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Preface 

Multimodal and Tensor Data Analytics for Industrial Systems Improvement gives a 
topical overview of various methods found in multimodal data fusion for industrial 
engineering and operations research applications (e.g., manufacturing, medicine, 
agriculture, etc.). This book covers the latest methodologies available for using 
multimodal data fusion and analytics across a variety of applications. Advancements 
in sensing technologies and the shift toward the Internet of Things (IoT) have 
transformed and will continue to transform data analytics by producing new 
requirements and more complex forms of data. For example, (1) in manufacturing 
systems, multiple high-resolution sensors are available to monitor the condition 
of interconnected assets; (2) in healthcare, real-time data collected by wearable 
devices can be integrated with lab tests and images for more accurate patient 
prognostics; (3) in agriculture, hyperspectral imaging along with biosensors data 
can generate predictions about the yield and health of farming products. The 
abundance of multi-perspective data creates an unprecedented opportunity to design 
more efficient systems and make near-optimal operational decisions. On the other 
hand, the structural complexity and heterogeneity of the generated data poses 
significant challenges to extracting useful features and patterns for making use of 
the data and facilitating decision-making. Therefore, continual research to develop 
new statistical and analytical methodologies that overcome these data challenges 
and turn them into opportunities is needed. The purpose of this book is to 
demonstrate the recent developments and challenges in multimodal data analytics 
and to create a pathway toward new research development. The editors of this book 
combined various topics in the multimodal data analytics to provide comprehensive 
presentation of a variety of multimodal data analytics methods, such as functional 
analysis, tensor data analysis, spatiotemporal analysis, multimodal deep learning, 
the fusion of domain knowledge and data analytics, and multimodal federated 
learning. The chapters composing this book are written by eminent researchers and 
practitioners who present their research results and ideas based on their expertise. 
Thus, in this book, a wide spectrum of topics is presented that appear under the 
following titles, written by the respective authors and author groups.

v



vi Preface

Introduction to Multimodal and Tensor Data Analytics 
Nathan Gaw, Mostafa Reisi Gahrooei, and Panos M. Pardalos 

Functional Methods for Multimodal Data Analysis 
Minhee Kim 

Advanced Data Analytical Techniques for Profile Monitoring 
Peiyao Liu and Chen Zhang 

Statistical Process Monitoring Methods Based on Functional Data Analysis 
Christian Capezza, Fabio Centofanti, Antonio Lepore, Alessandra Menafoglio, 

Biagio Palumbo, Simone Vantini 

Tensor and Multimodal Data Analysis 
Jing Zeng and Xin Zhang 

Tensor Data Analytics in Advanced Manufacturing Processes 
Bo Shen and Ning Wang 

Spatiotemporal Data Analysis: A Review of Techniques, Applications, 
and Emerging Challenges 

Imtiaz Ahmed and Ahmed Shoyeb Raihan 

Offshore Wind Energy Prediction Using Machine Learning with Multi-resolution 
Inputs 

Feng Ye, Travis Miles, Ahmed Aziz Ezzat 

Sparse Decomposition Methods for Spatio-Temporal Anomaly Detection 
Hao Yan, Ziyue Li, Xinyu Zhao, Jiuyun Hu 

Multimodal Deep Learning 
Amireza Shaban and Safoora Yousefi 

Multimodal Deep Learning for Manufacturing Systems: Recent Progress and Future 
Trends 

Yinan Wang and Xiaowei Yue 

Synergy of Engineering and Statistics: Multimodal Data Fusion for Quality 
Improvement 

Jianjun Shi, Michael Biehler, and Shancong Mou 

Manufacturing Data Fusion: A Case Study with Steel Rolling Processes 
Andi Wang



Preface vii

AI-Enhanced Fault Detection Using Multi-structured Data in Semiconductor Man-
ufacturing 

Linus Kohl, Theresa Madreiter, and Fazel Ansari 

A Survey of Advances in Multimodal Federated Learning with Applications 
Gregory Barry, Elif Konyar, Brandon Harvill, and Chancellor Johnstone 

Bayesian Multimodal Data Analytics: An Introduction 
Marco Luigi Giuseppe Grasso and Panagiotis Tsiamyrtzis 

Bayesian Approach to Multimodal Data in Human Factors Engineering 
Katherina A. Jurewicz and David M. Neyens 

Bayesian Multimodal Models for Risk Analyses of Low-Probability High-
Consequence Events 

O. Arda Vanli 

We would like to express our special thanks to all the authors of the chapters 
contributed to this book. Finally, we would like to acknowledge the superb 
assistance of the Springer staff during the preparation of this publication. 

Wright-Patterson AFB, OH, USA Nathan Gaw 
Gainesville, FL, USA Panos M. Pardalos 
Gainesville, FL, USA Mostafa Reisi Gahrooei



Contents 

Introduction to Multimodal and Tensor Data Analytics . . . . . . . . . . . . . . . . . . . . . 1 
Nathan Gaw, Mostafa Reisi Gahrooei, and Panos M. Pardalos 

Part I Functional Methods for Multimodal Data 

Functional Methods for Multimodal Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
Minhee Kim 

Advanced Data Analytical Techniques for Profile Monitoring . . . . . . . . . . . . . .  21 
Peiyao Liu and Chen Zhang 

Statistical Process Monitoring Methods Based on Functional 
Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41 
Christian Capezza, Fabio Centofanti, Antonio Lepore, 
Alessandra Menafoglio, Biagio Palumbo, and Simone Vantini 

Part II Tensor Analytics Methods for Multimodal Data 

Tensor and Multimodal Data Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  59 
Jing Zeng and Xin Zhang 

Tensor Data Analytics in Advanced Manufacturing Processes . . . . . . . . . . . . .  107 
Bo Shen 

Part III Spatio-temporal Analytics Methods for Multimodal Data 

Spatiotemporal Data Analysis: A Review of Techniques, 
Applications, and Emerging Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  125 
Imtiaz Ahmed and Ahmed Shoyeb Raihan 

Offshore Wind Energy Prediction Using Machine Learning with 
Multi-Resolution Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  167 
Feng Ye, Travis Miles, and Ahmed Aziz Ezzat

ix



x Contents

Sparse Decomposition Methods for Spatio-Temporal Anomaly 
Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  185 
Hao Yan, Ziyue Li, Xinyu Zhao, and Jiuyun Hu 

Part IV Deep Learning Methods for Multimodal Data 

Multimodal Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  209 
Amirreza Shaban and Safoora Yousefi 

Multimodal Deep Learning for Manufacturing Systems: Recent 
Progress and Future Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  221 
Yinan Wang and Xiaowei Yue 

Part V Integration of Domain Knowledge and Multimodal Data 

Synergy of Engineering and Statistics: Multimodal Data Fusion 
for Quality Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  255 
Jianjun Shi, Michael Biehler, and Shancong Mou 

Manufacturing Data Fusion: A Case Study with Steel Rolling 
Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  281 
Andi Wang 

AI-Enhanced Fault Detection Using Multi-Structured Data 
in Semiconductor Manufacturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  297 
Linus Kohl, Theresa Madreiter, and Fazel Ansari 

Part VI Federated and Distributed Analytics Methods for 
Multimodal Data 

A Survey of Advances in Multimodal Federated Learning with 
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  315 
Gregory Barry, Elif Konyar, Brandon Harvill, and Chancellor Johnstone 

Part VII Bayesian Analytics Methods for Data with Multimodal 
Distributions 

Bayesian Multimodal Data Analytics: An Introduction . . . . . . . . . . . . . . . . . . . . .  347 
Marco Luigi Giuseppe Grasso and Panagiotis Tsiamyrtzis 

Bayesian Approach to Multimodal Data in Human Factors 
Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  357 
Katherina A. Jurewicz and David M. Neyens 

Bayesian Multimodal Models for Risk Analyses of 
Low-Probability High-Consequence Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  373 
Arda Vanli



Introduction to Multimodal and Tensor 
Data Analytics 

Nathan Gaw, Mostafa Reisi Gahrooei, and Panos M. Pardalos 

1 Overview 

As data collection instruments have improved in quality and quantity for various 
applications, there has been an unprecedented increase in the availability of data 
from multiple sources (known as modalities). Modalities commonly express a large 
degree of heterogeneity in form, scale, resolution, and accuracy. Thus, determining 
how to combine the data for prediction and data characterization effectively is 
becoming increasingly important. Once these fragmented glimpses of each modality 
are interwoven, a more comprehensive understanding of the system of interest 
emerges. Several research studies have proposed ways to integrate and analyze 
multimodality data and discussed the limitations of current methodologies. This 
textbook gives a topical overview of various methods in multimodal data fusion 
for industrial engineering and operations research applications (e.g., manufacturing, 
medicine, and renewable energy). This book will cover the latest methodologies 
available for using multimodal data fusion and analytics across various applications. 

Advancements in sensing technologies and the shift toward the Internet of 
Things (IoT) have transformed and will continue to transform data analytics by 
producing new requirements and more complex forms of data. For example, (1) 
in manufacturing systems, multiple high-resolution sensors are available to monitor 
the condition of interconnected assets [15], (2) in healthcare, real-time data collected 
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by wearable devices can be integrated with lab tests and images for more accurate 
patient prognostics [6, 26], (3) in agriculture, hyperspectral imaging along with 
biosensors data can generate predictions about the yield and health of farming 
products [3, 19], and (4) in renewable energy, spatiotemporal analytics of energy 
generation from wind turbines can be utilized to determine optimal placement of 
windmills to optimize system-level power production efficiency [4]. The abundance 
of data creates an unprecedented opportunity to design more efficient systems 
and make near-optimal operational decisions. On the other hand, the structural 
complexity and heterogeneity of the collected data pose a significant challenge to 
extracting useful features and patterns to use the data and facilitate decision-making. 
Therefore, continual research is needed to develop new statistical and analytical 
methodologies that overcome these data challenges and turn them into opportunities. 

Multimodal dataset analysis has seen significant growth since its inception in the 
revolutionary work of Hotelling in 1936 [10]. Techniques such as multiset canonical 
correlation analysis, parallel factor analysis (PARAFAC), and tensor decomposition 
were introduced around the mid-twentieth century [11, 14, 23], but their application 
was mostly confined to specific areas like chemometrics [9]. With the recent surge 
of multimodal datasets, industries such as manufacturing, healthcare, agriculture, 
and renewable energy are increasingly exploring the potential advantages of these 
datasets. A systematic analysis and fusion of multimodal data facilitate decision-
making processes and improvements to systems, thus enhancing their efficiency 
through effective predictive models, reliable abnormality detection methods, or 
accurate, interpretable features extracted from data. 

Despite the apparent advantages of analyzing multimodal datasets, the nuances 
of leveraging the commonalities and disparities between modalities remain chal-
lenging. Data heterogeneity, differences in scale, resolution, and accuracy, as well 
as conflicting or redundant modes, pose considerable challenges to the progress of 
multimodal data analysis. 

Within the chapters contained in this book, we have three primary modes 
of fusion: early fusion (low-level fusion), late fusion (high-level fusion), and 
intermediate fusion. Each methodology and application area tends to favor one 
fusion method over others. Early fusion, also referred to as low-level fusion, 
refers to the fusion of different modalities by leveraging the predictor information 
(i.e., independent variables) solely. This approach may be used as a preprocessing 
step before training a model or as an entirely unsupervised task to produce 
features representing underlying patterns across modalities. The goal of feature 
preprocessing in early fusion is to merge raw features from different modalities to 
craft new features that embody the complementary information of the raw features 
from distinct modalities. These newly created features are then used in a supervised 
model for a training task. When early fusion is used as an unsupervised task, it 
aims to combine features across modalities to identify underlying patterns that 
exist across these different modalities or to generate a visualization that accurately 
presents information from the different modalities, such as combining various types 
of medical imaging to create an image that displays complementary information
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[8, 16, 17]. A popular instance of early fusion is Principal Component Regression 
(PCR), where the Principal Component Analysis (PCA) is utilized to extract input 
features that are then used to predict an output value. 

Late fusion, or high-level fusion, is the integration at the decision-making level. 
After each modality has been processed and modeled individually, the predictions 
made from each modality can be merged in various ways. These ways depend on 
the relevance of each modality for the prediction task, the suitability of the modality 
combination (for instance, whether the fusion should be modeled as an element-wise 
summation [1], a weighted average [12], bilinear product [2], etc.), the noise level 
in each modality, and other considerations decided by the practitioner. Ensemble 
learning [20, 21, 25] and deep late fusion [12, 18, 22, 24] are some common 
examples of late fusion. 

Intermediate fusion happens when features from different modalities are com-
bined during the model training process, using both predictors (independent vari-
ables) and response (dependent variables). These methods incorporate fusion 
directly into the model training process and make fusion decisions that optimize 
the objective (for example, accuracy, detection rate, etc.). Partial least square 
(PLS) is an example of intermediate fusion, where the fused features are extracted 
in a supervised manner to explain the output [27]. Tensor regression is another 
instance of intermediate fusion, in which it extracts features from tensors containing 
multiple sources to estimate the output [5]. Deep learning architectures can also be 
engineered to perform intermediate fusion [13]. 

To help the reader comprehend early, late, and intermediate fusion concepts, 
we provide a figure adapted from [7]. Each subfigure demonstrates an example of 
each fusion type to combine three modalities, A, B, and C, with functions f and g 
representing model steps to fuse the data (whether early, late, or intermediate). Each 
method aims to efficiently use available data to predict outcomes (model outputs) 
and incorporate the information in the available multimodal data. Reference [7] 
provides additional real-world examples to further explain the multimodal fusion 
concepts illustrated in this figure (Fig. 1). 

This book can be used as a reference for anyone in this general research area 
and an educational resource for those interested in building their knowledge set 
and capabilities. Primarily, this book would appeal to researchers in academia and 
graduate and post-graduate students with an interest in the areas of Industrial Engi-
neering (IE), Operations Research (OR), Machine Learning, and Deep Learning. 
Multimodal data analytics for system improvement is becoming an increasingly 
popular field of research that does not yet have a comprehensive review with an 
industrial engineering/operations research audience in mind. Secondarily, this book 
appeals to tech industries interested in the applications of multimodal data analytics 
to advance and improve their data-enabled decision-making processes. Application 
examples (from manufacturing, healthcare, renewable energy, agriculture, etc.) in 
this book will guide industries to integrate data integration techniques into their 
workflow. Having a reference that summarizes the latest advances and how they can 
be applied to various applications will provide a rich resource to these individuals.
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Fig. 1 Illustration of 
different levels of fusion. (a) 
Early Fusion. (b) Late Fusion. 
(c) Intermediate Fusion 
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In this comprehensive exploration, there are a variety of contributors that explore 
topic areas separated by parts. This book is structured as follows: 

• The current chapter introduces the general concepts of multimodal data and 
tensor analytics and provides a roadmap for this work. 

• Part 1 delves into Functional Data Analysis, detailing its principles and appli-
cations, including an exploration of statistical process monitoring (SPM) of 
functional process variables with an application to multistage profile monitoring 
of sequential samples obtained from consecutive stages in manufacturing sys-
tems. This part contains three chapters. 

• Part 2 discusses Tensor Data Analytics, a key technique for handling multimodal 
datasets in advanced manufacturing (i.e., Industrial Internet of Things, IIoT) 
and medical domains using high-dimensional data (e.g., magnetic resonance 
imaging, electroencephalography, etc.). This part contains two chapters. 

• Part 3 focuses on Spatiotemporal Data Analytics, demonstrating how they are 
used in various fields, including offshore wind energy, manufacturing, computer 
vision, and recommender systems. This part contains three chapters. 

• Part 4 introduces the topic of Multimodal Deep Learning, presenting its impor-
tance in the current era of newer, more computationally involved methodologies. 
A variety of application areas are explored, including precision medicine, 
autonomous driving, and materials science. This part contains two chapters.
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• Part 5 explains how domain knowledge is integrated with multimodal data to 
generate useful insights and predictive models. Topics covered include fault 
detection of multi-structured data in semiconductors, quality improvement in 
manufacturing, and a case study with steel rolling processes. This part contains 
two chapters. 

• Part 6 explores Federated and Distributed Learning for Multimodal Data, 
presenting the benefits of these methods and their potential. 

• Finally, Part 7 explores the use of multimodal distributions and Bayesian 
frameworks in various applications, including human factors. 

With a balanced blend of theory and real-world applications, this book aims to 
advance the understanding of multimodal data and the potential benefits this analysis 
can bring to diverse domains. The purpose of this book is to demonstrate the recent 
developments and challenges in multimodal data analytics within the domain of 
industrial and systems engineering. 
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Functional Methods for Multimodal Data



Functional Methods for Multimodal Data 
Analysis 

Minhee Kim 

1 What Is Functional Data and FDA? 

In this section, we will first discuss the concept of functional data. Examples of 
functional data will be introduced to cover different data modes. Widely known 
methods to analyze such functional forms of data will then be briefly reviewed. 

1.1 Functional Data 

Let us start with simple examples of functional data. Figure 1 represents simulated 
sensor signal measurements of five units. Although signals are measured at discrete 
time points and are noisy, the signal trajectory of each unit clearly illustrates 
underlying increasing trends and can be seen as a function of time. In other words, 
the dataset consists of five functional samples, .Signali(t), .i = 1, . . . , 5. Another 
example is illustrated in Fig. 2. Compared to the signal example in Fig. 1, the  
measurements are much more sparse, with each unit having 8–10 measurements, 
and each measurement is not equally spaced. By considering each trajectory as 
one smooth function, FDA can easily address such sparse and unevenly distributed 
observations. We will revisit this sparse dataset example in the following subsec-
tions. 

While univariate time series data as in Figs. 1 and 2 are the most common 
examples of functional data, more complicated forms of data such as multivariate 
or correlated (e.g., images) can also be considered as functional data. For instance, 

M. Kim () 
University of Florida, Gainesville, FL, USA 
e-mail: mkim3@ufl.edu 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
N. Gaw et al. (eds.), Multimodal and Tensor Data Analytics for Industrial Systems 
Improvement, Springer Optimization and Its Applications 211, 
https://doi.org/10.1007/978-3-031-53092-0_2

9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-53092-0protect T1	extunderscore 2&domain=pdf

 885
55738 a 885 55738 a
 
mailto:mkim3@ufl.edu
mailto:mkim3@ufl.edu
https://doi.org/10.1007/978-3-031-53092-0_2
https://doi.org/10.1007/978-3-031-53092-0_2
https://doi.org/10.1007/978-3-031-53092-0_2
https://doi.org/10.1007/978-3-031-53092-0_2
https://doi.org/10.1007/978-3-031-53092-0_2
https://doi.org/10.1007/978-3-031-53092-0_2
https://doi.org/10.1007/978-3-031-53092-0_2
https://doi.org/10.1007/978-3-031-53092-0_2
https://doi.org/10.1007/978-3-031-53092-0_2
https://doi.org/10.1007/978-3-031-53092-0_2
https://doi.org/10.1007/978-3-031-53092-0_2


10 M. Kim

Fig. 1 Simulated noisy 
sensor signal measurements 
from five units 

Fig. 2 Simulated sparse 
longitudinal measurements 
from 50 units 

in the above example, signals from multiple sensors of one unit can be modeled 
together as one multivariate functional data. Also, variable t of a random function 
.X(t) is not necessarily time and can represent different domains such as location. 

What motivates us to view data as a function instead of a multivariate random 
variable (vector)? The core assumption of functional data is smoothness. In other 
words, two neighboring data points are assumed to be similar to each other. For 
instance, the signal measurements of a unit at time t and .t − 1 are assumed 
to be similar. The underlying smoothness allows us to borrow information from 
neighboring data points and avoid the curse of dimensionality. Note that functional 
data are intrinsically infinite-dimensional. Without the underlying smoothness 
assumption, there would be little difference between treating the data as functional 
and just as multivariate. In the following subsections, we will delve deeper into 
popular FDA methodologies to analyze functional data and its applications in 
various fields. 

1.2 Examples of Functional Data Analyses 

In this subsection, we will explore two of the most commonly used FDA methods: 
functional principal component analysis (FPCA) and functional linear model 
(FLM). Similar to the conventional PCA for multivariate data, FPCA explores major
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variations of sample curves (trajectories) by finding principal component functions 
that are orthogonal and maximize the curve variation. FLM extends the notion 
of a linear regression model to the functional context. In particular, for FLMs, 
either dependent (response) or independent variables (covariates) or both can be 
functional. 

1.2.1 Functional Principal Component Analysis (FPCA) 

Suppose there is a random function .X(t) in a compact (time) interval . T with 
mean function .μ(t) and covariance function .Σ(t, t '). By minor abuse of notation, 
the covariance operator is defined as .Σ(g) = ∫

TΣ(s, t)g(s)ds for any function 
g satisfying .E(

∫
T g2(s)ds) < ∞. Under mild assumptions, Mercer’s theorem 

implies that the covariance operator . Σ has orthonormal eigenfunctions (principal 
component functions) .φk(t), k = 1, 2, . . . , with nonincreasing eigenvalues . λk , 
i.e., .λ1 ≥ λ2 ≥ . . . , satisfying .Σ(φk) = λkφk [9]. This results in the following 
Karhunen–Loève decomposition of the random function .X(t): 

.X(t) = μ(t) +
∞∑

k=1

Akφk(t) . (1) 

The kth functional principal component (FPC) score is . Ak = ∫
T (X(t) − μ(t))

.φk(t)dt , which are random variables uncorrelated across k, i.e., . Cov(Ak,Ak') = 0
if .k /= k', .E(Ak) = 0, and .V ar(Ak) = λk . Assuming that the top few FPCs explain 
most of the variability in the random curves, .X(t) can be approximated by a linear 
combination of the top K principal component functions with the corresponding 
FPC scores as coefficients: 

.X(t) ≈ μ(t) +
K∑

k=1

Akφk(t). (2) 

There are various ways for determining the proper value of K , including using 
the fraction of explained variance, AIC (Akaike information criterion), or BIC 
(Bayesian information criterion) [14]. Similar to the conventional PCA for mul-
tivariate data, estimating the top principal component functions is equivalent to 
estimating the covariance function .Σ(t, t ') with low-rank structure. 

As an example, Figs. 3 and 4 show the mean function and top two principal 
component functions, i.e., .φ1(t) and φ2(t), extracted from the sparse longitudinal 
measurement dataset introduced in Sect. 1.1. These two principal component func-
tions explain .89% of the total variance. This implies that we can represent an 
infinite-dimensional trajectory with only two values, i.e., .A1, and A2.
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Fig. 3 FPCA results of the 
simulated sparse dataset: 
mean function 

Fig. 4 FPCA results of the 
simulated sparse dataset: top 
two principal component 
functions 

1.2.2 Functional Linear Model (FLM) 

Another widely studied FDA method is functional linear models (FLMs) [12]. The 
FLMs have extended the traditional methodologies developed for linear regression 
and analysis of variance in the functional context. FLMs can be largely grouped 
into three categories: (i) scalar responses with functional covariates (scalar on 
function), (ii) functional responses with scalar covariates (function on scalar), and 
(iii) functional responses with functional covariates (function on function). Let us 
start with the conventional linear model with a scalar response Y and (multiple) 
scalar covariates .X = [X1, . . . , XM ] as follows: 

.Y = β0 +
M∑

m=1

βmXm + ε, (3) 

where the noise term is denoted as . ε, and . βm is a regression coefficient. The FLMs 
with scalar responses and functional covariates replace the covariates . X into a 
function: 

.Y = β0 +
∫

T
β(t)X(t) + ε. (4)
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This results in the coefficients .β(t) becoming functional as well. Recall that in 
conventional linear regression models, the number of data points must be larger 
than the number of covariates, M . The problem in (4) is that now the covariate . X(t)

is infinite-dimensional, and thus we cannot estimate .β(t) by simply minimizing 
the errors. To overcome this, we can represent .β(t) as a linear combination of 
basis functions and impose regularization in the basis space, such as smoothness, 
truncation, or sparsity [13]. 

The FLMs with functional responses and (multiple) scalar covariates are as 
follows: 

.Y (t) = β0(t) +
M∑

m=1

βm(t)Xm + ε(t). (5) 

Various estimation methods have been proposed to obtain the estimates of the 
functional coefficients .βm(t) [12]. One simple method is a two-step estimation, 
where we first obtain an initial estimate .β̃m(t) by locally fitting the model in (5) 
using ordinary least squares and then smooth these initial estimates across t to obtain 
the final estimate .β̂m(·) [3]. There are also other one-step approaches [5, 6]. 

Lastly, the FLMs with functional responses and functional covariates are as 
follows: 

.Y (t) = β0(t) + β(t)X(t) + ε(t). (6) 

The above model is also referred to as functional concurrent models since both . Y (t)

and .X(t) should be in the same domain . T and .Y (t) depends only on concurrently 
observed .X(t). A more general extension of (6) is a model with unconstrained 
surface coefficient .β(s, t): 

.Y (t) = β0(t) +
∫

β(s, t)X(s)ds + ε(t). (7) 

For the model in (7), we usually impose regularization on the coefficient surface 
.β(s, t) in each dimension separately to obtain more interpretable and efficient 
results. Several methods have been proposed on the function-on-function FLMs 
with different choices of basis functions or regularization approaches [1, 7, 13]. 

In the following section, we will introduce several multimodal data analysis 
applications using such FDA methodologies in detail. 

2 Why Is FDA Useful for Multimodal Data Analysis? 

This section highlights and summarizes why FDA is particularly useful in multi-
modal data fusion. First of all, FDA can provide a consistent summary of different
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Fig. 5 Simulated sparse 
measurements collected from 
three randomly selected units 
(solid) and their fitted 
functions using FPCA 
(dashed) Units 

1 (measured) 
2 (measured) 
3 (measured) 
1 (fitted) 
2 (fitted) 
3 (fitted) 

data modes for multimodal data fusion. In particular, FDA enables us to efficiently 
handle multiple time series with different acquisition intervals, lengths, or sparsity. 
For instance, consider sparse longitudinal measurements from three randomly 
selected units illustrated in Fig. 5 (see Sect. 1.1 for more information on the dataset). 
Our goal can be to study the variations between units or to combine the information 
from all units. Yet, this can be challenging as all units have different measurement 
time points and numbers of measurements. By using FDA, each time series can 
be viewed as one function, and by applying FPCA discussed in Sect. 1.2, we can 
estimate the underlying evolution of each unit as dashed lines in Fig. 5. In this way, 
each unit is now summarized into a set of FPC scores . Ak , which will make it much 
easier to conduct further data fusion. 

It is also possible to apply FDA in a broader context of multimodal data fusion. 
For instance, we may fuse time series data and image data or analyze measurements 
collected from three experiments that used different instruments. The consistent 
summary of multimodal data can lead to dimensionality reduction, visualization, 
integration, and other benefits. The next subsection will go into further detail on 
how to leverage the FDA results (a summary of different data modes) to facilitate 
such multimodal data analysis. 

In addition to providing a summary of multiple data modes, different method-
ologies in the FDA can also directly model both static (scalar) data modes and 
dynamic or spatial (functional) data modes. The FLMs introduced in Sect. 1.2 are 
one representative example. Compared to the conventional linear models whose 
responses and predictors are (multiple) scalar values, the FLMs allow us to incorpo-
rate functional data as either responses or predictors or both into the model. Here are 
some specific application examples of FLMs in various fields: Scalar-on-function 
models in (4) can be used in environmental engineering to model the precipitation 
(scalar response) based on the temperature over time (functional covariate). Also, in 
quality control, the quality of a final product (scalar response) can be modeled based 
on the production sensor signal over time (functional covariate). Using the function-
on-scalar model in (5), we can establish a model with the voltage over time as a 
functional response and the current as a scalar covariate. In the field of economics, a 
function-on-scalar linear model can be used to predict the GDP over time based 
on the inflation rate. The function-on-function model in (6) can be applied to
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spatial multimodal data and model the temperature of different locations and the 
corresponding air pressure. As functional data become more widely available in 
various fields, FDA is becoming a more powerful tool to conduct multimodal data 
analysis. 

3 How Can FDA Be Used in Multimodal Data Analysis? 

In the earlier sections, we briefly explored how FDA can be employed to analyze 
multimodal data. This section will review recent work on FDA to help a deeper 
understanding of how the FDA can be used for multimodal data, using a covariate-
dependent sparse FDA as an example. 

3.1 Problem Setting 

Suppose we have multimodal data consisting of multiple units. For each unit, we 
have sparse and noisy measurements of its process (functional data) and (multiple) 
static covariates. One example is a manufacturing unit which consists of several 
sparse measurements of its maintenance status (dynamic functional data) and its 
design specifications (static covariates). Our goal is to characterize the effects of 
these covariates on functional data and to predict a functional trajectory of a new 
unit of interest based on its covariates. 

While existing FDA methodologies such as FLMs in Sect. 1.2 can be used, 
several significant challenges need to be overcome. First, the informative covari-
ates may have complicated effects on functional data which cannot be modeled 
linearly or additively. Second, many existing models may not provide accurate and 
reliable results given only sparse and irregularly spaced measurements. To address 
these issues, we establish the following covariate-dependent sparse FDA model 
[8]. Figure 6 illustrates the overall framework of the covariate-dependent sparse 
functional data analysis. We will first model the variation within each unit through 
the FPCA and then model the variation between different units. Through these two 
types of variations, we will be able to make predictions of the unit of interest and 
identify important covariates as well. 

3.2 Variations Within Each Unit: FPCA 

Suppose there are I units, and the ith unit has . ni noisy and sparse measurements. 
Let . Yij be the j th measurement of the ith unit at a random point . tij . Using the FPCA 
in (2), we can decompose the functional measurements as follows:
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Variations within 
each subject 

Inert covariateVariations between 
subjects 

Commonalities Uniqueness 

FPCA 
GP 

Fully Bayesian Estimation 

Covariate Importance 

Covariate 1 

Covariate 2 

Covariate 3 

Covariate − 1  

Covariate 

Covariance b/w two measurements 
within a subject 
Covariance b/w two subjects 

Informative covariate 

Non-informative covariate 

Fig. 6 Illustration of the covariate-dependent sparse FDA framework [8] 

.Yij ≈ μ(tij ) +
K∑

k=1

Aikφk(tij ) + εij = μ(tij ) + AT
(i)φ(tij ) + εij , (8) 

where .E(εij ) = 0, .V ar(εij ) = σ 2
ε , .φ(t) = [φ1(t), . . . , φK(t)]T is a set of vectors 

derived from the eigenfunctions, and .A(i) = [Ai1, . . . , AiK ]T is a vector of the 
FPC scores, unique to the ith unit. 

Similar to Yao et al. [15], we can pool all measurements from all units to 
overcome the sparsity issue and apply smoothing methods such as local linear 
smoothing [2] to estimate the mean function .μ̂(t) and covariance surfaces .Σ̂(t, t '). 
Once the mean and covariance of the functional data have been estimated, the 
estimation of the eigencomponents (. λk and .φk(t)) can be done straightforwardly 
by solving the eigen-equations, i.e., 

.

∫

T
Σ̂(t, t ')φ̂k(t)dt = λ̂kφ̂k(t), (9) 

where . ̂φk is unit to .
∫
T φ̂k(t)

2dt = 1 and .
∫
T φ̂k(t) × φ̂k'(t)dt = 0 for .k < k'. 

After obtaining the estimation . λk and .φk(t), each unit’s trajectory (function) can 
be summarized into a set of FPC scores . Ak , similar to Fig. 5. In general, the FPC 
scores of each unit are estimated by numerical integration based on its definition, 
.Âk = ∫

T (X(t) − μ̂(t))φ̂k(t)dt . Yet, this approach does not work well with sparse 
measurements and does not take into account the covariate information. Next, we 
will introduce a novel approach to overcome these limitations. 

3.3 Variations Between Units: Kernel Method 

In general, it is assumed that the FPC scores .Aik and .Ark for the ith and rth units 
are independent for .i /= r . Nevertheless, as discussed in the previous subsections, 
there may be an underlying relationship between the FPC scores .{Aik}Ii=1 and the
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corresponding units’ covariates . Xi and . Xr . In such models, it is reasonable to 
assume that .Cov(Aik, Ark) depends on the covariate difference between the ith and 
rth units, .‖Xi − Xr‖, where . ‖·‖ is a distance measure such as the Euclidean norm. 
Such a priori knowledge is not taken into account in the conventional FPC score 
estimation described in Sect. 3.2. 

Different models can be applied to encode such covariate information into the 
estimation of FPC scores. In the following, we will use the Gaussian processes (GPs) 
due to its great flexibility to establish the nonparametric relation, the interpolation 
capability at any covariate . X, and the ability to quantify uncertainties. In particular, 
we impose K independent zero-mean GPs on .Ak, k = 1, . . . , K: 

.Ak(Z)∼GP(0,Kk(X,X')), (10) 

where .Kk(X,X') is the kernel function of the GP on . Ak . For  the  ith unit with 
covariates . Xi , the prior distribution of .Aik follows a Gaussian distribution with 
variance .Kk(Xi ,Xi ). For any two units .i, r∈ {1, · · ·,I }, the covariance between 
.Aik and .Ark is now quantified by their covariate similarities, i.e., . Cov(Aik, Ark) =
Kk(Xi ,Xr ).

As suggested in Kim et al. [8], the kernel .Kk(X,X') is specified as the squared 
exponential covariance function with a separate scale parameter .ρkm for each 
covariate . Zim: 

.Kk(Xi ,Xr ) = λkexp

(

− 1

2

M∑

m=1

1

ρkm

(Xim − Xrm)2
)

. (11) 

This kernel design is also well known as the automatic relevance determination 
(ARD) kernel [10], where the characteristic length scale for the mth covariate is 
given by .ρ

1/2
km . Ideally, if the mth covariate is irrelevant, the estimation of .ρkm should 

be large enough in order for the model to ignore this covariate, i.e., the difference 
between .Zim and .Zrm has negligible effects on the covariance between . Aik and . Ark . 
On the other hand, if .ρkm is small, . Ak will vary rapidly along the corresponding 
covariate, implying the high “relevance” of the mth covariate. For more detailed 
information about the informative covariate identification in this framework, see 
Kim et al. [8]. Another key part of the kernel design in (11) is that the kth largest 
eigenvalue . λk derived from FPCA acts as a scale factor. In this way, for the ith 
unit with covariates . Xi , the variance of the prior distribution of the kth FPC score 
is reduced to . λk , i.e., .V ar(Aik) = Kk(Zi ,Xi ) = λk , and thus the proposed 
design bridges the gap between FPCA and GP modeling. This further resolves the 
unidentifiability issue in the ARD kernel [16]. 

To summarize, we first pool the covariance within a unit at the level of . Yij to 
characterize the commonalities shared by all units, i.e., estimating the parameters 
of FPCA: .μ(t), φk(t), λk , and . σ 2

ε . We then consider the covariance between units at 
the level of . Xi to characterize the uniqueness of each unit through the FPC scores 
.A(i) and model the covariate importance through . ρk . Note that while these two
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procedures are conducted separately, they are under an integrated structure where 
we use the variation of measurements . Yij to derive the variation from covariates 
. Z (between units) and the variation left conditioned on covariates . X (within a 
unit). This is possible because each unit’s trajectory is summarized through a set 
of FPC scores, and the covariate information only contributes to the between-units 
covariance of these scores. Also, note that the proposed model handles functional 
responses and (multiple) scalar covariates similar to the FLMs in (5). Yet, the main 
difference lies in that instead of assuming linear and additive effects of covariates, 
we model the nonlinear and multiplicative effects of covariates. 

3.4 Estimation and Prediction 

In this subsection, we will discuss how to estimate the set of length scale parameters 
. ρ and make predictions of the functional trajectories of the units of interest, i.e., 
estimate new units’ FPC scores based on their covariates and measurements. The 
most widely used approach to estimate the parameters of the mean and covariance 
functions in GPs is through Type II maximum likelihood (maximizing the marginal 
likelihood). Although this method has several advantages including traceability for 
Gaussian noise models and analytical solutions for predictions, the resulting point 
estimation tends to be unstable and overfit, especially in the cases of a small number 
of units, highly sparse measurements per unit, or high-dimensional covariates [11]. 
These issues worsen in our problem since there are no direct realizations of the FPC 
scores . A(i). Instead, only indirect observations of the linear combination of FPC 
scores of each unit are available through the sparse and noisy measurements. 

To address these issues and obtain more robust results, we may establish a fully 
Bayesian hierarchical scheme. 

Prior over hyperparameters .ρkm∼p(ρkm), k = 1, . . . , K and . m = 1, . . . , M

Prior over parameters . Ak |Z, ρk∼N(0,Kk), k= 1, . . . ,K

Likelihood . Y |A ∼ N(μ + ФA, σ 2
ε I)

Under the Bayesian hierarchical scheme, numerical methods like Hamiltonian 
Monte Carlo (HMC) or No-U-Turn-Sampler (NUTS) can be applied to estimate the 
posterior distribution of the unknown parameters . ρ [4]. Based on these estimation 
results, it is straightforward to make the predictions for a new unit with covariate 
information . Z⋆. In particular, we integrate over the joint posterior: 

. p(A⋆|Y ,Z,Z⋆) =
∫ ∫

p(A⋆|Y ,Z,Z⋆,A, ρ)p(A|ρ,Y ,Z)p(ρ|Y ,Z)dAdρ.

Using the fact that the joint prior distribution of . A⋆ and . A is Gaussian distribution 
and .p(A⋆|Y ,Z,Z⋆,A, ρ) and .p(A|ρ,Y ,Z) are Gaussian distributions as well, the
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above can be further simplified by integrating out . A: 

.p(A⋆|Y ,Z,Z⋆) =
∫

p(A⋆|Y ,Z,Z⋆, ρ)p(ρ|Y ,Z)dρ, (12) 

where .A⋆|Y ,Z,Z⋆, ρ ∼ N(μ⋆,Σ⋆) with parameters, 

.

μ⋆ = K⋆K−1
(

1

σ 2
ε

ФT Ф + K−1
)−1 1

σ 2
ε

ФT (Y − μ), and

Σ⋆ = K⋆K−1
(

1

σ 2
ε

ФT Ф + K−1
)−1

K−1K⋆T + K⋆⋆ − K⋆K−1K⋆T
.

(13) 

.K⋆⋆ = K(Z⋆,Z⋆) denotes the covariance matrix of . Z⋆ and .K⋆ denotes that 
between . Z⋆ and . Z, where .K(Z,Z') is a diagonal matrix with diagonal entries 
.Kk(Z,Z'), k = 1, . . . , K . The proof of (13) can be found in Kim et al. [8]. As 
a result, the predictive distribution in (12) can be approximated with Monte Carlo 
integration: 

.

p(A⋆|Y ,Z,Z⋆) =
∫

p(A⋆|Y ,Z,Z⋆, ρ)p(ρ|Y ,Z)dρ

≈ 1

H

H∑

h=1

p(A⋆|Y ,Z,Z⋆, ρ(h)), ρ(h) ∼ p(ρ|Y ,Z),

(14) 

where .ρ(h) is a random draw from the hyperparameter posterior obtained through 
the numerical method. We can then obtain the approximate posterior distribution of 
the response . Y ⋆ using .Y ⋆ = μ̂(t⋆) + ∑K

k=1 A⋆
kφ̂k(t

⋆). 
Note that this is just one of many examples that illustrate in detail how functional 

methods can be utilized for multimodal data analysis. For more detailed information 
about the practical implementation and case study results of this particular method-
ology, please refer to [8]. 

4 Concluding Remarks 

In this chapter, we discussed the importance and usefulness of the FDA focusing 
on multimodal data analysis. The FDA offers effective statistical approaches to 
handle various functional data, such as time series data, spatial data, and imaging 
data. Particularly, for multimodal data analysis, the FDA provides several unique 
advantages, such as providing a cohesive summary of different data modes, 
facilitating further multimodal data fusion, and directly incorporating both static 
and dynamic data modes into a unified model. As functional data has become more 
and more widely available in different domains, the FDA is emerging as one of
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the most potent tools for multimodal data analysis. However, there remain many 
exciting open questions in the FDA that need to be addressed to further advance 
its capabilities in multimodal data analysis, such as scalability and computational 
efficiency. 
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Advanced Data Analytical Techniques for 
Profile Monitoring 

Peiyao Liu and Chen Zhang 

1 Introduction 

As sensing technology advances, in situ sensing is being increasingly deployed in 
current manufacturing systems, where high-resolution in-process data are contin-
uously recorded with high frequency. These data, known as profile or functional 
data, are very common in the current advanced manufacturing systems. Examples 
include tonnage signals [17] from a forging process, turning signals from a pipe-
casing tightening process [13], surface profiles from a lathe-turning process [4], etc. 
Compared to traditional quality characteristics, profile data provide more detailed 
features of the system, which facilitate better in-process monitoring. For example, 
Fig. 1 illustrates the three-channel profiles over one in-control (IC) and one out-of-
control (OC) sample from a pipe-casing tightening process. Developing effective 
methods to accurately model IC profiles and efficiently detect changes in OC 
profiles is essential for improved statistical process control (SPC) and quality 
management. 

We highlight three main challenges in developing advanced data analytical 
methods for profile modeling and monitoring. First, as the sensing technology 
advances nowadays, a group of sensors are often installed in a manufacturing system 
to collect profile data of different process variables simultaneously, from which the 
collected data are called multi-channel profiles. These multi-channel profile data 
may have complex correlation structures. When the number of profiles is ultra-
high, the number of parameters to model the between-profile correlations will be 
very high and leads to the curse of dimensionality problem. Furthermore, when a 
fault occurs, it may only affect small segments of very few profiles and increase 
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