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Preface 

The International Conference on Mathematical Modeling in Physical Sciences (IC-
MSQUARE) is an interdisciplinary scientific event which aims to promote the knowl-
edge and the development of high-quality research in mathematical fields that have 
to do with the applications of other scientific fields and the modern technological 
trends that appear in them, these fields being those of Physics, Chemistry, Biology, 
Medicine, Economics, Sociology, Environmental Sciences, etc. 

The 12th IC-MSQUARE took place in Belgrade, Serbia, between August 28 
and 31, 2023. In addition, (because in previous years the conference, due to the 
pandemic, took place only with online presentations), the possibility of participation 
via the internet was also adopted this time. Thus, apart from the talks and workshops 
held on site, we also had a large collection of pre-recorded presentations that were 
available to the participants through the conference website. 

The Conference was attended by more than 350 participants and hosted about 
320 oral and virtual presentations while counted more than 1000 pre-registered 
authors. The 12th IC-MSQUARE consisted of different and diverging workshops 
and thus covered various research fields where Mathematical Modeling is used, such 
as Theoretical and Mathematical Physics, Neutrino Physics, Non-integrable Systems, 
Dynamical Systems, Computational Nanoscience, Biological Physics, Computa-
tional Biomechanics, Complex Networks, Stochastic Modeling, Fractional Statistics, 
DNA Dynamics, Macroeconomics, Social Modeling, etc. 

The scientific program was rather heavy, however, according to all attendees, the 
program was excellent with high level of talks and the scientific environment was 
fruitful, thus all attendees had a creative time. 

All papers submitted to the Conference have been reviewed using a single-blind 
peer-review process. The review process adopted a scoring system (0–5 points) who 
rated the Relevance, Scientific Quality, Contribution, Title and Paper Presentation, 
Tables and Figures, Language, and the References of each paper. The threshold for 
an article to be accepted was a score above 4. Additionally, each paper was tested for 
similarity with already published content using the Turnitin software. All sources of 
similarities were checked and only original content was accepted. In this way, out

vii
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of more than 120 papers that were evaluated for this volume, only 51 were accepted 
for publication. 

We would like to thank the Reviewers, the Members of the International Scientific 
Committees as well as the Members of the Organizing Committee. 

Tripoli, Greece Dimitrios Vlachos 
The Conference Chairman
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Single and Multi-material Topology 
Optimization of Continuum Structures: 
ABAQUS Plugin 

Dhaval Patel, Thomas Rockenbauer, Sandra Schlögl, and Margit Lang 

Abstract This research addresses the need for versatile topology optimization tech-
niques capable of optimizing both single and multi-material designs. The extended 
Python code incorporates the modified Bi directional Evolutionary Structural Opti-
mization (BESO) algorithm and a material interpolation scheme to enhance its capa-
bilities. Engineers and designers can utilize this improved approach to optimize the 
performance of structures, especially in the context of multi-material configurations. 
To increase its practicality, the code is converted into ABAQUS plugin, seamlessly 
integrating it with the widely used finite element analysis software. Validation exam-
ples, conducted in the ABAQUS environment, demonstrate the compatibility and 
accuracy of the code. This research provides an efficient and accurate solution for 
topology optimization, addressing the demands of multi-material designs in var-
ious engineering applications. Examples of such applications include lightweight 
design in automotive and aerospace industries, customized implants in biomedical 
engineering, and optimal material distribution in architectural structures. 

Keywords Topology optimization · ABAQUS plugin · Bi-directional 
evolutionary structural optimization (BESO) · Multi-materials optimization 

1 Introduction 

Structural optimization is a method used in engineering and design to determine the 
most efficient material layout and shape of a structure, considering specific design 
criteria and constraints. This technique originated in the 1980s and has progressed as 
technology has advanced. The three primary techniques for structural optimization 
are: (1) topology optimization, which optimizes the material distribution for a desired 
structural performance, (2) shape optimization, which enhances the design geometry 
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to improve performance (e.g. to avoid stress concentration), and (3) size optimiza-
tion, which determines the optimal dimensions (e.g. thickness) of a component. By 
utilizing topology optimization, engineers can design structures that are stronger, 
lighter, and more efficient, while meeting performance requirements such as dura-
bility and stability. This results in improved structural performance. The ability to 
remove redundant material from areas that do not carry significant loads, furthermore 
increases material efficiency by offering the possibility to use resources in a more 
sustainable way. Consequently, the use of topology optimization is expanding in var-
ious fields, including aerospace, automotive, civil and biomedical engineering. As 
computational power and optimization algorithms continue to improve, it is expected 
that topology optimization will become even more prevalent in engineering design. 

Topology optimization encompasses various techniques that have unique strengths 
and limitations. Some of the most commonly used methods include Solid Isotropic 
Material with Penalization (SIMP) [ 1], Evolutionary Structural Optimization (ESO) 
[ 2], and Level Set Method (LSM) [ 3]. Each method offers a different approach 
to solving topology optimization problems and is selected based on the specific 
design objectives and constraints. SIMP is a commonly used topology optimiza-
tion technique that assigns material density to each element in the design domain 
and penalizes intermediate densities to obtain a clear “black-white” design. How-
ever, it can lead to so-called checkerboard patterns [ 4] and numerical instabilities 
[ 5]. To address these issues, various restriction methods have been developed, such 
as perimeter control, gradient constraints, or blurring filters [ 6– 8]. ESO is a topol-
ogy optimization technique that mimics the process of natural selection to obtain 
an optimal topology by gradually removing “inefficient” material and redistribut-
ing loads. It is useful in conceptual design and can produce organic-looking shapes. 
Bi-directional evolutionary structural optimization (BESO) is an extension of ESO 
that enables the addition of “efficient” material while removing “inefficient” material. 
However, both methods suffer from numerical instability issues that can be addressed 
by incorporating perimeter control or filters [ 6– 8]. The most distinct difference with 
respect to SIMP is that with ESO or BESO no intermediate densities are produced. 
For ESO and BESO basically only two “material states” exist—“0 .= void” and 
“1 .= full material”. Therefore, no interpretation of intermediate densities is neces-
sary for the design engineer. LSM is a topology optimization technique that utilizes 
a level set function to represent the design domain, enabling straightforward manip-
ulation of the topology. LSM is beneficial for problems with multiple load cases or 
design objectives, and it can create smooth and continuous designs. However, it is 
computationally costly and may be mesh-dependent [ 9]. 

Over the past four decades, based on these methods, numerous educational arti-
cles have been published with the objective of introducing fundamentals of various 
topology optimization algorithms through computer program implementations. For 
instance, Sigmund developed a 99-line MATLAB code for the SIMP method [ 1], 
while Andreessen et al. developed an 88-line MATLAB code that is an extension 
of Sigmund’s code with improved efficiency [ 10]. Yongsheng et al. presented an 
efficient 137-line MATLAB code [ 11] for 2D compliance minimization utilizing 
the BESO method presented by Huang and Xie [ 12], and Liu and Tovar presented
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a modified SIMP model for 3D topology optimization for linear structures with 
regular eight-noded elements [ 13]. Moreover, Zhi Hao Zuo et al. [ 14] developed a 
compact and simple Python code for complex 3D topology optimization utilizing the 
BESO method. Additionally, several commercial and open-source tools for topology 
optimization are available, as stated in the comparative study published in article [ 9]. 

As mentioned before, most studies and applications of topology optimization have 
been limited to single material structures. As a result, there is a noticeable gap in 
research regarding topology optimization for structures with multiple materials. Sev-
eral researchers have attempted to address this issue through different approaches. 
For instance, Zhou and Wang [ 15] developed a phase-field method with a gener-
alized Cahn-Hilliard model for the optimization of multi-material structural topol-
ogy. An algorithm was introduced by Huang and Xie [ 16] that utilizes the BESO 
method for topology optimization of continuum structures. The algorithm is capa-
ble of handling both single and multiple materials and incorporates the material 
interpolation approach from the SIMP method. Hvejsel and Lund [ 17] proposed two 
multi-material interpolation schemes based on SIMP and (RAMP) Rational Approxi-
mation of Material Properties material interpolation schemes to enable topology and 
multi-material optimization formulated within a unified parametrization. A novel 
problem formulation was proposed by Gao and Zhang [ 18] to address the topol-
ogy optimization of lightweight structures comprising multiple phases of materials. 
The formulation introduces a mass constraint to guide the optimization process. 
Gaynor and Yang [ 19] combined the force flow path with topology optimization to 
provide topology optimization methods for two- and three-dimensional reinforced 
concrete structures. Wang et al. [ 20] proposed a new Multi-Material Level Set (MM-
LS) topology description model for topology and shape optimization of structures 
involving multiple materials. A multi-material topology optimization method uti-
lizing a reaction-diffusion equation based on the level set method was proposed by 
Cui et al. [ 21]. Recently, a multi-material topology optimization method based on 
BESO has been introduced. This method specifically addresses structures with mul-
tiple materials that possess notably different mechanical properties in tension and 
compression [ 22, 23]. 

Despite many research efforts, there is still a lack of open-source codes available 
for multi-material topology optimization. To overcome this issue, the author is moti-
vated by the works of Zuo and Xie in [ 14] and Huang and Xie in [ 16] and intends to 
extend the Python code available from [ 14]. The objective is to make it more com-
putationally efficient and to enable multi-material topology optimization using the 
formulation of the modified BESO method introduced in the research article [ 16]. 
This endeavour aims to contribute to the advancement of multi-material topology 
optimization research and provide an efficient tool for the scientific community. The 
code can be found in this GitHub repository: https://github.com/dhavalrpatel2511/ 
Topology_Optimization.git.

https://github.com/dhavalrpatel2511/Topology_Optimization.git
https://github.com/dhavalrpatel2511/Topology_Optimization.git
https://github.com/dhavalrpatel2511/Topology_Optimization.git
https://github.com/dhavalrpatel2511/Topology_Optimization.git
https://github.com/dhavalrpatel2511/Topology_Optimization.git
https://github.com/dhavalrpatel2511/Topology_Optimization.git
https://github.com/dhavalrpatel2511/Topology_Optimization.git
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2 Methodology 

This research article focuses on the implementation of the modified BESO method for 
single and multi-material topology optimization, which is based on the previously 
published work by X. Huang et al. [ 16]. While the formulation of the topology 
optimization problem is not extensively discussed in this article, readers can refer to 
the original work [ 14, 16] for a more detailed explanation. Nonetheless, the essential 
information regarding the topology optimization problem shall be provided here. 

2.1 Problem Statements 

The objective of the topology optimization problem is to minimize the compliance 
of a structure while satisfying a constraint on the volume of the material to be used in 
the final design. Mathematically, this approach to single-material optimization can 
be expressed as: 

.

min
X

: Cm(X) = 1

2
FTU = 1

2
UTKU

subject to: X = [xe]; xe = 1 or xmin, ∀e = 1, ..., N

F = KU

V (X) =
∑

X

xeVe = V ∗

(1) 

The mean compliance .Cm(X), which is the objective function, represents the 
energy required to deform the structure under a given set of loads, and it is propor-
tional to the strain energy stored in the material. F represents the global force vector, 
U is the displacement vector, K is the stiffness matrix and V(X) refers to the volume 
of the design domain occupied by the material. The binary design variable.xe denotes 
the density of . eth element. To avoid the singularity of the stiffness matrix, a small 
value of .xmin , for example, 0.001 is used to denote the void elements. 

With respect to multi-material optimization the objective is to find the optimal 
distribution of multiple materials with differing modulus of elasticity. E1, E2, ..., En

(where .E1 > E2 > ... > En). The corresponding optimization problem can be for-
mulated as follows: 

.

min
X

: Cm(X) = 1

2
FTU = 1

2
UTKU

subject to: X = [xi j ]; xi j = 1 or xmin, ( j = 1, 2, ..., n − 1)

F = KU

V ∗
j −

n∑

i=1

Vi xi j −
j−1∑

i=1

V ∗
i = 0

(2)
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where .xi j denotes the density of the . i th element for the . j th material, and V. j* refers 
to the prescribed volume of the . j th material. 

2.2 Sensitivity Numbers 

In the work of Huang and Xie [ 16], the material interpolation scheme from the 
SIMP method and sensitivity numbers for various topology optimization variants 
(such as single material void topology optimization, two non-zero material, or multi-
material topology optimization) are briefly described. However, for the purpose of 
implementation, the equations for computing the sensitivity numbers for all these 
different variants of topology optimizations are provided here. 

The sensitivity number in the BESO algorithm is a measure of how the overall 
structural performance is influenced by a change in “design” of a specific element. 
Based on the sensitivity number the algorithm decides which elements to modify or 
remove during the optimization process to achieve an optimal material distribution 
for the given objective. The sensitivity number for topology optimization with a 
single material and void is defined as follows: 

.αi = − 1

p

∂C

∂xi
=

⎧
⎨

⎩

1
2u

T
i Kiui when xi = 1

x p−1
min
2 uTi Kiui when xi = xmin

(3) 

The sensitivity numbers for topology optimization with two non-zero materials 
and with multi-materials are similar in form and can be defined as follows: 

.αi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

2

[
1 − E2

E1

]
uT
i K

1
i ui formaterial1

1

2

x p−1
min (E1 − E2)

x p
min E1 + (1 − x p

min)E2
uT
i K

2
i ui formaterial2

(4) 

.αi j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

2

[
1 − E j+1

E j

]
uTi K

j
i ui for material 1, . . . , j

1

2

x p−1
min (E j − E j+1)

x p
min E j + (1 − x p

min)E j+1
uTi K

j+1
i ui for material j+1, . . . , n

(5) 

The equations described above indicate that the sensitivity of voids in single mate-
rial topology optimization, as well as other materials in various topology optimization 
methods, except for the first material, is affected by the selection of the penalty expo-
nent. In particular, as the penalty exponent approaches infinity, the sensitivity values 
of these materials or voids tend to approach zero.
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2.3 Filter Scheme and Convergence Criterion 

The sensitivity numbers defined in the previous section are often adapted to obtain a 
mesh-independent solution. In order to achieve this, a blurring filter can be utilized, 
such as the one proposed by Huang and Xie [ 6, 8]. In this paper, a simplified elemental 
sensitivity filtering scheme [ 14] is employed to maintain the solution accuracy while 
avoiding the need for a newly developed computationally slower nodal sensitivity 
filtering scheme presented in the study by Huang et al. [16]. Nodal sensitivity analyzes 
localized information, while elemental sensitivity provides a broader understanding 
of design impacts for large-scale optimization. The simplified elemental sensitivity 
filtering scheme is used in this paper as follows: 

.αe =
∑

j w(rej )α j∑
j w(rej )

=
∑

j

(
w(rej )∑
j w(rej )

α j ) =
∑

j

η jα j (6) 

.w(rej ) = max(0, rmin − rej ) (7) 

Equation (6) uses the distance between the centers of elements . e and . j (.rej ), a 
weight function (. w) to average the raw sensitivities, and a filter radius (.rmin). It is 
important to note that the weight factor.w(rej ) is predetermined and does not depend 
on the sensitivity values, see Eq. (7). 

The element sensitivity filter scheme requires the computation of the distance 
between each element that lies within the filter radius, which is used to calculate 
the weighting factor based on the relative distances. However, calculating the dis-
tance between each individual element and all other elements is computationally 
inefficient and time-consuming. Therefore, to improve efficiency, the getByBound-
ingBox(...) function, available in ABAQUS, is used in this study. Thereby, only the 
distances between elements that lie within the filter radius, instead of the distances of 
the individual element to all other elements, as described in the original publication 
[ 14], are considered. 

To ensure convergence of the solution, it is advised to incorporate the historical 
information of the sensitivities when using discrete methods like BESO [ 12]. This 
can be achieved by averaging the sensitivity of the current iteration with that of the 
previous iteration as shown in Eq. (8), where . k is the current iteration number. 

.αe = αk
e + αk−1

e

2
(8) 

Convergence criteria are needed in the BESO algorithm to determine when the 
optimization process has reached a satisfactory solution. They provide a stopping 
criterion, ensuring the algorithm doesn’t run infinitely. Convergence criteria monitor 
specific parameters or metrics, such as changes in the objective function or design
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variables, to assess when the optimization has converged to an acceptable level of 
accuracy. This helps save computational resources and ensures the reliability and 
quality of the optimized topology. 

.Error =
|||
∑N

i=1(Ck−i+1 − Ck−N−i+1)

|||
∑N

i=1(Ck−N−i+1)
≤ τ (9) 

The criterion  shown in Eq.  (9) uses a tolerance value . τ and an integer value . N
(fixed at 0.01% and 5 respectively in this paper) to ensure that subsequent iterations do 
not significantly improve the design. Specifically, the convergence criterion requires 
a stable compliance over a minimum of ten consecutive iterations, which reduces the 
impact of above equation on the final solution. The simplified form of Eq. (9) can be 
represent as follows: 

.Error = C[k − 4 : k + 1] − C[k − 9 : k − 4]
C[k − 9 : k − 4] ≤ τ (10) 

2.4 Optimization Procedure 

A step-by-step explanation of topology optimization procedure is given below. 

Step 1: Mesh the design domain with finite elements and apply appropriate bound-
ary conditions and loads. 

Step 2: Determine the coordinates of the center of each element and compute the 
weight factor for each element based on the distance to neighboring elements 
within the filter radius. 

Step 3: Provide the inputs such as Volume fraction, Evolution rate, Young’s mod-
ulus, Poisson’s ratio and most important the Design-Case, which refers to the 
variants of topology optimization (1. solid-void, 2. two non-zero materials and 3. 
Multi-Material topology optimization). 

Step 4: Perform finite element analysis (FEA) to determine the compliance of the 
entire model and the strain energy of each element. 

Step 5: Compute the sensitivity number for each element based on the respective 
design domain variation. 

Step 6: Bi-directional Evolutionary Structural Optimization (BESO) procedure. 
Step 7: Update material properties and design domain for next optimization iter-

ation based on current sensitivity numbers and material distribution. 
Step 8: Perform steps 4–7 iteratively until the desired volume is reached and the 

convergence criteria are met. 

The flowchart (Fig. 1) shows a graphical representation of the step-by-step proce-
dure of this topology optimization process. The BESO algorithm exhibits similarities
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Fig. 1 Flowchart illustrating the topology optimization procedure 

between the solid-void design and the two non-zero materials design variants. How-
ever, the BESO algorithm for multi-materials design variants has some differences. 
A detailed explanation of this BESO variant is provided in the pseudo-code (1). 
The multi-material BESO procedure starts with a full design containing material 1. 
It utilizes the evolutionary ratio (ER) to trigger the volume reduction of material 1. 
Simultaneously, the volume of material 3 gradually increases until the predefined vol-
ume fraction is reached. Afterwards, the volume of material 3 remains constant and 
the volume of material 2 increases until the target volume is achieved. The step-wise 
procedure is outlined in the pseudo-code, where lines 1–26 handle the optimization 
for material 1, lines 27–52 for material 2.



Single and Multi-material Topology Optimization … 11

Algorithm 1 Modified BESO Algorithm for Multi-Materials Topology Optimization 
1: Find the minimum (min1) and maximum (max1) values of elemental sensitivity numbers based on stiff and void 

material properties (Ae1i ). 
2: Calculate the target volume of the void material in the next optimal design (Tv1 = V f 1 * Total number of elements). 
3: repeat 
4: Update the threshold (∈1k = (max1+min1)/2.0) 
5: for each element i in the design domain do 
6: if Ae1i > ∈1k then 
7: Set x1i = 1.0 (fully dense) 
8: else 
9: Set x1i = 0.00001 (fully porous) 
10: end if 
11: end for 
12: if sum(x1i ) - Tv1 > 0 then 
13: Set min1 = ∈1k 
14: else 
15: Set max1 = ∈1k 
16: end if 
17: until (max1-min1)/max1 > 0.00001 
18: Initialization of empty lists for Void group of elements. 
19: Initialize the temporary dictionary of elemental sensitivity numbers based on stiff and soft material properties (Ae2i ). 
20: for each element i in the design domain do 
21: if x1i = 0.00001 then 
22: Void.append(i) 
23: else 
24: T Ae2(i ) = Ae2(i ) 
25: end if 
26: end for 

27: Find the minimum (min2) and maximum (max2) values of elemental sensitivity from temporary dictionary (Ae2i ). 
28: Calculate the target volume of the stiff material in the next optimal design (Tv2 = V f 2 * Total number of elements) 
29: repeat 
30: Update the threshold (∈2k = (max2+min2)/2.0) 
31: for each element i in the design domain do 
32: if T Ae2i > ∈2k then 
33: Set x2i = 1.0 (Stiff Material) 
34: else 
35: Set x2i = 0.00001 (Soft Material) 
36: end if 
37: end for 
38: if sum(x2i ) - Tv2 > 0 then 
39: Set min2 = ∈2k 
40: else 
41: Set max2 = ∈2k 
42: end if 
43: until (max2-min2)/max2 > 0.00001 
44: Initialization of empty lists for Stiff and Soft groups of elements. 
45: for each element i in the design domain do 
46: if x2i = 1.0 then 
47: Stiff.append(i) 
48: else 
49: Soft.append(i) 
50: end if 
51: end for 
52: Section assignment for both Solid and Void groups of elements. 

3 Results 

Within this section, the focus lies on investigating the various design optimiza-
tion variants as listed in Table 1. Specifically, the topology optimization problem
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Table 1 Various design optimization variants 

Variants Stiff material volume 
(%) 

Soft material volume 
(%) 

Void volume (%) 

3.1 30 – 70 

3.2 50 50 – 

3.3 15 25 60 

Fig. 2 Design domain of the right half of the full beam model 

Table 2 Material properties 

Stiff material Soft material Void 

Young’s modulus 1000 MPa 100 MPa 1e-9 MPa 

Poisson’s ratio 0.3 0.3 0.3 

is analyzed, concerning a beam structure with dimensions of 240. ×40 mm. However, 
exploiting the beam’s symmetry, we shall solely examine the right half, which pos-
sesses a domain size of 120. ×40 mm, see Fig. 2. The bottom right corner of the right 
half is subjected to support, while the left edge adheres to X-symmetry boundary 
conditions. Additionally, a 10N load (F) is applied at the bottom left corner, as illus-
trated in Fig. 2. The application of X-symmetry boundary conditions, in this context, 
serves to accurately replicate the overall behavior of the entire beam structure under 
the specified load. These boundary conditions effectively constrain three degrees of 
freedom at the nodes along the left edge of the beam: the displacement along the 
X-axis (U. x ), the rotation along the Y-axis (UR. y), and the rotation along the Z-axis 
(UR. z). The domain is discretized using four-node plane stress elements (CPS4) with 
a size of 1  mm.  

As mentioned earlier, the topology optimization is performed using specific 
parameters. These parameters include a minimum element density (xmin) of 0.0001, 
a filter radius (rmin) of 3.0, a penalty exponent (p) set to infinity, and an Evolutionary 
Ratio (ER) of 2.0%. Furthermore, Table 2 includes the material properties of the stiff 
material (Material 1), soft material (Material 2), and void. The properties include 
the respective values for Young’s modulus and Poisson’s ratio assuming liner elastic 
material behavior.
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3.1 Optimized Solid-Void Design 

This section focuses on optimizing the beam structure, shown in Fig. 2, using  a  
single material. The objective is to design the structure with maximum stiffness by 
minimizing its mean compliance while ensuring that only 30% of the material is 
present in the final design domain. The topology parameters mentioned earlier are 
used for this optimization process. The material properties for the stiff material and 
void can be referred to in Table 2. 

Figure 3a shows the optimal design achieved using the newly developed BESO 
algorithm as described in the reference paper [ 16]. The mean compliance of this 
optimal design is measured to be 7.26 Nmm. On the other hand, Fig. 3b shows  
the optimal design obtained using the author’s extended algorithm, which exhibits 
a mean compliance of 7.25 Nmm. Although both optimal designs differ slightly in 
appearance, the design from this paper fulfills the objective function and demonstrates 
slightly lower mean compliance, indicating increased stiffness. Moreover, this design 
bears some resemblance to the optimal design obtained through the continuation 
method described in Fig. 3c from the reference paper [ 16], which achieves a mean 
compliance value of 7.18 Nmm. 

3.2 Optimized Design with Non-zero Materials 

In this section, the topology optimization problem, illustrated in Fig. 2, is investigated, 
considering two non-zero materials in the optimal design, excluding the void. Again, 
the objective is to maximize the stiffness of the structure by minimizing its mean 
compliance while ensuring an optimal distribution of the two materials. Each material 

(a) (b) 

(c) 

Fig. 3 Comparative optimal designs obtained from: a reference paper [ 16], b current research 
paper, and c continuation method [ 16]
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Fig. 4 Evolutionary histories of the mean compliance and volume fraction 

(a) (b) 

Fig. 5 Comparative two material optimal designs obtained from: a reference paper [ 16], b current 
research paper 

is allocated an equal contribution of 50% in the final design domain. Figure 4 shows 
that the mean compliance of the whole model increases initially as the volume fraction 
of the stiff material decreases, and then it converges to an almost constant value after 
the objective volume is achieved. The topology parameters mentioned earlier are 
utilized for this optimization process, and the properties of the non-zero materials 
(stiff and soft materials) can be found in Table 2. 

Figure 5a) presents the optimal design obtained using the two non-zero materials, 
as outlined in the reference paper [ 16]. The mean compliance of this design is deter-
mined to be 4.21 Nmm. Figure 5b) illustrates the optimal design attained using the 
author’s code, which exhibits a mean compliance of 4.10 Nmm. While the material 
distribution in both optimal designs varies slightly, the design derived from this paper 
successfully meets the objective function and showcases a lower mean compliance, 
indicative of enhanced stiffness.
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3.3 Optimized Design with Void and Two Materials 

The author’s code has demonstrated its effectiveness in addressing the optimization 
problem for designs involving two materials as well as solid-void configurations. 
It successfully integrates two non-zero materials, optimizes their distribution, and 
achieves the desired objectives, resulting in enhanced structural performance. While 
numerous open-source codes and software exist for similar purposes, the primary 
focus lies in achieving the same level of success for multi-material designs. This 
section aims to investigate and explore the optimization of multi-material designs 
including void, which presents unique challenges and requires specialized tech-
niques. 

In this section, the topology optimization problem, depicted in Fig. 2, consider-
ing two non-zero materials and the void is analyzed. The objective is to maximize 
the stiffness of the structure by minimizing its mean compliance, while ensuring an 
optimal distribution of the materials. The stiff and soft materials are allocated contri-
butions of 15% and 25%, respectively, resulting in a final design domain consisting 
of 40% material and 60% void. The previously mentioned topology parameters are 
employed for this optimization process, and the properties of all the materials can 
be found in Table 2. 

Figure 6a illustrates the optimal design obtained from the reference paper [ 16], 
with a mean compliance of 13 Nmm. Conversely, Fig. 6b displays the optimal design 
achieved using the author’s code, which exhibits a mean compliance of 12.6 Nmm. 
Despite slight variations in material distribution, due to slightly different imple-
mentation (e.g. different sensitivity filter), the design presented in this paper meets 
the objective function and exhibits a lower mean compliance, indicating enhanced 
stiffness. 

(a) (b) 

Fig. 6 Comparative multi-materials optimal designs obtained from: a reference paper [ 16], b 
current research paper
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4 Conclusions 

To conclude, this research paper introduces a comprehensive code that has been 
developed and implemented based on the formulation proposed in the reference 
paper authored by Huang and Xie [ 16]. The code effectively addresses three 
different variants of design optimization, namely solid-void, two materials, and multi-
materials optimization. The primary objective of the code is to generate optimal 
designs that maximize stiffness by minimizing mean compliance while satisfying 
volume constraints. The results obtained from the code consistently show designs 
that exhibit slightly higher stiffness compared to those reported in the reference paper. 
This demonstrates the effectiveness of the code in achieving the desired objective of 
improved structural performance. 

However, it is worth mentioning that the code does face certain challenges, par-
ticularly in terms of computational time. It requires more time to converge compared 
to the demonstrated results in the reference paper. This indicates an area for potential 
future improvements, with opportunities to enhance the code’s efficiency and reduce 
the computational time required for optimization. 

Furthermore, the code has been successfully converted into an ABAQUS plugin, 
enhancing its usability and convenience for users. This enables researchers and engi-
neers to easily apply the code to their specific design problems within the ABAQUS 
framework. In the future, the code can be enhanced to optimize structures with com-
plex geometries, multiple materials, and diverse design objectives and constraints. 
These improvements will broaden its application in structural engineering, address-
ing a wider range of optimization challenges. 

Overall, this research paper contributes to the field of topology optimization by 
providing a comprehensive code that can be applied to different design variants, 
yielding stiffer designs and showcasing its potential for future advancements in the 
field. 
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