the conventional DLFC with the generator	
	while dashed lines represent our proposed DLFC	
	with the participation of well-behaving PEVs	193