

FRIEDRICH KRÜGER

Schall- und Erschütterungsschutz im Schienenverkehr

Grundlagen der Schall- und Schwingungstechnik
– Praxisorientierte Anwendung von Schall- und
Erschütterungsschutzmaßnahmen

3., überarbeitete und erweiterte Auflage

expert^{*}

Schall- und Erschütterungsschutz im Schienenverkehr

Friedrich Krüger

Schall- und Erschütterungsschutz im Schienenverkehr

Grundlagen der Schall- und Schwingungstechnik – Praxisorientierte Anwendung von Schall- und Erschütterungsschutzmaßnahmen

3., überarbeitete und erweiterte Auflage

Umschlagabbildung: © iStock.com/golero

Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.dnb.de abrufbar.

DOI: https://doi.org/10.24053/9783816984825

© 2023 · expert verlag

– Ein Unternehmen der Narr Francke Attempto Verlag GmbH + Co. KG Dischingerweg 5 \cdot D-72070 Tübingen

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Verlages unzulässig und strafbar. Das gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Alle Informationen in diesem Buch wurden mit großer Sorgfalt erstellt. Fehler können dennoch nicht völlig ausgeschlossen werden. Weder Verlag noch Autor:innen übernehmen deshalb eine Gewährleistung für die Korrektheit des Inhaltes und haften nicht für fehlerhafte Angaben und deren Folgen. Diese Publikation enthält gegebenenfalls Links zu externen Inhalten Dritter, auf die weder Verlag noch Autor:innen Einfluss haben. Für die Inhalte der verlinkten Seiten sind stets die jeweiligen Anbieter oder Betreibenden der Seiten verantwortlich.

Internet: www.expertverlag.de eMail: info@verlag.expert

CPI books GmbH, Leck

ISBN 978-3-8169-3482-0 (Print) ISBN 978-3-8169-8482-5 (ePDF)

SCHALLSCHUTZ Produkte > ein Ergebnis RUHE!

STRAILastic IP

Das Infill Panel zur Befestigung an Geländern.

STRAILastic_mSW 360

Die mini-Schallschutzwand befestigt an der Schiene oder direkt auf der Schwelle.

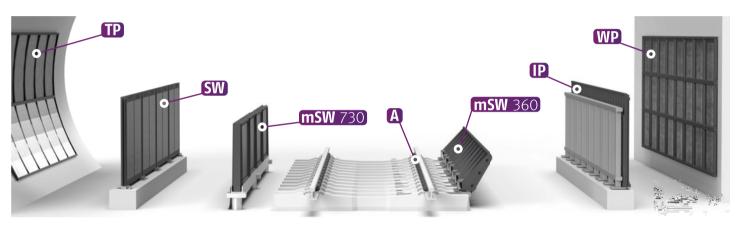
STRAILastic_mSW +

Weiterentwicklung der mSW, befestigt an Erdschrauben oder Schiene.

STRAILastic SW

Die Schallschutzwand, freistehend und frei platzierbar.

STRAILastic_A inox 2.0


Der Schienenstegdämpfer, direkt an der Lärmquelle.

STRAILastic_WP

Die Wand Platte wird direkt an bestehende Wände befestigt.

STRAILastic TP

Die Tunnel Platte passt sich perfekt der Rundung im Tunnel an.

Ihre Vorteile - die all unsere Systeme bieten.

schnelle Baugenehmigung > Einbau ohne Fundament

Lärm Hot Spotsentschärfen > schnelle Lieferzeit

kurze Sperrzeiten schnelle & einfache Motage

keine Materialermüdung durch Vibrationen

voller Lärmschutz ein- und zweiseitige Montage

bruchsicher > faserverstärkte Gummimischung

freie Sicht > an der Grenze zum Regellichtraum

UV- & ozonbeständig EPDM ummantelt

Inhalt

Autorer	ivorwort	zur dritten Auflage	16
Häufig ¹	verwende	ete Formelzeichen und Abkürzungen	18
_	a) Groß	Sbuchstaben	18
	b) Kleir	nbuchstaben	20
	c) Gried	chische Buchstaben	21
	d) Indic	ces	22
	e) Abki	irzungen (siehe auch Indices)	23
1	Einführ	rung	28
	1.1	Problemstellung und Lösungsansätze	28
	1.2	Forschung und Entwicklung (FuE)	31
	1.2.1	Überblick	31
	1.2.2	Projekte	33
	1.3	Betroffenheiten	34
	1.3.1	Frequenzbewertung	34
	1.3.2	Überblick	35
	1.3.3	Lärm	38
	1.3.4	Straßenverkehrslärm vs. Schienenverkehrslärm	39
	1.3.5	Erschütterungen	41
	1.4	Wirtschaftlicher Faktor, Schall-Verursacher	42
	1.5	Straßenbahn versus Eisenbahn	44
	1.6	Literaturhinweise	46
	1.6.1	Literatur zu Kapitel 1	46
	1.6.2	BMFT-Forschungsberichte (Nahverkehr)	48
	1.6.3	Sonstige Literatur zum Thema Schall- und Erschütterungen an	
		Schienenwegen	49
2	Physika	alische Grundlagen – Anwendungen im Schienenverkehr	51
	2.1	Einführung in die Schwingungslehre	51
	2.1.1	Periodische Schwingungen	51
	2.1.2	Schwingungsüberlagerung	55
	2.1.3	Elemente eines Schwingungssystems	61
	2.1.4	Freie gedämpfte Schwingungen	63
	2.1.5	Gedämpfte erzwungene Schwingungen	66
	2.1.6	Nichtperiodische und stochastische Schwingungen	69
	2.1.7	Übertragungsfunktion und Modalanalyse	70
	2.2	Grundlagen der Wellenlehre und Akustik	73
	2.2.1	Wellenarten und Wellenausbreitungsgeschwindigkeiten	
	2.2.2	Eigenschaften von Wellen	77

	2.2.3	Schallfeldgrößen	78
	2.2.4	Beziehungen zwischen Körper- und Luftschall	. 80
	2.2.5	Längenbezogener Schallleistungspegel	
	2.3	Ausbreitung von Erschütterungen und Luftschall	89
	2.4	Literatur zu Kapitel 2	
3	Schall-	und Schwingungspegel, Umgang mit Pegelwerten	94
	3.1	Einführung	. 94
	3.2	Schallpegelmaße	95
	3.3	Mittelungspegel	. 97
	3.4	Addition, Mittelung und Subtraktion von Pegeln	
	3.4.1	Pegeladdition und Pegelmittelung	98
	3.4.2	Energetische Pegelsubtraktion	104
	3.5	Schallfeld- und Schwingungsgrößen	. 105
	3.6	Pegelberechnungen	. 107
	3.7	Pegel in der Schall- und Schwingungsmesstechnik	111
	3.8	Umrechnung von Pegelwerten	113
	3.9	Addition von Pegeln – Herleitung	114
	3.10	Pegelabhängigkeit von der Geschwindigkeit	115
	3.11	Literatur zu Kap. 3	115
4	Schien	enfahrzeuge	117
	4.1	Unterscheidung der Schienenverkehrssysteme	117
	4.1.1	Vorbemerkungen	. 117
	4.1.2	Unterscheidung aus gesetzlicher/rechtlicher Sicht	. 117
	4.1.3	Unterscheidung aus technischer/betrieblicher Sicht	119
	4.2	Fahrzeug-Projektierung unter akustischen Gesichtspunkten	. 122
	4.2.1	Vorbemerkungen	. 122
	4.2.2	Allgemeine Randbedingungen	122
	4.2.3	Akustisch relevante Teilsysteme und Bauteile	123
	4.3	Akustik-Management bei der Fahrzeugbeschaffung	133
	4.3.1	Einführung	. 133
	4.3.2	Verfahrensablauf/Einzelschritte	134
	4.4	Instandhaltung	139
	4.5	Literatur zu Kapitel 4	140
5	Luft- u	ınd Körperschallanregung	142
	5.1	Grundlagen der Schallanregung und -abstrahlung	. 142
	5.2	Dominante Schallquellen	143
	5.3	Dominante Anregungsfrequenzen	. 146
	5.4	Schallanregung im Rad/Schiene-Kontaktbereich	148
	5.4.1	Überblick	148
	5.4.2	Rollgeräusche	149
	5.4.3	Stoßgeräusche	164

	5.4.4	Kurvengeräusche	. 166
	5.4.5	Sonstige Geräusche	173
	5.5	Impedanzen und Admittanzen	173
	5.6	Literatur zu Kapitel 5	. 178
6	Messui	ng von Luft- und Körperschall – Messergebnisse	180
	6.1	Schallmessungen – Übersicht	. 180
	6.2	Messgeräte	183
	6.2.1	Schallpegelmesser	183
	6.2.2	Zusatzgeräte	. 185
	6.2.3	Umwelteinflüsse und allgemeine Vorgehensweise	185
	6.2.4	Statistische Sicherheit	. 187
	6.3	Messung von Außengeräuschen	. 189
	6.3.1	Randbedingungen, Messpunkte	189
	6.3.2	Messgrößen	. 191
	6.3.3	Längenbezogener Schallleistungspegel	. 195
	6.3.4	Zusammenhang zwischen verschiedenen Schallpegelgrößen	. 198
	6.4	Messergebnisse Außengeräusche – Beispiele	. 200
	6.4.1	Vorbeifahrgeräusche Stadtbahnen	. 200
	6.4.2	Rundummessungen	. 204
	6.5	Messung von Innengeräuschen	206
	6.6	Sonstige Schallmessungen	. 211
	6.6.1	Nachhallzeit	211
	6.6.2	Schalldämmung	213
	6.6.3	Intensitätsmessungen	214
	6.7	Beispiel für eine Schallpegelauswertung – Außengeräusche	. 217
	6.7.1	Vorgaben	217
	6.7.2	Festlegungen für eine Analyse der Vorbeifahrgeräusche	. 218
	6.7.3	Ergebnisse	219
	6.7.4	Zusammenhang verschiedener Schallpegelgrößen	. 224
	6.8	Ergänzende Messungen	. 226
	6.8.1	Vorbemerkungen	. 226
	6.8.2	Strukturuntersuchungen	. 227
	6.8.3	Rauheit von Schiene und Rad	. 228
	6.8.4	Ermittlung des Körperschallverhaltens von Bauteilen	. 230
	6.8.5	Gleisabklingrate TDR	
	6.8.6	Anfahrwinkel eines Rades an der Schiene	231
	6.8.7	Schallentwicklung beim Anfahren eines Fahrzeugs	232
	6.9	Akustische Überwachung von Fahrzeugen und Gleisen	. 234
	6.9.1	Überblick	
	6.9.2	Automatische Erkennung einer Vorbeifahrt	. 236
	6.9.3	Überwachung von Rädern	. 237
	6.10	Literatur zu Kapitel 6	

7	Schallmi	inderungsmaßnahmen	241
	7.1	Allgemeine Grundlagen	241
	7.1.1	Überblick	
	7.1.2	Primäre Maßnahmen	241
	7.1.3	Sekundäre Maßnahmen	242
	7.2	Grundlagen des "Schallarmen Konstruierens"	245
	7.3	Betriebszustände und Anhaltwerte	
	7.3.1	Standardbetriebszustände	248
	7.3.2	Sonderbetriebszustände	249
	7.4	Schallminderungsmaßnahmen im Schienenverkehr	250
	7.4.1	Überblick	250
	7.5	Schallminderungsmaßnahmen Fahrzeug – Außengeräusche	
	7.5.1	Einführung	
	7.5.2	Anfahr- und Bremsgeräusche	
	7.5.3	Konstante Geschwindigkeit	
	7.5.4	Radbauart	
	7.5.5	Radschürzen, Radblenden	
	7.5.6	Radschallabsorber	
	7.5.7	Komponentenerprobungsträger "Leiser Güterzug"	259
	7.5.8	Messergebnisse "Leiser Stadtbahnwagen"	
	7.6	Maßnahmen im Bereich Rad/Schiene	
	7.6.1	Die glatte Radlauffläche	260
	7.6.2	Glatte, riffelfreie Schienenfahrfläche	
	7.6.3	Schlupfriffeln auf geraden Streckenabschnitten durch Anfahrt von Zügen.	
	7.6.4	Schlupfwellen in Kurven	
	7.6.5	Minderungsmaßnahmen im Rad-/Schienenbereich	
	7.7	Schallschutzmaßnahmen am Fahrweg	
	7.7.1	Einführung	
	7.8	Schallminderungsmaßnahmen im Bereich der Ausbreitung	
	7.8.1	Schallschutzwände und -wälle	
	7.8.2	Wirkung	272
	7.8.3	Passiver Schallschutz in Gebäuden	276
	7.9	Schallminderungsmaßnahmen Streckenführung	276
	7.9.1	Gleisbögen	276
	7.9.2	Gleise auf Brücken/Viadukten und in Einschnitten	277
	7.10	Besonders überwachtes Gleis	280
	7.11	Fahrzeuginnengeräusche – Schalldämmung Wagenkasten	281
	7.11.1	Überblick	
	7.11.2	Einflüsse auf den Innenschallpegel	
	7.12	Einrichtungen in Tunnel-Haltestellen	
	7.13	Kurvengeräusche	
	7.13.1	Übersicht	
	7.13.2	Radsatzzwangssteuerung	290
	7.13.3	Maßnahmen in einem Gleisbogen	
	7.13.4	Reibwertbeeinflussung zwischen Rad und Schiene	

	7.13.5	Rad-/Schiene-Materialpaarung	. 295
	7.13.6	Absorber und Dämpfung	. 296
	7.13.7	Schienendämpfungselemente	. 298
	7.13.8	Asymmetrische Schienenprofile	. 299
	7.13.9	Beobachtungen zum Auftreten von Quietschgeräuschen	. 300
	7.13.10	Schallschutzmaßnahmen für Anwohner	. 301
	7.13.11	Geschwindigkeitsabhängigkeit – Vorbeifahrpegel versus Stundenpegel	303
	7.13.12	Schallarme Fahrzeuge – konstruktive Vorgaben	304
	7.14	Beispiel für eine Rekonstruktion von Straßenbahnfahrzeugen	305
	7.15	Fazit	307
	7.15.1	Vorbemerkungen	307
	7.15.2	Fahrzeug	307
	7.15.3	Ausbreitung	. 311
	7.15.4	Maßnahmen speziell bei Eisenbahnen und deren Wirkung	311
	7.15.5	Maßnahmen gegen Kurvengeräusche	
	7.15.6	Maßnahmen gegen Rollgeräusche	. 315
	7.16	Literatur zu Kapitel 7	
	7.16.1	Ergänzende Literatur zum Thema Schallminderung	. 321
8	Prognos	se- und Bewertungsverfahren für Luftschall	322
	8.1	Überblick	. 322
	8.2	Verkehrslärmschutzverordnung	
	8.2.1	Anwendungsbereich	
	8.2.2	Vergleich Eisenbahn – Straßenbahn	. 324
	8.2.3	Basis für die Angaben in der 16. BImSchV	
	8.3	Einflüsse auf dem Ausbreitungsweg und Bahnhöfe	
	8.4	Durchführung einer schalltechnischen Untersuchung nach 16. BImSchV	
	8.4.1	Überblick	
	8.4.2	Wesentliche Änderung	
	8.4.3	Erheblicher baulicher Eingriff	
	8.4.4	Vorgehensweise	
	8.4.5	Untersuchungsgebiet	
	8.4.6	Beurteilung	
	8.5	Literatur zu Kapitel 8	
	8.5.1	Weitergehende Literatur zum Thema	335
9	Rechtss	chutz der Anwohner vor Lärm des Schienenverkehrs	
	9.1	Einleitung	337
	9.1.1	Thematische Abgrenzungen	. 337
	9.1.2	Beeinträchtigung der Bevölkerung durch Schienenverkehrslärm	
	9.1.3	Zielwerte des Schutzes vor Lärm	. 340
	9.2	Grundsätzliche Strategien zum Schutz vor Schienenverkehrslärm in	
		Deutschland	
	9.2.1	Grundsätzliche Minderungskonzepte	342

	9.2.2	Instrumentarien des Schutzes	343
	9.2.3	Zuständigkeiten	344
	9.3	Ordnungsrechtliche Vorschriften zum Schutz der Bevölkerung vor	
		Schienenverkehrslärm	344
	9.3.1	Verwaltungsrecht	345
	9.3.2	Verfassungs- und Privatrecht	346
	9.4	Vorschriften für die Geräuschemissionen von Schienenfahrzeugen	347
	9.4.1	Anwendungsbereich	348
	9.4.2	Messverfahren	349
	9.4.3	Geräuschgrenzwerte und Vorbeifahrgeräusch	349
	9.4.4	Anfahrgeräusch	350
	9.4.5	Standgeräusch	351
	9.5	Geräuschmindernde Vorschriften für die Fahrwege	351
	9.6	Vorgaben für die Geräuschemissionen in Nahverkehrsplänen	352
	9.7	Vorschriften für die Geräuschimmissionen neuer bzw. wesentlich	
		geänderter Schienenwege	353
	9.7.1	Grundsätzliches	353
	9.7.2	Die Umweltverträglichkeitsprüfung	353
	9.7.3	Prüfung auf Lärmvorsorgeansprüche nach 16. BImSchV	354
	9.8	Schutz vor Schienenverkehrslärm im Rahmen der Bauleitplanung:	
		Problemfeld Heranrückende Wohnbebauung	362
	9.9	Betriebsbeschränkungen	363
	9.9.1	Das Schienenlärmschutzgesetz von 2017	364
	9.9.2	Die Europäischen Betriebsbeschränkungen ab 2024	364
	9.10	Lärmsanierung an Schienenwegen	365
	9.10.1	Das nationale Lärmsanierungsprogramm	366
	9.10.2	Die EU-Richtlinie zum Umgebungslärm	368
	9.10.3	Das nationale Umrüstprogramm für Güterwagen	371
	9.11	Bewertung der Schutzregelungen	374
	9.11.1	Deutliche Verbesserungen der Schutzregelungen	374
	9.11.2	Lücken und Mängel im gegenwärtigen Regelwerk	375
	9.11.3	Vorschläge für einen verbesserten Schutz vor Straßen- und	
		Schienenverkehrslärm	378
	9.12	Fazit	379
	9.13	Literatur	380
10	Oberba	u im Schienenverkehr	386
	10.1	Anforderungen an den Oberbau	
	10.2	Begriffsbestimmungen	387
	10.3	Bestandteile des Oberbaus	
	10.3.1	Überblick	387
	10.3.2	Schienen	388
	10.3.3	(Schienen-) Kammerfüllelement	389
	10.3.4	Schwellen	
	10.3.5	Spurstangen	

Inhalt

	10.3.6	Schienenbefestigung	392
	10.3.7	Gleis und Weichen	393
	10.3.8	Flachrille/Tiefrille	394
	10.3.9	Schienenauszugsvorrichtung und -entwässerungskasten	395
	10.4	Oberbau-Arten	396
	10.4.1	Offener Oberbau	396
	10.4.2	Geschlossener Oberbau	397
	10.4.3	Oberbau mit planmäßiger Vegetation	397
	10.5	Oberbau-Formen	398
	10.6	Akustisch wirksame Instandhaltungsmaßnahmen	400
	10.7	Literatur zu Kapitel 10	402
11	Erschü	tterungsanregung	403
	11.1	Schwingungsanregung – Überblick	403
	11.2	Schwingungsanregung – Schienenverkehr	404
	11.2.1	Grundlagen	404
	11.2.2	Spezielle Fragestellungen zur Anregung und Ausbreitung bei der Eisenbahn	409
	11.3	Erregerspektren – Schwinggeschwindigkeit	
	11.4	Ermittlung von Erregerkraftspektren	
	11.5	Literatur zu Kapitel 11	
12	Messur	ng von Erschütterungen und Sekundärschall	422
12	12.1	Schwingungs- und Sekundärschallmessungen – Überblick	
	12.2	Erschütterungsmessungen	
	12.2.1	Aufnehmer, Messsystem	
	12.2.2	Messpunkte	
	12.2.3	Ankopplung	
	12.2.4	Triggerung	
	12.3	Auswertung von Schwingungsmessungen	
	12.3.1	Überblick	
	12.3.2	Ermittlung von Beurteilungsgrößen	
	12.3.3	Grundlage für Prognosen	
	12.3.4	Bewertung von schwingungsmindernden Maßnahmen	
	12.3.5	Messungen zur Ermittlung von Einflussgrößen	
	12.4	Sekundärschallmessungen	
	12.4.1	Messung	440
	12.4.2	Auswertung	
	12.5	Bodenkennwerte	
	12.6	Literatur zu Kapitel 12	443
13	Schwin	gungsminderung im Schienenverkehr	446
	13.1	Einführung	446
	13.2	Minderung der Anregung – Überblick	448

	13.3	Elastische Lagerungen im Oberbau	. 452
	13.3.1	Einführung	. 452
	13.3.2	Minderungsmaßnahmen – aktive / passive	. 454
	13.3.3	Wirkprinzipien	
	13.3.4	Grundkonzepte und Ausführungsvarianten	. 457
	13.4	Beispiele und Ausführungsvarianten	. 458
	13.4.1	Einführung	. 458
	13.4.2	Elastische Schienenlagerungen	. 458
	13.4.3	Elastische Schwellenlager	. 462
	13.4.4	Schotteroberbau mit Unterschottermatten	. 463
	13.4.5	Masse-Feder-Systeme mit Elastomerlagern	. 465
	13.4.6	Masse-Feder-Systeme mit Stahlfedern	. 470
	13.5	Klassifizierung der Wirksamkeit	. 474
	13.6	Mess- und Rechenverfahren, Prognosen	. 476
	13.7	Wirksamkeit und Messergebnisse	
	13.8	Masse-Feder-Systeme mit elastischer Flächenlagerung – Berechnung der	c
		Minderung	. 479
	13.8.1	Prinzip	. 479
	13.8.2	Theoretische Betrachtung	. 480
	13.8.3	Gleiskinematik	. 481
	13.8.4	Gleisdynamik- Einfügungsdämm-Maß	. 486
	13.9	Einbauten im Boden	. 495
	13.10	Elastische Lagerung von Gebäuden	. 496
	13.10.1	Allgemeines	. 496
	13.10.2	Auslegung der elastischen Gebäudelager	
	13.11	Elastische Materialien, Baudurchführung, Sanierung, Gebäudeabfederun	g
		– Beispiele	. 497
	13.11.1	Verwendete Materialien für elastische Elemente	. 497
	13.11.2	Masse-Feder-Systeme im Straßenbereich – Herstellung und	
		Bauausführung	. 499
	13.11.3	Gleis-Umbaumöglichkeiten zur erschütterungstechnischen Sanierung	. 501
	13.11.4	Elastische Gebäudelagerung	. 503
	13.12	Literatur zu Kapitel 13	. 510
	Literatu	ır zu Kapitel 13	. 511
14	Drogno	severfahren für Erschütterungen und Sekundärschall	512
14	14.1	Einleitung	
	14.1	Systemidentifikation	
	14.2.1	Direktes Problem	
	14.2.1	Entwurfsproblem	
	14.2.3	Eingangsproblem	
	14.2.3	0 01	
	14.2.4	Identifikationsproblem	
	14.3 14.3.1	Überblick	
	14.3.1	Statistische Verfahren – Einzahlberücksichtigung	
	14.3.2	statistische verfahren – Emzamberucksichtigung	. 525

	14.3.3	Spektrale Prognose-Verfahren	533
	14.3.4	Modelluntersuchungen	550
	14.3.5	Ersatzerreger	
	14.3.6	Sekundärschall	554
	14.3.7	Vergleichende Betrachtung der Verfahren	560
	14.4	Zusammenhang verschiedener Immissionsgrößen	
	14.4.1	Zusammenhang zwischen Erschütterungen und Sekundärschall	
	14.4.2	Abschätzung des KB _{FTi,z} – Wertes von alternativen Bewertungsgrößen	
	14.5	Literatur zu Kapitel 14	
15		prechung zum Schienenverkehrslärm, Erschütterungen und Sekundärschall	
	mit Hir	nweisen zur Planfeststellung	568
	15.1	Planfeststellung	
	15.2	Einleitung zum Schienenverkehrslärm	570
	15.3	Exemplarische Verwaltungsrechtsprechung durch ausgewählte	
		Entscheidungen des BVerwG zum Schienenverkehrslärm	575
	15.3.1	Besonders überwachtes Gleis (büG), Verhältnismäßigkeitsprüfung,	
		Verhältnismäßigkeitsschwelle, Sprungkosten	
	15.3.2	Neubau oder Änderung eines Schienenwegs?	
	15.3.3	Methodik, Prognosen, Betriebsprogramm, Schall 03 1990	577
	15.3.4	Betrachtung der Kosten je Schutzfall, Schutzabschnitte, Betriebsprogramm	ı 579
	15.3.5	Verkehrsprognosen, Bedarfsplan, plangegebene Vorbelastung	580
	15.3.6	Grundrechte: Recht auf körperliche Unversehrtheit, Eigentumsgarantie,	
		Inhalts- und Schrankenbestimmungen durch Gesetz	
	15.4	Einleitung zu Erschütterungen und sekundärem Luftschall	584
	15.4.1	Exkurs zu den Regelungen der DIN 4150 [15.16]:	586
	15.4.2	Exkurs zu Schutzmaßnahmen [15.17]:	. 587
	15.5	Exemplarische Verwaltungsrechtsprechung durch ausgewählte	
		Entscheidungen des BVerwG zu Erschütterungen und sekundärem	
		Luftschall	. 587
	15.5.1	DIN4150, Teil 2, Anhaltswerte, sekundärer Luftschall, 24. BImSchV,	
		"Immissionsrichtwerte"	587
	15.5.2	Ausbauvorhaben, Streckenertüchtigung, relevante Zunahme?	
		Anhaltswerte DIN 4150 Teil 2, Entscheidungsvorbehalt bei	
		Prognoseunsicherheit, Erheblichkeitsschwelle	590
	15.5.3	Betriebsbedingte Erschütterungen, Kostengesichtspunkte,	
		Schutzmaßnahmen, Entscheidungsvorbehalt	. 591
	15.5.4	Betriebsbedingte Erschütterungen, plangegebene Vorbelastung,	
		Zumutbarkeitsschwelle für Erschütterungsbelastungen	. 593
	15.6	Literatur und Rechtsprechung zu Kapitel 15	594
16	Prüfted	chnik	
	16.1	Einführung	
	16.2	Schallemissionen – Typprüfungen Fahrzeugeinheiten	
	16.3	Schallemissionen – Oberbaueinfluss	599

	16.4	Erschütterungsemissionen – Einfügedämmung	601
	16.5	In-situ Messungen	602
	16.5.1	Fahrzeuganregung	602
	16.5.2	Simulation der dyn. Radsatzkräfte	604
	16.5.3	Admittanzmessungen Tunnel	. 606
	16.6	Steifigkeitsermittlung von elastischen Schienenlagern	
	16.6.1	Ermittlung im Labor	
	16.6.2	Steifigkeits-Ermittlung bei einer Festen Fahrbahn	610
	16.6.3	Steifigkeits-Ermittlung bei einem Rillenschienengleis	611
	16.6.4	Eigenschwingungen – Radsatz-Gleis	
	16.7	Literatur zu Kapitel 16	614
	16.7.1	Zitierte Literatur	. 614
	16.7.2	Ergänzende Literatur	615
17	Fahrkon	nfort	616
	17.1	Einführung	616
	17.2	Werteziffer (WZ)-Verfahren	618
	17.3	Einwirkung mechanischer Schwingungen auf den Menschen – VDI 2057	620
	17.4	Fahrkomfort für Fahrgäste – ENV 12299 (ERRI C 116-Rp 3)	
	17.4.1	Durchführung der Messungen und Auswertungen	621
	17.4.2	Ergebnisse	622
	17.5	Zusammenhang zwischen den drei Komfortwerten	623
	17.6	Abhängigkeiten	624
	17.6.1	Abhängigkeit von der Fahrbahnart / dem Fahrbahnzustand	
	17.6.2	Abhängigkeit von der Geschwindigkeit	626
	17.6.3	Komfortwerte im normalen Betrieb	
	17.7	Literatur zu Kapitel 17	628
Anhang			629
	A	Begriffe	629
	В	Normen und Richtlinien	653
	B.1	Vorbemerkungen	653
	B.2	DIN-Normen	653
	B.3	DIN (EN)-Normen	656
	B.4	ISO (DIN)-Normen	658
	B.5	VDI-Richtlinien	. 658
	B.6	IEC-Richtlinien	660
	B.7	EU-Normen und Richtlinien	660
	B.8	Vorschriften der Deutschen Bahn AG	661
	B.9	Sonstige Vorschriften	. 662
	C	Datensammlung	664
	C.1	Allgemeine Daten und Beispiele für Messergebnisse	. 664
	C.2	Messergebnisse – Erschütterungen und Admittanzen	674
	C.3	Schalldruckpegel-Terzspektren – Beispiele	
	C.4	Vertikale Eigenfrequenzen – Beispiele	690

Inhalt 1

C.5	Formeln zur rechnerischen Abschätzung der Einfügedämmung	692
C.6	Steifigkeit elastischer Schienenlager	698
C.7	Schallausbreitung – Fahrwegeinfluss	703
C.8	Psychoakustische Größen	708
C.9	Körperschallspektren – Gleise im Tunnel	709
C.10	Prognose von Erschütterungen und Sekundärschall	713
C.11	Zusammenhang zwischen verschiedenen Messwerten – Beispiele	718
C.12	Wellenausbreitung im Boden und Kräfte von Ersatzerregern	722
C.13	Simulation – Stoßanregung Schiene	723
C.14	Gesamtschall	727
C.15	Literatur zu Anhang C	730
Register		732
Abbildungsverz	zeichnis	748
Tabellenverzeic	rhnis	769

Autorenvorwort zur dritten Auflage

Nach 17 Jahren liegt nun eine vollständig überarbeitete, neu strukturierte und ergänzte dritte Auflage vor. Eine wesentliche Basis dieser Neuauflage sind die an der TAE – Technischen Akademie Esslingen e.V. seit 1991 durchgeführten Seminare zu den Themen Schall- und Erschütterungsschutz in Gebäuden neben Schienenverkehrswegen. Weitgehend waren oder sind die Autoren dieser Neuauflage auch Referenten der genannten Seminare. Die für die Seminare erarbeiteten Unterlagen bilden ein wesentliches Fundament für dieses Buch. Bei diesem Buch handelt es sich nicht um ein klassisches Lehrbuch, in den einzelnen Kapiteln werden die in der praktischen Arbeit der Autoren gesammelten Erfahrungen und Erkenntnisse aufbereitet zusammengefasst.

Die Grundlagen der Schall- und Schwingungstechnik sowie dem Rechnen mit Pegelwerten haben sich nicht geändert, die entsprechenden Kapitel sind daher weitgehend aus der vorherigen Auflage übernommen worden. Dies gilt im weitesten Sinn auch für die Anregungs- und Ausbreitungsprozesse sowie die Minderungsmöglichkeiten. Die in diesen Kapiteln dargestellten Bilder und Tabellen wurden ergänzt bzw. durch neue ersetzt oder erweitert. Es wird hier darauf hingewiesen, dass die Bilder, die nicht unmittelbar einem Autor zuzuordnen oder aus der Literatur entnommen worden sind, in der Regel aus der Arbeit von F. Krüger während seiner rund 40-jährigen Forschungsarbeit bei der Studiengesellschaft für Tunnel und Verkehrsanlagen e.V. – STUVA – entstanden sind. Einige Bilder, vor allem diejenigen, die Minderungsmaßnahmen zeigen, wurden von den genannten Firmen freundlicherweise bereitgestellt. Die von F. Krüger erstellten Bilder und Tabellen beruhen weitgehend auf den bei der STUVA durchgeführten öffentlich geförderten Forschungsarbeiten.

Im Jahr 2014 wurde ein neues Berechnungsverfahren für die Luftschallimmissionsermittlung (Anhang 2 zur 16. BImSchV – Schall 03) veröffentlicht, hierauf wird entsprechend eingegangen.

Da sich das gesamte Thema des Buches mit den Auswirkungen der durch den Schienenverkehr verursachten Emissionen und Immissionen befasst, ist es für den Leser hilfreich, hierzu auch die technischen Grundlagen der Schienenfahrzeuge und der vorwiegend angewandten Oberbauformen unmittelbar nachschlagen zu können. Außerdem kommt es in der praktischen Arbeit mit der Materie unweigerlich auch zum Kontakt mit rechtlichen Fragestellungen. Neben der Neustrukturierung des Buches wurden daher ergänzend folgende Kapitel neu aufgenommen: Fahrzeugtechnik (Kapitel 4), Oberbau (Kapitel 10), rechtliche Fragestellungen aus der Sicht eines Rechtsanwalts (Kapitel 15) sowie Fahrkomfort (Kapitel 17). In Kapitel 9 werden die rechtlichen Themen aus der Sicht der Anwohner aktualisiert dargestellt. Eine Zusammenstellung wesentlicher Begriffe ist im Anhang A, die vorrangig für die akustische Arbeit anzuwendenden Normen sind im Anhang B enthalten. Die Darstellung von Daten und Beispielen zeigt Anhang C. Insbesondere die Anzahl der Beispiele wurden gegenüber den früheren Auflagen deutlich erweitert.

Kapitel 2 dient vorwiegend zum Nachschlagen der Grundlagen der Schall- und Schwingungstechnik. Anhand von einigen Beispielen wird deren Anwendung für den Bereich Schienenverkehr aufgezeigt. Intensiver wird dies in den folgenden Kapiteln behandelt.

Im Kapitel 4 "Schienenfahrzeuge" wird ein kurzer Überblick zu den Schienenverkehrssystemen, der Fahrzeug-Projektierung unter akustischen Gesichtspunkten, dem Akustik-Management sowie dem sehr wichtigen und oft unterschätzten Thema der Instandhaltung gegeben.

Im Kapitel 9 "Rechtsschutz der Anwohner vor Lärm des Schienenverkehrs" wird beschrieben, wie der "Staat" die Anwohnerinnen und Anwohner von Bahnstrecken vor dem Schienenverkehrslärm schützt. Die Europäische Union bewirkt durch ihre Vorschriften für die Geräuschemissionen von Schienenfahrzeugen, dass möglichst leise Schienenfahrzeuge in den Verkehr gebracht werden. Das nationale Immissionsschutzrecht sieht zum einen Vorschriften für die Geräuschimmissionen neuer bzw. wesentlich geänderter Schienenwege vor (Lärmvorsorge), zum anderen finanziert der Staat die Lärmsanierung an bestehenden Schienenwegen der Eisenbahnen des Bundes. Die Schutzregelungen und -ziele der Lärmvorsorge sind deutlich verbindlicher und anspruchsvoller als die der Lärmsanierung. Insgesamt sind bei der Minderung des Schienenverkehrslärms in den letzten 20 Jahren große Fortschritte erzielt worden, vor allem bei der Lärmsanierung. Von Relevanz ist auch der Schutz vor Schienenverkehrslärm im Rahmen der Bauleitplanung (Problemfeld "Heranrückende Wohnbebauung").

In Kapitel 10 "Oberbau" werden die Anforderungen an den Oberbau, deren Komponenten und Ausführungsformen sowie die akustisch wirksamen Instandhaltungsmaßnahmen beschrieben.

Neu in dieser Auflage ist Kapitel 15: Dort werden einleitend die Rechtsgrundlagen zur Vorsorge aus Schienenverkehrslärm und zu Erschütterungen aus dem Eisenbahnverkehr skizziert. Diese werden dann anhand ausgewählter Rechtsprechung des Bundesverwaltungsgerichts beispielhaft erläutert.

Kapitel 17 beschreibt Verfahren zur Kennzeichnung des Fahrkomforts aufgrund von Schwingungseinwirkungen auf den Menschen im Fahrzeug. Es werden verschiedene Komfortwerte und deren Zusammenhang dargestellt.

Es wird darauf hingewiesen, dass die in diesem Buch genannten Regelwerke (z. B. Gesetze, Normen und Richtlinien) in bestimmten Abständen überarbeitet oder ergänzt werden. Außerdem werden neue Vorschriften erarbeitet bzw. alte ersatzlos gestrichen. Es ist daher erforderlich die jeweils aktuellen Regelwerke für die Bearbeitung von Projekten heranzuziehen.

Köln, im Oktober 2023 Hartmut Heinrich, München / Manfred Hester, Hamburg / Michael Jäcker-Cüppers, Berlin / Friedrich Krüger, Köln / Thomas Rupp, Karlsruhe

Häufig verwendete Formelzeichen und Abkürzungen

a) Großbuchstaben

Formelzeichen	Einheit	Beschreibung
B'	Nm	bezogene Biegesteife einer Platte
D		
2	-, %	Dämpfungsgrad
D	dB	Schallpegeldifferenz
D_{e}	dB	Einfügungsdämm-Maß (in der Regel als Terzspektrum)
$\mathrm{D}_{\mathrm{e,rel}}$	dB	relatives Einfügungsdämm-Maß
D_n	dB	Norm-Schallpegeldifferenz
E	N/m^2	Elastizitätsmodul
F	N/Hz	Kraft (statisch, dynamisch)
$G_{vv}(f)$	$(mm/s)^2/Hz$	Spektrale Leistungsdichte
G _{mn} (if)	$(m/s)^2/Hz$	Kreuzleistungsspektrum (komplex) aus Systemeingang n und Systemausgang m
$Im{Y}$	m/(Ns)	Imaginärteil der Admittanz
$KB_{F}(t)$	(mm/s)/(mm/s)	Bewertete Schwingstärke mit der Zeitkonstanten τ = 125 ms, alle KB-Werte sind bezogen auf 1 mm/s, daher dimensionslos
$\mathrm{KB}_{\mathrm{Fmax}}$		Maximale bewertete Schwingstärke (Maximalwert von $\mathrm{KB}_{\mathrm{F}}(t)$ für alle gemessenen Zugvorbeifahrten)
KB_{FTi}		Taktmaximalwert (maximaler $KB_F(t)$ -Wert einer Zugvorbeifahrt)
KB_{FTm}	-	Taktmaximal Effektivwert
K(R)	-	Abstandsabhängiger Korrekturwert (Punkt zur Linienquelle)
L	dB	Pegelwert (allgemein)
L_{a}	dB	Schwingbeschleunigungspegel (Körperschall), re $10^{\text{-}6}~\text{m/s}^2$ (früher auch 9,81 g)
$\mathcal{L}_{\mathrm{den}}$	dB(A)	Tag-Abend-Nacht-Lärmindex über 24 Stunden zur Bewertung der Lärmbelästigung (day-evening-night)
$L_F(f)$	dB/Hz	Kraftpegelspektrum
L_{I}	dB	Schallintensitätspegel, re 1 pW/m²
$L_K(R)$	dB	abstandsabhängiger Korrekturpegel
L_{m}	dB	Mittelungspegel

a) Großbuchstaben

$L_{m,E}$	dB(A)	Emissionspegel (nach Schall 03 1991)
L_{mE100}	dB(A)	normierter Emissionspegel auf 100 km/h
${ m L}_{ m night}$	dB(A)	Nacht-Lärmindex zur Bewertung von Schlafstörungen
$L_{\rm p}$	dB	Schalldruckpegel, linear (re $2\!\cdot\!10^{5}\text{N/m}^2\text{)}$
$L_p(f)$	dB/Hz	Schalldruckpegelspektrum (FFT – Schmalbandspektrum)
$L_p(f_{Tn})$	dB/Terz	Schalldruckpegelspektrum (Terzspektrum)
L_{pA}	dB(A)	Schalldruckpegel, A-bewertet, re $2 \cdot 10^{-5} \text{ N/m}^{2}$)
$L_{P'}$	dB	kraftbezogener Schalldruckpegel, re $2\cdot 10^{\text{-5}}(\text{N/m}^2)/\text{N}$
$L_{p^*}(f)$	dB	kraftbezogenes Schalldruckpegelspektrum, re $2 \cdot 10^{\text{-5}} (\text{N/m}^2)/\text{N}$
$L_{pAeq,T}$	dB(A)	energie äquivalenter Dauerschallpegel für die Zeit T ($T_{\rm M},T_{\rm p,}$ $T_{\rm rec})$
${ m L_{pAF}}$	dB(A)	Schalldruckpegel, A- und F-bewertet, re $2{\cdot}10^{\text{-}5}~\text{N/m}^2$
$\mathcal{L}_{\mathrm{pAFmax,m}}$	dB(A)	Mittlerer Maximalpegel
${ m L_{pAm}}$	dB(A)	Mittelungspegel (AF-bewertet; = L_{pAeq})
$L_{ m pAm,V}$	dB(A)	Vorbeifahrt-Mittelungspegel (= $L_{pAeq,Trec}$)
$L_{\rm r}$	dB(A)	Beurteilungspegel
$L_{U}(f_{Tn})$	dB	Umwandlungsmaß von Körperschall in Luftschall
$L_v(f)$	dB/Hz	Schwinggeschwindigkeitspegelspektrum (Betrag)
$L_{\rm v}$	dB	Schwinggeschwindigkeitspegel, re 5·10 ⁻⁸ m/s
L_{W}	dB	Schallleistungspegel, re 1 pW
$L_{W^{\prime}A,v}$	dB(A)	längenbezogener Schallleistungspegel, re 1 pW
L_{Y}	dB	Admittanzpegel, re $5{\cdot}10^{\cdot8}$ m/Ns oder re 1 m/Ns
$L_{Y,mn}(f)$	dB	Übertragungs-Admittanz (n Anregung und m Antwort)
m	kg	Masse
N, n	-	Anzahl der Wertepaare
PSD	$(m/s)^2/Hz$	Leistungsdichte-Spektrum (Power Spectral Density)
P'	$(N/m^2)/N$	kraftbezogener Schalldruck (Summenwert)
P'(f)	$(N/m^2)/N$	kraftbezogenes Schalldruckpegelspektrum (Betragsspektrum)
R	m	horizontaler Abstand zwischen dem Erregerort (Gleismitte) und dem Immissionsort (Raummitte, Deckenmitte)
R,r	m	Gleisradius, Radradius
Re{Y}	m/(Ns)	Realteil der Admittanz
R	dB	Schalldämm-Maß

R'	-	Korrelationskoeffizient
R_w ; R'_w	dB	Bewertetes Schalldämm-Maß
S/N	-	Signal/Rauschabstand
S	$m^2/(rad/m)$	Leistungsdichtespektrum der Gleis-Längshöhenlage h
S_{n-1}		Standardabweichung
T	S	Messzeit, Mittelungszeit, Nachhallzeit, Periodendauer
T_0	h	Bezugsdauer (oder 1 sec)
TEL	dB(A)	Vorbeifahrtexpositionspegel; Transit Exposure Level
T_{M}	S	Mess- oder Analysezeit
T_n	S	Gesamtzeit der Frequenzanalyse für eine Zugvorbeifahrt (n = 1; 2; 3)
T_p	S	Vorbeifahrtzeit eines Zuges, Puffer zu Puffer bzw. Kupplung zu Kupplung
T_r	h	Beurteilungszeit
T_{rec}	S	Zugvorbeifahrtzeit gesamt (T_p + an- und absteigendem Ast)
T_{T}	s	Teilzeit für ein Spektrum
V,v	km/h	Geschwindigkeit
V	m^3	Volumen
V(f)	(m/s)/Hz	Schwinggeschwindigkeitsspektrum (Betrag)
Y	m/(Ns)	Admittanz (engl. Mobility)
Y(f)	m/(Ns)	Admittanzspektrum (Betrag)
Y(if)	m/(Ns)	komplexes Admittanzspektrum
$Y_{mn}(f)$	m/(Ns)	Admittanzspektrum (Betrag) zwischen den Punkten n und m
Z(if)	N/(m/s)	Impedanz (komplex)

b) Kleinbuchstaben

Formelzeichen	Einheit	Beschreibung
a	m/s^2	Schwingbeschleunigung
a	m	Abstand von Schwellen oder Schienenstützpunkt
b	Ns/m	Dämpfungskonstante
c	m/s	Wellengeschwindigkeit (im Baugrund, in einer Struktur)
f	Hz	Frequenz
F(f)	N	Kraftspektrum

c) Griechische Buchstaben

f_0	Hz	Eigenfrequenz
f_S	Hz	Störstellenfrequenz (z.B. von Riffeln)
h	m; mm	Gleis-Längshöhenlage. Bodenschichtdicke
$h_{\rm m}$	m	Mikrofonhöhe über SO
h_P	m	Wandstärke (Platte, z.B. Tunnelsohle, Tunnelwand)
I'	m^3	bezogenes Trägheitsmoment
k	N/m	Steifigkeit von el. Elementen im Fahrzeug, Oberbau, Gebäude, auch in kN/mm
1	m	Zuglänge
l_{S}	m	Störstellenabstand
m	kg	Masse
m"	kg/m²	Masse, bezogen auf eine Fläche
p	N/m^2	Schalldruck
r, R	m	Gleisradius
s_y	mm	horizontale Auslenkung der Schiene
S_Z	mm	vertikale Einsenkung der Schiene
t	S	Zeit
v	m/s	Schwinggeschwindigkeit

c) Griechische Buchstaben

$\alpha(f)$	-	Amplitudenfrequenzgang der Schwinggeschwindigkeit
α	Grad	Winkel
α		Schallabsorptionsgrad
$\gamma(f)$	-	Kohärenzfunktion
γ	Grad	Anlaufwinkel
η	-	Auf die Eigenfrequenz bezogene Frequenz
λ	m	Wellenlänge (allgemein), Rauheitsabstand
ρ	kg/m³	Materialdichte
Σ	-	Summenwert eines Spektrums (linear)
ΣL	dB	Summenpegel eines Spektrums
σ		Abstrahlgrad
μ	-	Poissonzahl
ν	-	Querkontraktionszahl

ω,Ω	S ⁻¹	Kreisfrequenz
ω_0	S ⁻¹	Eigenkreisfrequenz

d) Indices

A	-	A-Bewertung
ax	-	axialsymmetrisch
В	-	Boden, Baugrund, Biegung
Br	-	Brücke
DP	-	Dehnwellen (in Platten)
eb	-	eben
eff	-	Effektivwert (auch RMS)
eq	-	energie-äquivalent
F	-	FAST (Zeitkonstante)
Fb	-	Fahrbahn
Fz	-	Fahrzeug
G	-	Gebäude
IH	-	Impacthammer (Prüfhammer)
KB	-	Kompressionswellen (im Boden)
n	-	Eingangspunkt (allg.)
m	-	Ausgangspunkt (allg.)
m, M	-	Mittelung,
max	-	maximal
O	-	Oberbau
P	-	Platte (z. B. Tunnelsohle/Tunnelwand)
PH	-	Prüfhammer (Impact Hammer)
r	-	Beurteilung (z. B. Beurteilungspegel $\mathrm{L}_{\mathrm{r}})$
S	-	Scherwelle, Schiene
S	-	Slow (Zeitkonstante)
T	-	Tunnel
Z	-	Z-Bewertung, unbewertet (Zero)

e) Abkürzungen (siehe auch Indices)

A A-Bewertung

a. a. O. am angegebenen Ort

Abs. Absatz

ABS Ausbaustrecke

AEG Allgemeines Eisenbahngesetz

a. F. alter Fassung

ALD Arbeitsring Lärm der DEGA

Art. Artikel

APL Achsen pro Wagenlänge

BauGB Baugesetzbuch

Bay VGH Bayerischer Verwaltungsgerichtshof

BGB Bürgerliches Gesetzbuch

BImSchG Bundes-Immissionsschutzgesetz

BImSchV Bundes-Immissionsschutzverordnung

BMBF Bundesministerium für Bildung und Forschung

BMU Bundesministerium für Umwelt

BMVI Bundesministerium für Verkehr und digitale Infrastruktur

BMVBS Bundesverkehrsministerium Bau und Stadtentwicklung

BOA Verordnung über den Bau und Betrieb von Anschlussbahnen

BOStrab Verordnung für den Bau- und Betrieb von Straßenbahnen

büGbesonders überwachtes GleisBVerwGBundesverwaltungsgerichtBVerwGEEntscheidungen des BVerwG

bzw. beziehungsweise

dB Dezibel

DIN Deutsches Institut für Normung

C C-Bewertung

CER Communauté européenne du rail – Gemeinschaft der Europäischen Bahnen

CR Chloropren-Kautschuk (Elastomer)

DB AG Deutsche Bahn AG

DG Drehgestell
E Emission

EBA Eisenbahn Bundesamt

EBO Eisenbahn-Bau- und Betriebsordnung

EBOA Eisenbahn-Bau- und Betriebsordnung für Anschlussbahnen

EIV Eisenbahninfrastrukturunternehmen

EIVB Eisenbahninfrastruktur-Benutzungsverordnung

EPDM Ethylen-Propylen-Kautschuk

EU Europäische Union

EU 28 EU der 28 Mitgliedsstaaten

EVU Eisenbahnverkehrsunternehmen
EP Emissionspunkt, Erregerpunkt

ESBO Eisenbahn-Bau- und Betriebsordnung für Schmalspurbahnen

Fb Fahrbahn ff. fortfolgende

FEM Finite-Elemente-Methode

FFT Fourier-Frequenz-Transformation (Schmalbandanalyse eines Schall- oder

Schwingungssignals)

FGSV Forschungsgesellschaft für Straßen- und Verkehrswesen e.V.

FStrG Bundesfernstraßengesetz

Fz Fahrzeug

G Gebäude (Decke D/Raummitte M)

G. Gesetz
GZ Güterzug

GG Graugussklotz (Bremsklotz)

GG Grundgesetz der Bundesrepublik Deutschland

HDPE High-Density Polyethylen (auch PE-HD)

HGV Hochgeschwindigkeitsverkehr

I Immission
IC Intercity

ICE Intercity Express
IGW Immissionsgrenzwert

ISO International Organization for Standardization

IP Immissionspunkt i. V. m. In Verbindung mit

K Korrekturfaktor zur Berücksichtigung der Linienquelle eines Fahrzeuges

KZ Kurzzug

LAI Länderausschuss für Immissionsschutz

LAP Lärmaktionsplan (Lärmaktionsplanung)
LaTPS Lärmabhängiges Trassenpreissystem

L_{den} gewichteter Ganztagespegel nach der EU-Richtlinie zum Umgebungslärm

LfB Landesbevollmächtigter für die Bahnaufsicht

LDG Laufdrehgestell (nicht angetrieben)

LfU Landesamt für Umweltschutz

LMFS Leichtes Masse-Feder-System (Oberbau)

LZ Langzug

MFS Masse-Feder-System (als besonderer Oberbau)

MO Messort
MP Messpunkt
MQ Messquerschnitt

MR Messreihe

N Anzahl der Wertepaare. Bei den hier zugrundeliegenden Wertepaaren handelt

es sich immer um gemittelte Werte aus mehreren Vorbeifahrten (z. B. 6 Fahrten

pro Geschwindigkeit und/ oder Messpunkt).

NBS Neubaustrecke

NE-Bahn Nichtbundeseigene Eisenbahn

n. F. neuer Fassung

NJW Neue Juristische Wochenschrift (Jahr und Seite)
NORAH Noise-Related Annoyance, Cognition and Health

NÖT Neue Österreichische Tunnelbauweise (bergmännischer Vortrieb)

NVwZ Neue Zeitschrift für Verwaltungsrecht (Jahr und Seite)

ÖBB Österreichische Bundesbahnen

OVG Oberverwaltungsgericht

ÖPNV Öffentlicher Personennahverkehr

PA Polyamid

PBefG Personenbeförderungsgesetz

PE Polyethylen

PFB Planfeststellungsbeschluss

PUR Polyurethane
PVC Polyvinylchlorid

R Horizontaler Abstand zwischen Gleismitte und Gebäude in m

R' Korrelationskoeffizient

Ril Richtlinie (z. B. der DB AG)

RLS 90 Richtlinien für den Lärmschutz an Straßen 1990

S (Tunnel-) Sohle

S. Seite

SO Schienenoberkante

SRU Sachverständigenrat für Umweltfragen
Strab Straßenbahn (Straßen-, Stadt- und U-Bahn)

st.Rspr. ständige Rechtsprechung
STUA Staatliches Umweltamt
STVO Straßenverkehrs-Ordnung

TA Technische Anleitung

TAB Technische Aufsichtsbehörde

THG Treibhausgas

TEL Transit Exposure Level

TEN-T Trans-European Transport Network

TDG Triebdrehgestell (angetrieben)

TDR Track Decay Rate (Gleisabklingrate)

tkm Tonnenkilometer

TPE thermoplastische Elastomere

TS Tunnelsohle

TSI Technische Spezifikation für die Interoperabilität

TW Tunnelwand

UBA Umweltbundesamt
UE Unwuchterreger

UIC Union Internationale des Chemins de fer – Internationale Union der

Eisenbahnen

UIP Union Internationale des Wagons Privés – Internationale Union der

Privatgüterwagen

USM Unterschottermatte

U. v. Urteil vom

VDI Verein Deutscher Ingenieure

VBK Verkehrsbetriebe Karlsruhe GmbH, Karlsruhe
VDV Verband Deutscher Verkehrsunternehmen

VerwV Verwaltungsvorschrift VGH Verwaltungsgerichtshof VLärmSchV Verkehrslärmschutzverordnung

VP Vibrationsplatte (Baurüttler, kann zur Ersatzanregung eingesetzt werden)

VwGOVerwaltungsgerichtsordnungVwVfGVerwaltungsverfahrensgesetzWHOWorld Health OrganizationZZ-Bewertung (Schalldruck)

ZTV Zusätzliche Technische Vertragsbedingungen

Zw Zwischenlage (Oberbau, elastisches Element unterhalb der Schiene)

Zwp Zwischenplatte (Oberbau, elastisches Element unterhalb einer Rippenplatte

oder ähnlichem Konstruktionselement)

16. BImSchV Sechzehnte Verkehrslärmschutzverordnung

24. BImSchV Vierundzwanzigste Verkehrswege-Schallschutzmaßnahmenverordnung