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Preface

Several well-regarded books have been written over the years on fluid flow in porous
media and subsurface hydrology. However, it is now recognized that fractured rocks
are ubiquitous in the subsurface, and that several issues that arise during fluid flow and
transport through fractured rocks are distinct from their analogues in non-fractured porous
media. Moreover, flow and transport through fractured rocks are of great importance in
many technological areas, such as, for example, energy production from geothermal or
hydrocarbon reservoirs, subsurface nuclear waste disposal, carbon sequestration, and
contaminant remediation. Hence, there is a need for a monograph/textbook that provides
a thorough, rigorous, and authoritative introduction to this topic. Our aim in writing this
book has been to address this need.

This book was intended to be written in sufficient detail so as to provide a rigorous and
broad introduction to the field of fluid flow through fractured rocks. It is intended for read-
ers with interests in hydrogeology, hydrology, water resources, structural geology, reservoir
engineering, underground waste disposal, or other fields that involve the flow of fluids
through fractured rock masses. To the extent possible, the mathematical models developed
and discussed in the book are compared to experimental or field data or validated/tested
against numerical simulations. The book contains 157 individual figures, of which 39 are
either images of real fractures or contain actual laboratory or field data.

Chapter 1 introduces the geomechanical background to the nucleation and growth of
fractures in rock and the multi-scale characterization of their geometric traits, such as
aperture, length, roughness, and density. Chapter 2 provides a rigorous treatment of the
mathematics of fluid flow through a single rock fracture, starting with the Navier–Stokes
equations and carefully explaining the conditions under which these equations can be
replaced by the simpler Stokes equations or Reynolds lubrication equation. The effects
of normal and shear stresses on the transmissivity of a rock fracture are discussed in
Chapter 3. Chapter 4 discusses the effects of inertia on fluid flow through a fracture and the
resulting deviations from a Darcy-like linear relation between pressure drop and flowrate.
Some of the coupled thermal, hydraulic, mechanical, and chemical interactions that may
alter the transmissivity of a single fracture are described in Chapter 5. Chapter 6 introduces
the concept of solute transport through single fractures and presents some models for the
advection and dispersion of solutes.

Whereas most of the first six chapters focus on flow and transport through a single frac-
ture, the second half of the book focuses on the behavior of fracture networks and fractured
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x Preface

rock masses. Chapter 7 presents some analytical models for the macroscopic-scale perme-
ability of porous/fractured rocks. Chapter 8 discusses various approaches to the numerical
modeling of fluid flow through geologically realistic fracture networks and fractured rock
masses. Chapter 9 presents “dual-porosity” models for fractured-porous media, starting
from the classical model developed by Barenblatt and his collaborators. Chapter 10 then
gives a detailed treatment of the matrix block shape factors that are crucial ingredients
in dual-porosity models for both flow and transport. Various models for solute transport
through fracture networks and fractured rock masses, both “Fickian” and “non-Fickian,”
are discussed in Chapter 11. Finally, Chapter 12 briefly discusses two-phase flow in single
fractures and fractured rocks.

Although this book might be classified as a monograph, it is hoped that it can also serve
as a textbook for master’s-level or advanced undergraduate courses. For this purpose, sev-
eral problems have been given at the end of each chapter. Some of the problems ask for a
mathematical derivation of an equation that may have been presented in the text without
a detailed derivation. Other problems ask for analysis of data or further analysis and/or
application of some of the mathematical models presented in the book.

This book is intended to be self-contained. Most of the mathematical derivations are pre-
sented in sufficient detail so as not to require the reader to refer to the original sources.
Nevertheless, extensive reference is made to important papers, theses, and books that have
made contributions to the field and/or contain relevant information. The references in each
chapter have been collected at the end of that chapter rather than in a single reference list,
for the convenience of the reader.

Equations are numbered consecutively within each chapter, so that, for example,
“Eq. (5.7)” denotes the seventh equation in Chapter 5. Tables and figures are also numbered
in this same manner, i.e., numbering is not restarted within each section of a chapter. All
symbols and variables are defined in the text, as soon as they are first used. When a variable
is first defined, its “dimensions” are listed in brackets, in terms of the SI units that would
typically be used for that variable, rather than in terms of the “Mass-Length-Time” conven-
tion. Efforts have been made to adhere to a consistent nomenclature, sometimes at the cost
of not using the same notation as was used in the original sources of some of the equations.
The large number of variables mentioned in the book made it unavoidable that some letters
be used to denote different properties in different chapters. To avoid confusion, a single
List of Symbols has been included at the end of the book, which in particular explains the
meaning of those symbols that are used for different purposes in different chapters.

To aid in the use of this book as a textbook, all figures can be freely downloaded (see
‘About the Companion Page’ on page xiii). The authors welcome feedback from readers or
users of this book, including notification of any errors that may be detected.

London, UK
October 2023

Robert W. Zimmerman
Adriana Paluszny
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1

Genesis and Morphology of Fractures in Rock

1.1 What Are Fractures, and Why Are They Important?

Fractures are discontinuities in the mechanical integrity of brittle Earth materials. They
break the mechanical continuity of the medium and provide high-speed conduits for fluids
to flow throughout the subsurface. Consequently, they are crucial to understanding how
fluids migrate in the subsurface. Fractures play a key role in controlling how otherwise
low-permeability media can allow the migration of fluids through the subsurface.
Therefore, fractures can effectively provide access to natural resources such as water,
gas, minerals, and geothermal energy. In some cases, fractures may provide unwanted
migration paths for stored fluids by breaking geological seals and enabling fluid mixing,
leading to the pollution of drinking water resources. In other situations, fractures can
facilitate fluid migration, lead to undesirable consequences such as induced seismicity, or
possibly compromise the long-term subsurface disposal of hazardous waste.

“Fracture” is a general term that can be used to describe discontinuities formed by
extension or shear, including cracks, joints, and faults. Fractures can form veins as a result
of long-term mineralization or can be filled by the intrusion of another material, such
as magma, to form dykes or other structures (Pollard and Aydin, 1988). Fractures rarely
appear as stand-alone features in the subsurface, as deformation of brittle bodies often leads
to the creation of multiple simultaneous breaks in rocks, resulting in several superimposed
fractures and fault patterns that form complex multi-scale systems. These discontinuities
in the rock matrix influence mechanical properties and the conduction of fluids through
most low-permeability media. Fractures are discontinuities with imperfect surfaces, which
represent weakness in a mechanical sense. Terms related to the description of these
discontinuities can be classified into geological, geometric, topological, and mechanical
(Peacock et al., 2016). Fractures in rocks have a geological interpretation, usually tied to
their setting, geometry, and chemical composition. Connectivity dictates the topological
relationship between fractures, and mechanical deformation further changes a fracture’s
properties and its form.

From the mechanical point of view, fractures limit the strength of a rock mass, mostly
due to a lack of cohesion. From the point of view of fluid flow, they represent preferred
conduits for flow since the aperture of a fracture is usually much larger than the pores of
the host rock. Pre-existing fractures can be exploited, as they can channel flow through a
reservoir, and their observation can serve to provide clues about how rocks conducted fluids

Fluid Flow in Fractured Rocks, First Edition. Robert W. Zimmerman and Adriana Paluszny.
© 2024 John Wiley & Sons Ltd. Published 2024 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/zimmerman/fluidflowinfracturedrocks

http://www.wiley.com/go/zimmerman/fluidflowinfracturedrocks
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2 1 Genesis and Morphology of Fractures in Rock

(a) (b)

Figure 1.1 (a) Fractures at the centimeter and meter scales cross-cut each other to form complex
multi-scale patterns. (b) Fractures in limestone exposed in Somerset, UK.

in the past. Fractures can also be induced or enhanced to increase local fluid flow in order
to turn an otherwise impermeable rock into a permeable medium. Figure 1.1 shows some
examples of fractures that were formed due to folding of layered limestones off the coast of
Somerset, UK.

Isolating the behavior of fractures in a rock formation often represents a bounding
scenario for safety cases in evaluating the integrity of underground waste repositories.
In the field of geological carbon dioxide storage, for example, a project is commonly
considered unsafe if injection-induced overpressure may cause slip along fractures. In
geological nuclear waste disposal, the limiting case is often considered to be one in
which fluid flow occurs only within the connected system of fractures and whether the
ensuing radionuclide transport within this network exceeds some threshold. It follows that
fractures are a logical point at which to start investigations on the impact that human inter-
ference has on an embedded geological setting, in terms of its mechanical and hydraulic
properties.

1.2 Formation of Fractures in Rock

Materials that are quasi-brittle, such as most rocks in the upper crust of the Earth, are
subjected to stresses resulting from gravity as well as a variety of local and regional stresses
such as tectonic stresses, burial, uplifting, and folding, along with chemical, thermal, and
fluid flow-related stresses. As a result, rocks deform in several stages. First, they develop
micro-cracks that occur on a small scale, often along the boundaries of individual grains of
a rock. These micro-cracks start to grow and form preferential paths which, when aligned,
become material flaws. Flaws induce stress concentrations at their tips, the leading edge
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1.2 Formation of Fractures in Rock 3

(a)

(b) (c)

(d)

Figure 1.2 Fractures at the centimeter and millimeter scales in (a) and (c) limestone and (b) shale,
respectively. The small fractures in (b) arise in one of the shale outcrops that cap the shallow Orcutt
oil field in California, USA. In (a) and (c), fractures are filled with calcite, and in (b), fractures are
tinted with naturally migrating hydrocarbon. The tracing of the fracture pattern in (c) for aperture
quantification is shown in (d).

of the shape of the fracture, causing them to grow and extend into other areas of the rock.
This self-organization occurs at larger and larger scales, up to the kilometer scale or larger.
During this process, micro-fractures continue to form at different scales around fracture
tips, as a result of stress field interactions, as well as other nonlocal chemical and thermal
processes. This results in fracture growth across multiple scales to accommodate the
ubiquitous deformation of the subsurface. Figure 1.2 shows several examples of interacting
fractures. In all of these cases, the fractures are filled with material that delineates their
shape, which is not always the case in the subsurface, but is convenient for visualization
and interpretation purposes.

During or after fracture growth, the opposing fracture walls can be displaced in relation
to one another. Under tension, fracture walls move directly apart (mode I), creating “thick-
ness” or “aperture.” Under shear (modes II and III), fracture walls slide against each other
in a direction perpendicular to or parallel to the tip of the crack, respectively. A specific case
of a displaced fracture is a “fault,” which exhibits relative displacement of its walls and can
appear under normal or shear deformation at scales that span from the centimeter up to
the kilometer scale (Gudmundsson, 2000).
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4 1 Genesis and Morphology of Fractures in Rock

Fractures localize across large scales, usually along a preferential plane, and eventually
link together to form larger features. From this moment onwards, stress is preferentially
concentrated at the tips of the newly formed high-aspect ratio fracture, and growth drives
the formation and linkage of larger discontinuities. As rocks are subjected to a variety of
mechanical, hydraulic, thermal, and chemical changes over millions of years, many of
these flaws form around pre-existing weaknesses in the matrix, pockets of low-integrity
rock matrix that have resulted from localized processes. Heterogeneities leading to
micro-fractures have been found to follow a Gaussian size distribution (Underwood, 1970),
and in brittle rocks, they often appear as thin, penny-shaped microcavities distributed
across the matrix (Herrmann, 1990).

Computerized tomography (CT) can reveal fractures with apertures up to five times
smaller than the resolution provided by a scanner (Fig. 1.3), due to the strong density
contrast between rock and gas/air. CT has been used to characterize micro-fracturing
(Cnudde and Boone, 2013) and can yield three-dimensional images of micro-fractures
embedded in porous rocks.

Many of the rocks in the upper crust, reaching a depth of around 50–70 km, are, in the
most general, informal sense, “rigid,” and are elasto-frictional, quasi-brittle materials.
A brittle rock subjected to stresses will undergo elastic deformation, but if the stress sur-
passes the “strength” of the rock, the rock will undergo irreversible, nonlinear deformation,
leading to the creation of fractures. Numerous failure criteria have been devised to describe
the triggering of fracturing due to stress concentrations, including Mohr–Coulomb (Jaeger
et al., 2007), Hoek–Brown (Hoek and Brown, 1980), Drucker–Prager (Drucker and Prager,
1952), Mogi (Mogi, 1971), and their generalizations, derivations, and combinations (Bigoni
and Piccolroaz, 2004). However, failure of a rock is rarely caused by the propagation of
a single crack; instead, it is triggered by the coalescence of multiple aligned cracks that
form during deformation (Hoek and Bieniawski, 1965). Furthermore, these types of failure
criteria, based on the “continuum” stresses that are implicitly averaged over lengths much
greater than those of individual pores or microcracks, cannot predict the complex crack
paths that originate during crack propagation due to interaction with neighboring cracks
(Brace and Bombolakis, 1963).

Failure of an initially intact, brittle material is usually a two-stage process that begins with
diffuse, inelastic degradation of the material, also known as “damage.” At a very small scale,
damage can result from dislocations in the matrix of a crystal, localizing into micro-cracks
within a grain of rock or between rock grains. Damage is followed by localization of the loss

(a)

2 mm

(b)

Figure 1.3 Micro-CT image of a fractured sandstone in (a), from which fracture surface can be
extracted, as shown in (b), using standard segmentation techniques. Source: Iglauer et al. (2011) /
Reproduced from John Wiley & Sons, Inc.
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1.3 Morphology of Single Fractures 5

of integrity, leading to the growth of larger fractures. The length of “damage zones” ahead
of fracture tips is a function of the grain size of the rock (Bažant and Kazemi, 1990). The
size of this damage zone also depends on the heterogeneity distribution within the rock and
on the influence of preexisting micro-fractures around fracture tips.

When studying fractures in the geological context, fractures are usually several orders of
magnitude larger than the assumed near-tip fracture damage zone, allowing the assump-
tion that the fracture process is a linear elastic process. The mechanical behavior of rocks
can be described by idealizing the rock as a linear elastic, isotropic, and homogeneous
medium, an approach that is referred to as linear elastic fracture mechanics (LEFM).
Geological patterns such as pervasive extensional fracture patterns have been repro-
duced using LEFM, including fractures and faults in layered systems in two dimensions
(Renshaw and Pollard, 1994; Schöpfer et al., 2007) and three dimensions (Paluszny and
Zimmerman, 2013), as well as single (Bremberg and Dhondt, 2009) and multiple (Paluszny
and Zimmerman, 2011) fracture propagation and interaction in three dimensions.

1.3 Morphology of Single Fractures

At the millimeter scale, a rock will be composed of a few solid grains and pores. The
behavior of these grains and pores can be approximated by idealized descriptions of
spheres and ellipsoids, for example, using poroelasticity and effective medium theories
(Zimmerman, 1991). Due to the range of grain sizes of sandstones (Boggs, 2012), at the
meter scale, an intact piece of this type of rock can be expected to contain a large number of
grains, pores, and additional heterogeneities. Importantly, this definition guarantees that,
for a meter-scale sample, the sample size is several times larger than any individual grain
of the rock. Thus, the scale at which the behavior of the constituting parts is described,
and the scale at which these parts act together as a continuum, can be clearly separated.
It follows that the behavior of such a rock at the meter scale will not be controlled by a
single grain but by a representative number thereof. This separation of scales facilitates
the derivation of governing equations that treat the ensemble of pores and solids as a
continuum.

Rocks often contain a distribution of micro-heterogeneities that range from hard to soft
inclusions, voids in the form of pores and vugs, micro-fractures, cemented veins, and fibers,
among other features. Small-scale heterogeneities in rocks arise due to a combination of
phenomena that take place during the formation of the rock and throughout its defor-
mation and flow history. These heterogeneities can be due to the mechanical differences
between the grains or crystals that initially formed the rock and their response to tempera-
ture, reactive flow, dissolution and precipitation, mineral replacement and deposition, and
deformation of the rock over millions of years (Chen et al., 2015). These differences lead
to local stress concentrations which, when exceeding the local tensile strength of the rock,
evolve into small discontinuities within and between grains, forming distributions of flaws
that are present in most quasi-brittle rocks. This underlying variability has been character-
ized in the context of subsurface reservoir engineering, and it is now well established that
it plays an important role in controlling the fluid flow and storage properties of the rock
matrix.
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6 1 Genesis and Morphology of Fractures in Rock

At the meter and kilometer scales, heterogeneities can appear in the form of layers,
fractures, or faults. Discrete breaks in quasi-brittle materials create discontinuities in
the mechanical and fluid properties of the rock at many scales. Above the centimeter
scale, discontinuities that form under tension are often referred to as “joints” or “cracks,”
whereas those that form under shear are often referred to as “faults” (Jaeger et al., 2007).
Joints are discontinuities that have not been subjected to shear, whereas fault walls have
been subjected to shear displacement. These evolve to have a variety of structures and
properties; in the broadest sense, both can be regarded as “fractures.”

At smaller scales, geological materials exhibit much lower tensile strength than shear
strength, and therefore, small tension fractures are ubiquitous. At larger scales, the
pervasive presence of heterogeneities translates into lower shear strength, promoting
the formation of large faults. Due to these two distinctions, smaller-scale tension dis-
continuities are often regarded as “fractures,” whereas the term “fault” is often reserved
for large-scale geological discontinuities that have experienced considerable relative
displacement of their walls, either due to having been formed under shear or as the
result of the transition of a fracture into a fault due to changes in the regional stresses. In
particular, the walls of faults will have moved parallel to the plane of the discontinuity and,
in the more general sense, faults are regarded as zones with related deformation structures
surrounding the discontinuity, such as secondary fractures and crushing zones (Davatzes
and Hickman, 2010). Fractures and faults can form under both extensional and compres-
sional stress regimes, and both types can be found at a range of scales. Hence, small-scale
faults are frequently observed in the field, as well as large-scale fracturing that can also be
observed on the Earth’s surface and on the surfaces of many other rocky and icy planets
and satellites.

Multiple fractures can grow in the same direction in response to regional stresses,
forming sets that, when superimposed, may form interconnected fracture networks.
Growing fractures will coalesce against preexisting free boundaries or open frac-
tures, establishing a geometric record of the relative age of the intersecting fracture
sets. Thus, younger sets can be recognized, as they will be populated by shorter, more
recent fractures that will have “abutted” against older, preexisting fractures. Fractures
within a growing set will interact and intersect, modifying each other’s growth orien-
tation, length, and aperture. These interactions complicate the relationship between
the orientations of these fractures and the regional stresses that originally led to their
growth.

Fractures and faults in the subsurface have small aspect ratios, meaning that their thick-
ness or aperture is many times smaller than their length. Faults frequently displace layers
relative to one another, whereas fractures are often restricted by geological layers and dis-
play complex cross-cutting relationships. Fractures have varying permeabilities that can
either promote or restrict flow, often depending on the current stress state and possible
geochemical and mechanical processes that may have affected their internal structure. Typ-
ically, fractures have a variable aperture, intersect at small angles, and range in size over
several orders of magnitude. Without loss of generality, rock discontinuities in general will
be referred to as “fractures” in this book. The morphology of individual fractures and frac-
ture networks changes as the rock mass deforms due to stress. These effects are discussed
further in Chapters 3 and 8.
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Fracture Shape

Stand-alone fractures can be considered as planar surface inclusions in a volumetric
domain. In two-dimensional cut-planes of a fractured rock mass, such as outcrops and
cliffs, fractures appear as lines and sets of lines that may be planar or curved and often
align and organize to form larger, organized structures. In three dimensions, fractures can
be approximated by planar disks or rectangular surfaces (Adler et al., 2012). Their shapes
are dictated by a combination of effects, due to the medium in which they grow, and other
structures with which they interact. In layered media, fractures are quick to intersect the
boundaries of the rock and form rectangular shapes. When intersecting each other in
layered media, fractures often create a distribution of “blocks” that effectively subdivide
the rock into smaller regions.

In monolithic rocks, such as granites, fractures tend to grow unimpeded, until reach-
ing the boundaries of other fractures or discontinuities. In these media, fractures can be
approximated by low-aspect ratio, flat spheroidal or ellipsoidal inclusions that are initially
disk-shaped. As they grow, shapes may become sub-planar, curved, or even shaped like
complex polyhedral surfaces. Once enough fractures intersect, they may become one larger
fracture, or they may intersect to the point that they fragment the rock and subdivide the
rock into smaller, disconnected sub-domains.

As fractures grow, their proximity locally overwrites regional stress conditions, effec-
tively rotating stresses around the moving crack tips. This may lead to hooking, bending,
intersection, or arrest of the fracture. When fractures interact during growth, their tips may
hook against another fracture, as can be seen in Fig. 1.4a. Interactions can be systematically
quantified using “interaction maps” that describe the effect of relative orientation as well
as distance between fractures on interaction (Thomas et al., 2017).

The results of multiple numerical simulations that quantify interaction between a static
fracture and a secondary fracture that is located near the first fracture are summarized
in Fig. 1.4. For each location, represented by a point on the graph, the intensity of the
interaction is plotted between white (no interaction) and black (strong interaction).
A one-meter-long static fracture is located at the origin. Each dot represents a simulation,
with a second fracture that is centered at the dot. The graph summarizes the results of
eighty numerical simulations. The gray-scale values of CI and CII capture the relative
tensile and shear stress intensity concentration, respectively, of a system subjected to
uniaxial extension, containing the static fracture and the secondary fracture (Thomas
et al., 2017). For tension, fractures placed to the right and above the static fracture
yield the greatest interaction. For shear, the interaction is substantially lower than that
in tension.

The parameter 𝜀I (not to be confused with strain) indicates whether the relative stress
measure CI is tensile (black) or compressive (white). The plots of 𝜀I show that in regions
ahead of the tip, fractures promote each other’s growth, whereas growth in the region
above the fracture is inhibited. For secondary fractures placed close to the static fracture,
the magnitude of stress concentration is much higher than if placed away from the fracture.
Thus, fractures aligned with each other will tend to promote each other’s growth, whereas
fractures that are stacked parallel to each other will tend to inhibit each other’s growth
(Thomas et al., 2017).
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Figure 1.4 Interacting fractures. (a) A fracture hooks and coalesces with another fracture. Graphs
(b) and (c) summarize the results of multiple numerical simulations that quantify interaction
between a static fracture and a secondary fracture that is located near the first. The intensity of the
interaction varies between no interaction (white) and strong interaction (black), quantified in terms
of tensile (b) and shear (c) stresses. Dark areas in (d) show regions of tension, and light areas show
regions of compression. See the text for further details.

Fracture Length

The length of a fracture is defined by the geometric extent of the curving plane that follows
the fracture surface. In the two-dimensional case, fracture length is easily identified
with the extent of the fracture and is also proportional to the fracture surface area. In three
dimensions, the “length” must take into account the varying geometry that a fracture may
present. If fractures are represented by circular disks, the length can be identified with the
diameter. For fractures represented by rectangular shapes, length is defined as the measure
of its longest side. For nonplanar, complex fracture shapes, length can be approximated
using the definition of an equivalent radius or an equivalent extent measure, such as

Lf = 2
√

Af∕𝜋, (1.1)

where Lf [m] is the fracture “length” and Af [m2] is its surface area, when the fracture is
thought of as a two-dimensional surface embedded in three-dimensional space.

Observing and characterizing fracture lengths presents a challenge, both in the sub-
surface and in surface outcrops. In layered media, the trace of the fracture on the rock
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face is representative of its length. In other cases, such as on the face of a tunnel or the
edge of a cliff, intersecting fractures can be “traced.” The trace length of a fracture is the
intersection of the fracture with the wall at an arbitrary plane, and therefore its length may
not be representative of the actual length of the fracture, in addition to being subject to
sampling bias.

For a quasi-heterogeneous brittle material, such as most rocks, flaws and small cracks
that initially approximately follow a Gaussian size distribution will concentrate stress at
their tips during deformation, leading to growth. In particular, flaws with low aspect ratios
(e.g., less than 0.1) will tend to grow, align, and coalesce, forming small fractures and thereby
leading to even more growth. As fractures grow, their lengths differentiate further, as some
fractures are subjected to substantially more growth than others. This variability in lengths
is a result not only of the in situ and deformation stresses but also of the interaction between
the fractures, faults, and other heterogeneities in the rock. It follows that fracture length dis-
tributions are usually described using length–frequency relationships. These relationships
are based primarily on geological outcrop observations, as fracture lengths cannot readily
be measured in boreholes, nor can they be easily interpreted using geophysical imaging,
using current techniques.

Fracture length distributions from the meter up to the kilometer scale follow a power-law
distribution (Barton, 1995; Bonnet et al., 2001). An example of this behavior can be observed
at the Forsmark site (Munier, 2004) that has been chosen for the geological disposal of
nuclear waste in Sweden. Detailed fracture trace mappings of the site illustrate the per-
vasive nature of faults and fractures. Fractures of tens of meters in length can be identified
on the scale of tunnel excavations, whereas single-kilometer-long fault discontinuities span
the extent of the entire site.

The size distribution across these scales can be approximated by a power-law distribution
of the form

f (L) = bL−n
, (1.2)

where L is the fracture length (written here without the subscript f , for notational sim-
plicity), b is a proportionality coefficient for the relationship between amount of fractures
and their length, and n is an exponent, sometimes referred to as the “fractal dimension”
of the network. The latter term is often used to describe the exponent, despite the fact that
fractures in a network can obey a power-law size distribution without forming a fractal
geometry (Munier, 2004). It follows from Eq. (1.2) that f (L)dL equals the number of frac-
tures with lengths in the range of [L, L+ dL]. The exponent n generally varies between
1 and 3.5, with a “typical value” around 2, with factors such as stress history, linkage and
connectivity, scale, and sampling bias affecting the value. The value of b, also known as the
density factor, varies over a much wider range: between 10−3 and 105 for faults and between
1 and 100 for fractures, as it depends on n and on the minimum and maximum values of
the fracture radii within the network (Bonnet et al., 2001).

The fact that fractures are consistently observed to follow a power-law size distribution
suggests that, at any scale of investigation, a single fracture could be expected to control
the observed domain. This hints at a lack of separation of scales between fractures and the
domain of interest, which has led to the development of numerical models that represent
fractures explicitly (Cundall, 1980; Long et al., 1982) rather than as part of a homogenized
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continuum. This approach has been termed “discrete fracture modeling” (DFM), which
indicates that fractures and intact rock are both explicitly represented and governed by
separate sets of equations (e.g., Geiger et al., 2004).

Fracture Aperture

The aperture of a fracture, usually denoted by h [m], is a scalar quantity that reflects
the physical separation between the walls of a fracture at any point in the nominal
fracture plane. Apertures capture the variable distance between fracture walls along their
geometry. Although many slightly different definitions of aperture have been proposed
(cf ., Oron and Berkowitz, 1998), the simplest and basic definition is that the aperture
is the distance between the two opposing fracture faces, as measured perpendicularly
to the nominal fracture plane. Apertures at depth can be observed and quantified when
drilling boreholes and can be measured in outcrops. Fractures that are open will increase
the permeability of a rock. Fractures that are “closed,” with their walls in contact, are
less permeable but still retain residual permeability, as explained in Chapter 3. Dis-
continuities can also seal if they are filled with mineral cement, resulting in a drastic
reduction of their permeability (see Fig. 1.5a, b). The resulting veins have a thickness
that reflects the aperture of the fracture at the time of precipitation (Vermilye and
Scholz, 1995).

For a favorably oriented disk-shaped fracture under tension, apertures will be largest at
the center and will reduce to zero at the fracture tips. Some analytical and numerical mod-
els assume that fractures have only a single aperture, which may be representative (for
example, on average) of the aperture of the fracture. Some numerical models are able to
capture apertures as a property that varies along the fracture surface and may change due
to mechanical, thermal, or chemical changes in the rock, or due to fluid traveling through
the rock (see Chapter 8). Due to the coalescence of smaller fractures into single larger frac-
tures, as shown in Fig. 1.5a, the shape of the fracture may have variations in orientation
that can translate into variations of the aperture.

(a) (b)

Figure 1.5 Fracture arrays. (a) Interacting fractures on a weathered rock form an array that has
linked into a single larger fracture. (b) An array of fractures (top) has formed next to a larger
fracture (bottom). These fractures are mineralized, and their apertures, in white, are captured by the
precipitation of dissolved rock during regional deformation.
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Fracture apertures, which control fracture permeability, are responsive to the history of
deformation of the fracture surface and result in an uneven distribution of flow along the
fracture surface in the form of channeling (Tsang and Tsang, 1989). This leads to a lower
permeability of the fracture as compared to the length-dependent permeability assumption
(Lang et al., 2015). There are multiple factors , in addition to fracture network topology
and connectivity, such as in situ stresses, which may strongly affect the enhancement or
reduction of permeability during fracture growth and intersection (Paluszny and Matthäi,
2010).

The linear elastic deformation of the matrix predicts apertures that scale linearly with the
length of the (isolated) fracture (Olson, 2003):

hmax = (1 − 𝜈)𝜎
G

Lf , (1.3)

where hmax is the maximum aperture of the fracture, 𝜎 is the effective driving stress, 𝜈 is
Poisson’s ratio, and G is the shear modulus of the rock matrix, which for an isotropic homo-
geneous material is related to the Young’s modulus by E = 2G(1+ 𝜈). The aspect ratio of a
fracture, 𝛼 [–], is usually defined by

𝛼 = hmax ∕Lf . (1.4)

Measurements and simulations over multiple scales yield a log-linear distribution of
aperture-length distributions (Renshaw and Park, 1997) that follow a bi-linear distribu-
tion that shifts when the length of the fracture transitions from the small to the large
scale. Based on field measurements of mineralized veins and igneous dykes in the field,
aperture–length relationships can be expressed as

hmax = C (Lf )e
, (1.5)

where C is the pre-exponential constant, which ranges from 7× 10−4 to 0.43, and e is the
power-law scaling exponent, which ranges between 0.38 and 0.41 (Olson, 2003).

This shift is not attributed to a difference in the mechanical process of fracture growth,
but rather to the complexity of the heterogeneities that emerge at larger scales that affect
the manner in which stress perturbations induced by larger fractures affect smaller frac-
tures. Specifically, it is observed (Renshaw and Park, 1997) that for the small scale, when
log(Lf )≤ log(Lo), the behavior is super-linear, with s1 > 1, and

log(hmax ) = s1[log(Lf ) − log(Lo)] + log(h0), (1.6)

where s1 > 1 ranges from 1.76 to 2.54. For larger fractures, for which log(Lf )> log(Lo), the
behavior is approximately linear, with

log(hmax ) = s2[log(Lf ) − log(Lo)] + log(h0) ≈ [log(Lf ) − log(Lo)] + log(h0), (1.7)

where s2 ranges between 0.70 and 1.28, with log(Lo)∈ [−0.17, 1.26] log10-m. In addition, a
sublinear relationship between length and aperture has also been reported, based on the
measurement of mineralized fractures in the field. Figure 1.6 shows the length-to-aperture
scaling laws that were proposed by Renshaw and Park (1997) based on various field data.
The length-to-aperture ratio that corresponds to a uniform aspect ratio of 0.01 is shown, for
comparison.



�

� �

�

12 1 Genesis and Morphology of Fractures in Rock

102

101

100

10–1

10–2

10–3

10–4

10–5

10–6

10–1 100 101

Aspect ratio = 0.01

s1 = 2.5, s2 = 1.25
s1 = 1.8, s2 = 1

Fracture length, L (m)

Fr
ac

tu
re

 a
pe

rt
ur

e,
 h

 (
m

)

102 103

Figure 1.6 Length–aperture scaling law proposed by Renshaw and Park (1997), plotted from
Eqs. (1.6) and (1.7), for the case {log10(Lo) = 0.25, log10(ho) = −2}, for two different pairs of the
parameters {s1, s2}. The case of a uniform aspect ratio of 0.01 is also plotted for comparison.
Source: Adapted from Renshaw and Park (1997).

Fracture Surface Roughness

During their growth, fracture surfaces accrue small deviations from their original plane of
nucleation. Fracture walls are not perfectly planar, and the small variations off the plane
constitute the “roughness” of the fracture walls. Roughness exists at many length scales in
rock fractures and can be approximated by a Gaussian height distribution and self-affine
organization (Brown and Scholz, 1985). Self-affine surfaces form a fractal geometry local
to the fracture surface, with statistical invariance under a scale transformation that has an
anisotropic aspect ratio:

Δx → 𝜁 Δx, (1.8)

Δh → 𝜁
HΔh, (1.9)

whereΔx = (x, y) is the fracture in-plane coordinate vector, 𝜁 is a constant that quantifies the
magnitude of the transformation, h is the height of the fracture surface above some nominal
plane, and H is the Hurst exponent, which lies between 0 and 1. The relation between the
Hurst exponent, which describes the “jaggedness” of the surface, and the fractal dimension
Df of a two-dimensional surface, can be expressed as

H = 2 − Df , (1.10)

whereas for a three-dimensional surface, the relationship is

H = 3 − Df . (1.11)

Tensile fractures follow a nearly universal scaling exponent of H ≈ 0.8, as measured for
a range of different rock types and grain size distributions (e.g., Poon et al., 1992). The fact
that the fractal geometry is statistically invariant implies that when portions of a surface
profile are magnified, the same structure becomes apparent at the smaller scale again and
again (see Figs. 1.7 and 1.8).


