

The Economic Analysis of Random Events

Economic Perspectives on Probability Theory, Statistical Inference and the Nature of Chance

Volkan Hacıoğlu

palgrave macmillan

The Economic Analysis of Random Events

Volkan Hacıoğlu

The Economic Analysis of Random Events

Economic Perspectives on Probability Theory, Statistical Inference and the Nature of Chance

> palgrave macmillan

Volkan Hacıoğlu Faculty of Economics Department of Economics Istanbul University Istanbul, Türkiye

ISBN 978-3-031-53077-7 ISBN 978-3-031-53078-4 (eBook) https://doi.org/10.1007/978-3-031-53078-4

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Palgrave Macmillan imprint is published by the registered company Springer Nature Switzerland AG

The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

PREFACE

The outline of this book has been designed during my lectures over the years. It was first appeared in the form of an idea upon which I thought out about the difference between random events and random 'economic' events. The shape and dimension of that idea gradually improved and broadened. This framework calls forth the importance of human action as a matter of experimental design in probability theory. The origins of probability and the nature of chance can be traced back to the correspondence between Pascal and Fermat on a question about game of chance posed by Chevalier de Méré in the second half of the seventeenth century. Since Pascal's first letter to Fermat in this correspondence is lost and never known by the literati, the most important part of the story itself remains untold under the shadows of time. What is left behind allows us only to make some of our best guestimates. Majority of scholars who engaged in that unfinished game or interrupted event focused their attention on the calculation problem as if the human element was absent. But the real problem brought about an interruption due to pure human condition. It is interrupted in the first place because of the intervention by external situations of world affairs occurring outside of the experimental setting.

Thereby the introduction of Husserlian life-world in which human action does matter takes place not as opposed to but in the face of abstract world of science occupied by stylized facts. Obviously, stylized facts cannot reflect reality in the same manner human action can. Besides, human action can cause facts whether stylized or not. Since chance is a phenomenon, redux to Husserlian phenomenology fits for the purpose of tackling the big bad bug called mischance. By the same token, the engine of thinking thought in human mind amenable to learning serves as a useful model for the Compensated Bayesian Function formulated at the beginning of the second chapter. Another important apparatus is the construction of the Matrix of Epistemological Basic Knowledge Categories. Together with its counterpart matrix for degrees of *Docta Ignorantia*, it clarifies the definitional glossary and sets the taxonomy of concepts such as certainty, probability, possibility and impossibility in relation to known knowns, known unknowns, unknown knowns and unknown unknowns respectively. The Matrix of Epistemological Basic Knowledge Categories is revised by degrees of observability whereas the Matrix for Degrees of *Docta Ignorantia* is revised by states of learnability in Chapter 7.

Hereby, I would like to give some brief account concerning the composition of the book and particular points about writing style that is indeed dense in some sense at certain sections of the text. The structure of the language stems from the very nature of the material which is a vast collection of output by scholar minds in history. The resources I refer to are much more difficult to apprehend by an ordinary reader. I've already made it as clear as possible with various examples, footnotes, appendices, etc. For instance, Appendix 6.3 concerns with critical considerations about the belief in the law of small numbers versus scaling law with a clear-cut theoretical discussion as a comment on the first mutual paper of Tversky and Kahneman published in 1971. Furthermore, the experimental dialogue between human agent and ChatGPT robot in Chapter 4 rests upon a single question: "Could artificial intelligence meditate?" The immediate answer given by bot is linguistically and semantically analyzed in detail. The upshot is that the discourse of artificial intelligence is not stylistic but rather synthetic.

The role of women scientists in the development of statistical thinking and probability theory is also highlighted where appropriate such as in the prominent scientific figure of Hilda Geiringer. It is also important to note that an elementary knowledge of statistics is necessary for the target audience of the book especially for students. An attempt to make the language simpler than a certain limit may mar technical integrity and hamper quality of the text. Consider Professor Paul A. Samuelson's seminal book *Foundations of Economic Analysis* (1947) as an example. Albeit its intricate structure and heavy mathematical tongue, it was and is on the top of the reading list of students since their sophomore classes. Because the best attitude for students is not to avoid but to get acquainted with those scientific texts as early as possible that will bestow a sort of intellectual privilege upon them in their future researches. After all, this book can be read as an integration of human action into the anatomy of probability, statistics and truth.

May 2024

Volkan Hacıoğlu Istanbul University Faculty of Economics Istanbul, Türkiye

Acknowledgments

I wish to thank Professor Martina Morris from the University of Washington for her permission to reproduce the computer-based Monte Carlo simulation model of repetitive random event for coin tossing experiment trials depicted in Figure 5.2. The permanent link of the source material is provided in the reference section where R codes of command can also be found. The Table 6.7 in Appendix 6.2 titled "Chi-Square Probability Distribution of Right-Tail Critical Values with Different Degrees of Freedom and Various Levels of Significance" is reconstructed from the spreadsheet by the courtesy of James Jones the Professor of Mathematics at the Richland Community College located in Decatur, Illinois. My editor Ellie Duncan at Palgrave Macmillan has been very supportive, understanding, attentive, helpful and cooperative during the preparation of the manuscript.

Contents

1	General Overview and Structural Organization 1.1 Introduction	1 1
	References	3
2	The Nature of Randomness and the Element of Chance	
	2.1 Introduction	5
	2.2 Definitions of Randomness in Relation to the Element	
	of Chance	8
	2.3 From Personal Beliefs to Chance Situations: Facts	
	and Artifacts of Scientific Reality	10
	2.3.1 The Principal Principle and Chance Situations	10
	2.3.2 The Basic Chance Principle and Humean	
	Supervenience	12
	2.4 Conclusion	17
	References	20
3	Rethinking the Concept of (In)Opportunity Cost	
	and Parable of Broken Window: A Reflection	
	on the Ideas of Frédéric Bastiat	23
	3.1 Introduction	23
	3.2 Parable of Broken Window as Random Economic Event	24
	3.2.1 The Difference Between Random Event	
	and Random 'Economic' Event	25

		3.2.2 Broken Window Incident (De Re) as Opposed	
		to Incidence (De Dicto): Ex-Ante and Ex-Post	
		Analysis	25
		3.2.3 The Concept of (In)Opportunity Cost	
		and the Element of Time	26
	3.3	Lessons of Destruction: Learned and Unlearned	29
		3.3.1 The Three-Partite Structural Function	
		of Chance Situations in Alternative	
		Life-Worlds with Different Technological	
		Endowments	30
		3.3.2 The Adaptation of Learning Curve	
		to the Theory of Creative Destruction	32
	3.4		
		of Innovation	33
	3.5	Closing Remarks	37
	Refe	rences	39
4	The	Effect of Human Action on Random Economic	
-		nts: Praxeological Learning and Its Relation	
		artificial Intelligence	41
		Introduction	41
	4.2		11
	1.2	A Comparison of Random (Economic) Events	
		in Collective Classes and Individual Cases	44
	4.3	Learning and Praxeology: Praxeological Action	11
	4.5	Learning and Frazeology. Frazeological Action Learning	49
	4.4	0	49
	4.4	From Action Learning by Humans to Active Learning by Machines: The Relation of Praxeology to Artificial	
		Intelligence	60
	4.5		00
	4.3	A Brief Overlook of the History of ChatGPT	
		and Principles of Artificial General Intelligence	67
	ъc	(AGI) in Conclusion	67
	Refe	rences	68
5		Question of Conjecture in Economics	
		Probability: On the Applicability of Probability	
	The	ory to the Randomness of Economic Events	71
	5.1	Introduction	71

5.2	The Anatomic Panorama of Probability, Statistics	
	and Truth in Relation to the Concept of Randomness	
	and the Question of Conjecture From Historical	
	Perspective	73
5.3	The Question of Conjecture in Relation to the Concepts	
	of Certainty, Probability, Possibility and Impossibility	77
5.4	Keynes' Logical Interpretation of Probability and His	
0.1	Intent to 'Rehabilitate' the Principle of Indifference	
	Caused by Insufficient Reason	81
5.5	The Concept of 'Kollektive' and Limiting Value	01
0.0	of Relative Frequencies Explained Within Carnapian	
	Interpretation of Logical Probability	84
5.6	The Practical Application of Probability Theory	01
5.0	to Random Economic Events Requires Construction	
	of Local Collectives as Opposed to Unknown Statistical	
		90
	Populations	90
5.7	The Critique Concerning the Use of Probability	
	in Economics and the Concept of Scientism in Relation	
	to the Law of Frequency of Errors Together with Some	0.(
р.с	Considerations for Closure	96
Refe	rences	102
The	Anatomy of Accident as a Deviation from Random	
Wal	k	109
6.1	Introduction	109
6.2	From the Classical Origins of the Problem of Random	
	Walk Phenomenon to the Modern Model of Donsker's	
	Invariance Principle	111
6.3	The Practical Mapping of Random Walk: Kalman	
	Filter Approach and Randomness Versus Stochasticity	114
6.4	The Practical Mapping of Random Walk: Bortkiewicz's	
0.12	the So-Called 'Law of Small Numbers' and the Data	
	of Prussian Cavaliers Died by Warhorse Kick	
	in Between 1875 and 1894 That Follows Poisson	
	Distribution	118
6.5	Final Remarks from the Retrospective to the Prospective	110
0.5	Theory of Economic Thought in Relation to the Law	
	of Small Numbers as Opposed to the Law of Large	
	Numbers	129
	IN WINDERS	129

6

	· · ·	endix 6.1: A Historical Example for the Practical bing of Random Walk: John Venn's First Graphical	
	-	stration	131
	App	pendix 6.2	133
	in t	pendix 6.3: Critical Considerations About the "Belief the Law of Small Numbers" Versus Scaling	
		—A Theoretical Note: Comment on Tversky	
		Kahneman (1971)	135
	Refé	erences	139
7		servability and Learnability as Opposed to 'Seen	
	and	Unseen'	143
		Introduction	143
	7.2	The Degrees of Observability in Relation to the States	
		of Learnability	145
	7.3	Two Examples for the observations of Concrete	
		Situations as Opposed to Abstract Cases From	
		the Science of Astronomy	148
	7.4		
		in Conclusion	152
	7.5		
		Treated in Economics Versus Other Fields of Science:	
		From the Historical Background of the Past	
		to the Present Investigations	156
		7.5.1 The Treatment of Randomness	
		from the Viewpoint of Econophysics:	
		Historical Background	157
		7.5.2 The problem of 'Marginal Utility' Measurement	
		in a Statistical Method and the Approach	
		of "Psychophysics" by Weber–Fechner Law	
		Redesigned for Intertemporal Utility Analysis	161
		7.5.3 The Treatment of Randomness	
		from the Viewpoint of Econophysics:	
		Contemporary Considerations in Relation	
		to Scaling Laws versus Newton's Laws	163 165
	Refe	References	
Na	Name Index		169
Su	Subject Index		173

LIST OF FIGURES

Fig. 2.1	Epistemological demarcation between reality, knowledge	
11g. 2.1	and belief	19
Fig. 3.1	Technological differences between fracture patterns of panes	31
Fig. 3.2	Learning curve of windowpane production technologies	33
Fig. 3.3	Dynamics of Schumpeterian innovation waves (Source	
0	Worldwatch Institute, 2008)	37
Fig. 4.1	Knowledge and life-worlds between subjectivity	
0	and objectivity	48
Fig. 4.2	Depiction of Revans' dynamic parameter systems alpha	
U	(α), beta (β) and gamma (γ) of learning function	51
Fig. 4.3	The matrix of epistemological basic knowledge categories	
C	(Source Author's Own Conception)	56
Fig. 4.4	Learning curve as praxeological process (Source Author's	
	Own Depiction)	58
Fig. 4.5	The experimental dialogue between human agent	
	and ChatGPT	65
Fig. 5.1	The matrix for degrees of docta ignorantia	78
Fig. 5.2	Computer-based simulation of repetitive random event	
	for coin tossing trials (Source Morris [2019])	94
Fig. 6.1	The illustration of Moser's circle problem with six circles	
	(Source Author's own depiction)	120
Fig. 6.2	Chi-square distribution graph for the exact value	
	of probability areas with four degrees of freedom (Source	
	Author's own calculation with R codes of command)	128

Fig. 6.3	Pure mathematical mapping of random walk (Source Venn	
	[1888, p. 118])	132
Fig. 6.4	Scaling law function in the reciprocal form of learning	
	curve (Source Author's own depiction)	138
Fig. 7.1	The matrix of epistemological basic knowledge categories	
	revised by degrees of observability (Source Author's own	
	conception)	146
Fig. 7.2	The matrix for degrees of Docta Ignorantia revised	
	by states of learnability	147
Fig. 7.3	Scaling law function in the reciprocal form of learning	
	curve as a praxeological process (Source Author's own	
	depiction)	165

LIST OF TABLES

Table 5.1	Probability propositions stated in the form of hypotheses	85
Table 5.2	Probability state descriptions of hypotheses	85
Table 5.3	Construction of collectives and probability measures	89
Table 6.1	Experimental design for deterministic event of Coin Tossing Trials	116
Table 6.2	Experimental design for stochastic event of coin tossing trials	117
Table 6.3	Experimental design for random event of coin tossing trials	118
Table 6.4	The raw data transpose matrix of Prussian cavaliers died by Warhorse Kick in 1875–1894	123
Table 6.5	Probabilities and occurrences of deaths by Warhorse Kick in 1875–1894	124
Table 6.6	The difference between expected and observed number of occurrences	126
Table 6.7	Chi-square probability distribution of right-tail critical values with different degrees of freedom and various	
	levels of significance	134
Table 7.1	The raw data matrix of the original observations of Ceres	150
Table 7.2	The distribution of asteroids observed and discovered at the Baldone Astrophysical Observatory in 2008–2013. Adapted to the epistemological basic knowledge	
	categories with their relevant observability	150
	and learnability properties	152

General Overview and Structural Organization

1.1 INTRODUCTION

The general overview and structural organization of the book follow logical succession rather than historical chronology. The economic analysis of random events naturally covers wide range of topics. The most important distinction at the outset of the argument is in between the concepts of random events and random 'economic' events or—on the counterpart—random variables and random 'economic' variables. The distinction signifies the introduction of human action into the theory of probability. The role of human agent is a key factor for the general construction of probabilistic experiments of repetitive events. The foundations of the modern probability theory date back to the correspondence between Fermat and Pascal upon the problem proposed by Chevalier de Méré. It is also known as the problem of unfinished game—the same name is given to his book by Devlin (2010)—or the problem of points which centers about the division of stakes.

A game of chance with two players is interrupted by human condition. This calls forth another distinction between hypothetical world of pure mathematical science and the world of human life. As people pay attention on the solution of the problem, they ignore or overlook the root cause of it comes from the human factor. The interruption occurs due to unfavorable external circumstances, in some occasions, it is because of a bad news—for instance, loss of a beloved one—that one player received

and drew back from the game. So the introduction of the correspondence between Pascal and Fermat as a foundation of probability theory is not given in Chapter 2 or 3 but rather it is retarded to Chapter 4 in which the effect of human action on random economic events is concerned to explain praxeological learning in relation to Artificial Intelligence (AI). This example explains the structural and systematic organization of the chapters which follows logical succession instead of historical chronology.

Another example for the structural organization of the book is the introduction of the concept of Husserlian life-world as an alternative to world of science in the sense of pure mathematical and hypothetical construction. The concept first appears under the subtitle of basic chance principle and Humean supervenience in Chapter 3 where chance situations differ in terms of different circumstances of life in general: "As the degree of personal beliefs attached to separate chance situations in likelihood function, the degree of possibilities can be connected to different 'worlds' in probability function. The spectrum of possible futures is grounded in 'life-world' ['Lebenswelt'] coined by Husserl (1970) as a phenomenological conception with a perspective from social geography. The 'life-world' is a sort of repository in which the output and data of experiments are processed and stored in the form of accumulated knowledge. The solid life-world is the universe of observation that provides grounding soil [der gründende Boden] for the scientifically or objectively true world (Husserl, 1970)."

Another division rather than distinction is made between the concepts of randomness and probability. Kalman (1994, p. 141) declares a manifesto as he feels himself responsible for applications of probability to the real-world phenomena. The manifesto questions the ontology of probability distributions as opposed to circumstances of certainty with a quotation from De Finetti (1974, 1975) "the late pope" of probability: "PROBABILITIES DO NOT EXIST!" The context of this phrase is used in the preface of the book where Bayesian approach dominates the idea

¹ "Eine Lebenswelt konstituiert sich über einen bestimmten Sinnhorizont als Sonderwelt. Sie konstitutiert sich im Sinne der Phänomenologie über einen thematischen Interessenshorizont, innerhalb dessen Subjekte tätig sind. Deshalb kann man von der 'Lebenswelt' als Horizont sprechen." LEXIKON DER GEOGRAPHIE – "Lebenswelt," https://www.spe ktrum.de. ["A life-world is constituted as a special world through a certain horizon of meaning. In the sense of phenomenology, it is constituted by a thematic horizon of interests within which subjects operate. That is why one can speak of the 'life-world' as a horizon."].

that probability is the measure of subjective personal belief of human agents and therefore *probability does not* exist as a separate property of objective world especially in the form of mathematical constructions in hypothetical distributions. Hence De Finetti (1974, 1975) concludes that probability is inevitable as long as human factor is concerned. Accordingly, in Chapter 2, subjective and objective probability theories are viewed from the perspective of modern approaches. The debate between the Frequentist and Bayesian approaches is also discussed. Chapter 3 is an apprehension of human action from classical parable of broken window. Epistemological demarcation between reality, knowledge and belief is depicted in the conclusion section of Chapter 4.

De Finetti (1989) also uses the term "probabilism" to show that truth is in the thinking thought of human mind: "Truth no longer lies in an imaginary equation of the spirit with what is outside it, and which, being outside it, could not possibly touch it and be apprehended; truth is in the very act of the thinking thought. The absolute is not outside our knowledge, to be sought in a realm of darkness and mystery; it is in our knowledge itself. Thought is not a mirror in which a reality external to us is faithfully reflected; it is simply a biological function, a means of orientation in life, of preserving and enriching it, of enabling and facilitating action, of taking account of reality and dominating it" (Tilgher, 1923, pp. 23–24, 46, 49). Hence Chapter 5 integrates human action with truth, probability and statistics. Chapter 6 considers random walk again in relation to human action together with its economic consequences. Chapter 7 concludes with examinations of observability and learnability with some references to recent literature from computer science. At the end of the last chapter, the final section for a brief comparison of how random events are treated in economics versus other fields of science follows the traces of scientific thought from the historical background of the past to the present investigations.

References

- De Finetti, B. (1974). Theory of probability: A critical introductory treatment (Vol. 1). John Wiley & Sons.
- De Finetti, B. (1975). Theory of probability: A critical introductory treatment (Vol. 2). John Wiley & Sons.
- De Finetti, B. (1989). Probabilism: A critical essay on the theory of probability and on the value of science. *Erkenntnis*, 31(2/3), 169–223.

- Devlin, K. (2010). The unfinished game: Pascal, Fermat, and the seventeenthcentury letter that made the world modern. Basic Books.
- Husserl, E. (1970). The crisis of European sciences and transcendental phenomenology: An introduction to phenomenological philosophy (D. Carr, Trans.). Northwestern University Press.
- Kalman, R. E. (1994). Randomness redefined. Modeling, Identification and Control, 15(3), 141-151.
- Tilgher, A. (1923). Relativisti contemporanei. Libreria di Scienze e Lettere.