Software
Internals

A Complete Guide to How Your Arduino
Language and Hardware Work Together

Second Edition

Norman Dunbar

Apress®

Maker Innovations Series

Jump start your path to discovery with the Apress Maker Innovations series! From the basics of
electricity and components through to the most advanced options in robotics and Machine Learning,
you’ll forge a path to building ingenious hardware and controlling it with cutting-edge software. All
while gaining new skills and experience with common toolsets you can take to new projects or even
into a whole new career.

The Apress Maker Innovations series offers projects-based learning, while keeping theory and
best processes front and center. So you get hands-on experience while also learning the terms of the
trade and how entrepreneurs, inventors, and engineers think through creating and executing hardware
projects. You can learn to design circuits, program Al, create [oT systems for your home or even city,
and so much more!

Whether you’re a beginning hobbyist or a seasoned entrepreneur working out of your basement
or garage, you’ll scale up your skillset to become a hardware design and engineering pro. And often
using low-cost and open-source software such as the Raspberry Pi, Arduino, PIC microcontroller,
and Robot Operating System (ROS). Programmers and software engineers have great opportunities
to learn, too, as many projects and control environments are based in popular languages and operating
systems, such as Python and Linux.

If you want to build a robot, set up a smart home, tackle assembling a weather-ready meteorology
system, or create a brand-new circuit using breadboards and circuit design software, this series has all
that and more! Written by creative and seasoned Makers, every book in the series tackles both tested
and leading-edge approaches and technologies for bringing your visions and projects to life.

More information about this series at https://link.springer.com/bookseries/17311.

https://link.springer.com/bookseries/17311
https://link.springer.com/bookseries/17311
https://link.springer.com/bookseries/17311
https://link.springer.com/bookseries/17311
https://link.springer.com/bookseries/17311
https://link.springer.com/bookseries/17311

Norman Dunbar

Arduino Software Internals

A Complete Guide to How Your Arduino
Language and Hardware Work Together

Second Edition

Apress-

Norman Dunbar
Rawdon
West Yorkshire, UK

ISBN-13 (pbk): 979-8-8688-0170-9 ISBN-13 (electronic): 979-8-8688-0171-6
https://doi.org/10.1007/979-8-8688-0171-6

Copyright © 2024 by Norman Dunbar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned,
specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in
any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every occurrence of
a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and to the benefit of the
trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such,
is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors
nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher
makes no warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Miriam Haidara

Development Editor: James Markham

Coordinating Editor: Jessica Vakili

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004, U.S.A. Phone
1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny @springer-sbm.com, or visit https://www.springeronline.com. Apress
Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM
Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations @springernature.com; for reprint, paperback, or audio rights,
please e-mail bookpermissions @ springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and licenses are also
available for most titles. For more information, reference our Print and eBook Bulk Sales web page at http://www.apress.com/
bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers on Github
(https://github.com/Apress). For more detailed information, please visit https://www.apress.com/gp/services/source-code.

If disposing of this product, please recycle the paper.

https://doi.org/10.1007/979-8-8688-0171-6
https://doi.org/10.1007/979-8-8688-0171-6
https://doi.org/10.1007/979-8-8688-0171-6
https://doi.org/10.1007/979-8-8688-0171-6
https://doi.org/10.1007/979-8-8688-0171-6
https://doi.org/10.1007/979-8-8688-0171-6
https://doi.org/10.1007/979-8-8688-0171-6
https://doi.org/10.1007/979-8-8688-0171-6
https://doi.org/10.1007/979-8-8688-0171-6
https://doi.org/10.1007/979-8-8688-0171-6
https://www.springeronline.com
https://www.springeronline.com
https://www.springeronline.com
https://www.springeronline.com

 14465
57228 a 14465 57228 a

 2588 58224 a 2588 58224 a

http://www.apress.com/bulk-sales
http://www.apress.com/bulk-sales
http://www.apress.com/bulk-sales
http://www.apress.com/bulk-sales
http://www.apress.com/bulk-sales
http://www.apress.com/bulk-sales

 -2036 63206 a -2036 63206 a

https://www.apress.com/gp/services/source-code
https://www.apress.com/gp/services/source-code
https://www.apress.com/gp/services/source-code
https://www.apress.com/gp/services/source-code
https://www.apress.com/gp/services/source-code
https://www.apress.com/gp/services/source-code
https://www.apress.com/gp/services/source-code
https://www.apress.com/gp/services/source-code

This book is dedicated to my wife, Alison, who occasionally
allows me to have some time to myself, programming,
attempting to build things (with or without “Internet of”), and
writing notes, articles, and/or this book.

Another person to whom I am grateful is Alison’s late maternal
grandmother, Minnie Trees (yes, I did call her Bonsai!), who
gifted me an Arduino Duemilanove starter kit and rekindled my
long-lost (for over 35 years) interest in building things with
electronics.

The book is also dedicated to the myriad of people and
companies or organizations around the world who freely give
their time and skills to produce open source software and
hardware, for the benefit of others or just for fun.

If I may paraphrase the words of 1saac Newton, [too stand on
the shoulders of giants, so here’s to the giants, the little people,
and all the medium-sized ones too, who may or may not become
giants themselves. Let’s hope the fun never stops.

Finally, my own motto is Don’t think! Find out! Hopefully, this
book will help you do exactly that.

Contents

1 Introduction 1
1.1 Arduino Installation Paths 2
1.2 Coding Style 3

1.2.1 Number Formats e 4
1.3 The Arduino Languagettt 4
L4 Coming Up. ... 5
2 Arduino Compilation 7
2.1 SetNES.JSOM . . .ottt 7
2.1.1 Finding Other Hidden Settings iiiiiiaai.. 8
2.1.2 Setting Tab StOPS . .o v vttt e 8
2.2 Globally Defined Propertiesouuit it 9
2.3 Boards.tXt. ..ot 11
2.3.1 ArduinoUno Example i 11
2.4 Boards.ocal.tXto 17
2.5 PlatformuXt 18
2.5.1 Build Recipest 18
2.5.2 Pre- and Post-Build HOOKS, 21
2.6 Programmers.tXtttt e e e e 21
2.7 Compiling a SKetch 23
2.7.1 Arduino Sketch (*.ino) Preprocessing 23
2.7.2 Arduino Sketch (*.ino) Build 24
273 Afterthe Build 25
2.8 The Arduino main() Function i 26
2.9 Header File Arduino.h 28
2.9.1 Header File avr/pgmspace.h i 29
29.2 Header File avr/io.h 29
2.9.3 Header File avi\interrupt.h 31
294 HeaderFilebinary.h...... ... 31
2.9.5 Header File WCharacter.h i, 32
2.9.6 Header File WString.h 33
2.9.7 Header File HardwareSerial.h 33
2.9.8 Header File USBAPLh. 34
2.9.9 Header File pins_arduino.h 34
2.10 Theinit() Function 34
2.10.1 Enabling the Global Interrupt Flag i, 35
2.10.2 Enabling Timer Oot i 35

vii

viii Contents
2.10.3 Timer 0 Overflow Interruptttt 37
2.10.4 Configuring Timer land Timer 2, 39
2.10.5 [Initializing the Analog-to-Digital Converter 41
2.10.6 Disabling the USARTot i 42

3 Arduino Language Reference i 45

3.1 What Are We LooKing At7.o 45
3.2 Digital Input/Outputttt 46
3.2.1 Function pinMode()ttt 47

3.2.2 FunctiondigitalRead()ot 52

3.2.3 Function digitalWrite()oiiit 53

3.3 Analog Input/OUutputot 55
3.3.1 Function analogReference()o 55

3.3.2 Function analogRead()......... ... i 57

3.3.3 Function analogWTite()ouuitn i 59

3.4 Advanced Input/OUtputttt e 63
341 Function tone()vvuiretete et 63

342 Function noTone()vuinini i 71

343 Functionpulseln()oiiiiin 73

344 Function pulseInLong()coouunnii 77

345 FunctionshiftIn() 79

3.4.6 Function shiftOut() e 81

3.5 T . oo 82
3.5.1 Functiondelay()o e 83

3.5.2 Function delayMicroseconds()ouuviirnieneiuneneennnnn 86

3.5.3 Function MiCTOS() « . v v ot te ettt e et e e e e e 89

354 Function millis()ttt 91

3.6 INMeITUPLS .ottt e 92
3.6.1 Function interruptS(). . .. oo v vttt et et 93

3.6.2 Function nOINterrupts()vuvnne ittt 93

3.6.3 Function attachInterrupt()o iiiiiin i 93

3.6.4 Function detachInterrupt()t 99

37 Bitsand BobS.o 101
37.1 Macrobit() ... 101

3772 MacrobitClear()ot 102

3773 MacrobitRead() 102

374 Macro bitSet() . . oo ottt 102

375 Macro bitWrite() . . o oottt e 103

37.6 Macro bitToggle() . . .o vove et 103

377 MacrohighByte()ottt 104

37.8 Macro IowBYe() ..ot 104

379 MacCroShi() ..ot 105
3700 MacCro Chi() . oo et 105

4 Arduino Classes.t 107
4.1 The Print Classttt e e e e e e e 107
411 Class MEMDETS . . oottt et e ettt e et e e e e e et et 108

4.1.2 Using the Print Classuuuuuun e 109

Contents ix
4.2 ThePrintable Classt 113
4.2.1 AnExample Printable Class 114

4.3 The Stream Class.ottt e e 117
4.3.1 Class MEMDETS . . .o oottt et e e e 117

4.4 The HardwareSerial Classttt 122
4.4.1 Interrupt Handlers. e 123

4.4.2 Class Functions and Macrosuuieiiiiiinneiinnnaan. 126

4.5 The String Classttt e e e 143
5 Converting to the AVR Language it 145
5.1 INtrodUCHONttt e 145
5.2 Numbering SYSIeMSttt ettt e e e 146
5.2.1 Decimal Numbering i 146

5.22 Binary NUmberingttt 147

5.2.3 Hexadecimal Numberingottt 147

5.3 Binary Logical Operationsuuuuunettee e, 148
5301 NOT .. 148

5.3 AN . 148

5.3 OR 149

534 XOR .. 149

5.4 Replacing the Arduino Language i, 150
5.4.1 The ATmega328P Pinsand Ports, 150

5.4.2 Replacing pinMode()o ottt e 152

5.4.3 Replacing digitalWrite()ttt 155

5.4.4 Enabling Internal Pull-Up Resistors 157

5.4.5 Replacing digitalRead() 158

5.4.6 Toggling Output Pins e 160

5.4.7 Installing digitalToggle() e 161

6 Alternatives tothe Arduino IDE L 163
6.1 What Are the Alternatives? oottt 163
6.2 PlatformlO 164
6.2.1 System Requirements.uuiiuniiiineiine i, 164

6.2.2 Installing PlatformIOIDE 165

6.2.3 Testing PlatformIO Coreo 169

6.2.4 PlatformlO for Arduino-Style Projects 173

6.2.5 PlatformlO for AVR-Style Projects iiiiiiiii.. 177

6.2.6 Burning Bootloaders 181

6.27 UsingYourOwnIDE 181

6.2.8 Adding Additional Boards............ 182

6.2.9 PlattormIOHome 183

6.3 ArduinoCommand Line........... ... 185
6.3.1 Obtainingthe Arduino CLI i, 185

6.3.2 Installing the Arduino CLI i 186

6.3.3 Configuringthe CLIL. e 188

6.3.4 Creating SKetChesottt 190

6.3.5 Unknown Boards i 193

6.3.6 Installing Platforms or Cores.c.ouuuuiiiiiiiiiininnnnn.. 194

6.3.7 Compiling SKetchesuuu e 195

X Contents
6.3.8 Uploading Sketches i 197

6.3.9 Uploading Sketches withan ICSP oo .. 198
6.3.10 Burning Bootloadersot 199

6.3.11 Serial Usage ..ot 199

6.3.12 Profiles. 200

6.3.13 A Simple Makefile 203

6.3.14 Library Manager.ttt et 210

6.3.15 Board Managerttt e 215

7 ATmega328P Configuration and Management 219
7.1 ATmega328P Fuses. 219
7.1.1 LowFuse Bits 220

7.1.2 Low Fuse Factory Default i, 221

7.1.3 Arduino Low Fuse Settings i 222

7.1.4 HighFuse Bitso e e 222

7.1.5 High Fuse Factory Default i, 223

7.1.6 Arduino High Fuse Settingso .. 223

7.1.77 Extended Fuse Bits......... ... 224

7.1.8 Extended Fuse Factory Default.............. 224

7.1.9 Arduino Extended Fuse Settings............ ..., 224

7.2 Brown Out Detectioniiiiunii et 225
7.3 The Watchdog TImer.o o e 226
7.3.1 Watchdog Timer Modes of Operationoouiiuuinaea... 227

7.3.2 Amended Sketch setup() Function 228

7.3.3 Watchdog Timer Reset........... ... i 229

7.3.4 The Watchdog Timer Control Register............................. ... 230

7.3.5 Enabling the Watchdog Timer. 231

7.3.6 Setting the Watchdog Timer Timeout., 232

7.3.7 Disabling the Watchdog Timer i, 235

7.4 Puttingthe AVRtOSIeep ... oooii i 236
TAT Sleep MOdes ..ottt 239

7.4.2 Sleep and the Analog Comparatorccouuuuineeeeunnnneeens 244

7.5 Power ReduCtion 246
7.5.1 Power CONSUMPLIONttt t ettt ettt e e e e e e 247

7.5.2 Power Reduction Registero, 249

7.5.3 Saving Arduino Power 250

7.54 The Power Functions i, 252

7.6 Bootloaders e 253
7.6.1 Flash Memoryttt e e e 253

7.6.2 LoCK BItS ...t 254

7.6.3 Installing the Uno (Optiboot) Bootloader 256

7.6.4 Optiboot Bootloader Operation.ouuveineirneiunnennnann. 256

8 ATmega328P Hardware—Timers and Counters 259
8l TIMRIS .ttt e 259
8.1.1 Timer O (Eight Bits)ttt e 260

8.1.2 Timer 1 (16 BitS) e 260

8.1.3 Timer 2 (Eight Bits) 261

8.1.4 Timer Clock SOUICES\ v it e e 262

Contents Xi

9

Q =2 =2 O o % »

8.1.5 Timer Non-PWM Operating Modes, 262
8.1.6 Timer PWMModesooiiiniii i 273
8.1.7 Too Much to Remember? Try AVRASSIStcoviiiiiniinn... 291
8.2 COUNNG . . ottt ettt e e e e e e 292
8.2.1 Setting External Countingcoouiuiniiiiiineeinnnn... 292
8.2.2 Counter Example oo 293
8.3 Input Capture UNitttt e e 296
ATmega328P Hardware—AC, ADC,and USART 301
9.1 Analog Comparator (AC)uuu e 301
9.1.1 Reference Voltage.uuuuuunn e 302
9.1.2 Sampled Voltage 302
9.1.3 Digital Input 302
9.1.4 Enable the Analog Comparator.oouiiiniiiinnnnnna... 302
9.1.5 Select Reference Voltage Sourceoiiiiiiniiiineenna... 303
9.1.6 Select Sampled Voltage Source Pin 303
9.1.7 Comparator OULPULS . . . o v vttt et ettt e et e et 304
9.1.8 Comparator Examplet 305
9.2 Analog-to-Digital Converter (ADC)o uiiiii i 307
9.2.1 ADC Setup and Initiationottt 308
9.22 ADCExample. 317
0.3 USART 321
93.1 BaudRatesoi 321
9.3.2 Double Speed 321
9.3.3 Baud Rate Calculationsoiuiiiniiin .. 322
934 Baud Rate Errorso 323
9.3.5 WhatIsaFrame? 324
0.3.6 Parily ..o 324
9.3.7 USART INterrupts. . . . oo ettt ettt e e e e e e e e 325
9.3.8 Initializing the USART 326
9.3.9 USART Completion and Error Checking.......................... 331
9.3.10 USART Example 332
Arduino Paths 339
ATmega328P Pinout 341
ATmega328P Power Restrictions 343
Predefined Settings 345
ADC Temperature Measuringt iunutintiie e, 349
Assembly Language—Briefly 355

Xii Contents
H NormDuino. 367
I NoICSP? No Problem! 371
J Breadboard SMHz Board Setup 0 i, 375
K AV RASSISt . . .o 379

About the Author

Norman Dunbar is a retired Oracle database administrator who
lives with his wife, Alison, and a cockapoo dog, Wesley, to keep
him out of trouble.

Norman has had a long-running relationship with electronics
since childhood and computers since the late 1970s, and the Ar-
duino was a perfect marriage of the two interests.

With a love of learning new things, examining and explaining the
Arduino Language and the hardware became a bit of a hobby, and
as his piles of notes expanded, Apress decided to publish his work
as Arduino Software Internals.

Since then, Norman has been diving into the slightly trickier
aspects of the Arduino—interrupts—with a view to documenting
them for his own ease of use. Once more, his notes became a book—
Arduino Interrupts—published by Apress in December 2023.

Because he never remembers exactly how much work is involved
and how hard it is to write a technical book, Norman is now writing
a third book about the Arduino, with a view to completing his
trilogy.

Norman’s motto continues to be don’t think, find out.

xiii

About the Technical Reviewer

Sai Yamanoor is an embedded engineer based in Oakland, CA. He
has over ten years of experience as an embedded systems expert,
working on hardware and software design. He is a coauthor of three
books on using Raspberry Pi to execute DIY projects, and he has
also presented a Personal Health Dashboard at Maker Faires across
the country. Sai is also working on projects to improve the quality of
life (QoL) for people with chronic health conditions. Check out his
projects at https://saiyamanoor.com.

XV

https://saiyamanoor.com
https://saiyamanoor.com
https://saiyamanoor.com

Acknowledgments

I would like to thank everyone involved in the production of this book—the people you almost never
hear about. Without them, there would be no book.

I’'m grateful to the following people at Apress/Springer:

Miriam Haidara who convinced me to update Arduino Software Internals to cover changes for the
new version of the IDE and software. Jessica Vakili who has had the misfortune to have worked with
me on three books now, thanks! Also, Joseph Quatela, James Markham, and Nirmal Selvaraj who kept
answering my silly questions!

The people who turned my manuscript into a proper book, who did the indexing for me, the people
running the print machines, and the cover designers. You never get named or mentioned, but authors
do appreciate you—thanks.

Finally, to my wife Alison and Wesley the cockapoo, thanks for letting me write an update and
keeping me exercised!

Xvii

Preface

If I have seen further it is by standing on ye sholders of Giants.

Sir Isaac Newton (1643—1727), in a letter to Robert Hooke, 15 February 1676

There are many books which discuss the abilities of the Arduino hardware and how best the maker
can use this to their benefit. I have many of them in my bookcase and digital versions on my phone
and tablet—in case I get bored with life and need something interesting to read. Many of these books
explain what the hardware does, and some even dig deeper into the hardware to explain how, in fairly
easy-to-understand terms, it does it.

There are no books which take a similar view of the Arduino software. There is now!

This book takes you on a journey (why do we always have to be on a journey these days?) into the
world of Arduino sketches and the various files involved in the compilation process. It will delve deep
into the supplied software and look at the specific parts of the Arduino Language which deal with the
underlying hardware, the ATmega328P (or ATmega328AU) microcontrollers—henceforth, referred
to as ATmega328P.

Once the Arduino Language has been explained, the book takes a short look at how you can
strip away the Arduino hand-holding and get down and dirty with the naked hardware. It’s not easy,
but equally it’s not too difficult. Don’t worry; this is still the C/C++ language; there’s no assembly
language required. Perhaps!

Rawdon, UK Norman Dunbar

Xix

Preface to the Second Edition

Since the first edition of Arduino Software Internals was published in 2020, the Arduino environment
has moved onward with new microcontroller boards being added, numerous bugs being fixed, new
bugs introduced—albeit, not deliberately—and many improvements made.

One of the bigger changes has been to the IDE itself; it is now at release 2.1.0 and has changed
completely from the old 1.x releases. It now provides a much more modern experience with code
completion, IntelliSense, and much, much more. It still has drawbacks—when you open a new sketch,
you get a new IDE—but progress has indeed been made in lots of areas.

Another big change is the Arduino Command Line Interface. It has moved on from version 0.6
to version 0.30, and it has become a very usable tool. A couple of major improvements that come
immediately to mind are the ability to upload code with an ICSP device and the ability to burn
bootloaders. It has improved so much that the Arduino IDE has replaced the old preprocessing and
compilation subsystems with the “arduino-cli” under the covers. Sadly, it still cannot upload EEPROM
data.

PlatformlIO, another alternative to the Arduino IDE, has itself improved and now, at the time of
writing—May 2023—supports over 1,500 boards, 50 platforms, and 24 different frameworks, not to
mention over 13,400 libraries!

The standard IDE for use with PlatformlO is Visual Studio Code (VSCode) rather than Atom or
the command line, although those are still available. Don’t worry if you don’t like or use VSCode;
PlatformIO Core—the command-line option—can still generate project files for an even larger number
of common IDEs such as Afom, CLion, Code::Blocks, Eclipse, Emacs, NetBeans, Qt Creator, Sublime
Text, Vim, Visual Studio, and VSCode.

The first edition of this book occasionally mentioned Windows, and at that time, I had limited
access to Windows 7. The current version, as of May 2023, is Windows 11, but unfortunately, I no
longer have access to any versions of Windows.

I hope you find the second edition as useful as, if not more than, the first edition.

xXi

®

Check for
updates

The Arduino is a great system for getting people into making with electronics and microcontrollers. I
was reintroduced to a long-lost hobby when I was gifted an Arduino Duemilanove (a.k.a. 2009) by my
wife’s late grandmother, and since then, I've had lots of fun learning and attempting to build things.
I’ve even built a number of Arduino clones based on just AVR microcontrollers and a few passive
components—it’s cheaper than fitting a new Arduino into a project!

Much has changed over the intervening years; LEDs used to cost about £10 each and came in one
color, red. These days, I can get a pack of 100 LEDs for about £2 in various different colors. Even
better, my old faithful Antex 15W soldering iron still worked, even after 35 years. Sadly, after the first
edition was published, it finally died. I bought another one, exactly the same!

The Arduino—and I'm concentrating on either the Uno version 3 or the Duemilanove here
as those are two which I've actually purchased (or been given)—is based around an Atmel
ATmega328 microcontroller. On the Uno, it’s the ATmega328PAU, while the Duemilanove uses the
ATmega328PPU.

Roughly, the only difference between the two is the Uno’s ATmega328PAU version is a surface
mount, while the ATmega328PPU version is a 28-pin through-hole device. They are, or should be,
identical to program, although the ATmega328PAU version does have two additional analog pins that
are not present on the ATmega328PPU.

Occasionally though, I may mention in passing the Mega 2560 R3—as I have a cheap Chinese
clone of one of these—which is based on the Atmel ATmega2560 microcontroller.

Some older Arduino boards had the ATmegal68 microcontroller, which also was a 28-pin through-
hole version, but it only had 16 Kb of flash memory as opposed to the 32 Kb in the later 328 chips.
The EEPROM and RAM size is also half that of the ATmega328P devices.

The Arduino was designed for ease of use, and to this end, the software and the “Arduino
Language” hides an awful lot from the maker and developer. Hopefully, by the time you have finished
reading this book, you will understand more about what it does and why and, when necessary, how you
can bypass the Arduino Language (it’s just C or C++ after all) and use the bare-metal AVR-specific
C or C++ code instead. Doing this can lead to more space for your code, faster execution, and lower
power requirements—some projects can be run for months on a couple of batteries.

© Norman Dunbar 2024 1
N. Dunbar, Arduino Software Internals, Maker Innovations Series,
https://doi.org/10.1007/979-8-8688-0171-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/979-8-8688-0171-6protect T1	extunderscore 1&domain=pdf
https://doi.org/10.1007/979-8-8688-0171-6_1
https://doi.org/10.1007/979-8-8688-0171-6_1
https://doi.org/10.1007/979-8-8688-0171-6_1
https://doi.org/10.1007/979-8-8688-0171-6_1
https://doi.org/10.1007/979-8-8688-0171-6_1
https://doi.org/10.1007/979-8-8688-0171-6_1
https://doi.org/10.1007/979-8-8688-0171-6_1
https://doi.org/10.1007/979-8-8688-0171-6_1
https://doi.org/10.1007/979-8-8688-0171-6_1
https://doi.org/10.1007/979-8-8688-0171-6_1
https://doi.org/10.1007/979-8-8688-0171-6_1

2 1 Introduction

1.1 Arduino Installation Paths

The version of the Arduino IDE described in this book is 2.1.0. The version of the underlying Arduino
Language is 1.8.6.

I used an installation on Linux Mint while writing this book as Linux is my operating system of
choice, plus I do not have access to Windows anymore. The IDE was installed by downloading the
zip file version, as opposed to the flatpak version, and extracted. The location I extracted into is

¢ /home/norman/arduino-2.1.0/arduino-ide
On first execution, the IDE will create two new hidden directories—if they don’t already exist:

¢ /home/norman/.arduinol5 which will contain the appropriate Arduino Language files for
your chosen board(s)

¢ /home/norman/.arduinoIDE which holds installation log files and is now where the IDE
preferences are stored

When I compiled a sketch for my Uno board, I was prompted to install the AVR package
required by my Uno. I agreed, and AVR package version 1.8.6 was installed into /home /norman/
.arduinol5, which just happens to be the same location used by the 1.x version of the IDE.

The range of preferences offered by the new IDE is not as large as previous versions. Well, it seems
that that is the case, but all is not as it seems. This shall be explained soon!

Within this book, there are references to various files provided by the Arduino software. Because of
the way I’ve installed my software and the fact that the installer versions of the download may install to
a different location, most paths used in this book will be relative to /home /norman/ .arduinols.

Paths used will be as follows:

When executing the IDE, it will be found in /home/norman/arduino-2.1.0/
arduino-ide where the downloaded zip file was extracted. However, most of the interesting
files, those for the Arduino Language, are to be found elsewhere.

e SARDBASE is /home/norman/ .arduinol5, the location where the IDE installed the AVR
packages for the Uno and other AVR boards.

¢ S$ARDINST is /home/norman/.arduinol5/packages/arduino/hardware/avr/
1.8.6, the location of the main Arduino files for AVR microcontrollers. This is where the various
cores, bootloaders, and so on can be found, beneath this directory.

e SARDINC is /home/norman/.arduinol5/packages/arduino/hardware/avr/1.
8.6/cores/arduino, the location of many of the *.h header files and most of the *.
c and *.cpp files that comprise the Arduino Language for AVR microcontrollers. This is
SARDINST/cores/arduino.

e STOOLS is where the AVR tools reside in the downloaded packages for the AVR boards. Here, you
will find avrdude and the AVR Library which underlies a lot of the Arduino Language itself. On
my system, this is /home /norman/.arduinol5/packages/arduino/tools.

e SAVRINC is where the header files for the version of the AVR Library provided by the Arduino
IDE are located. In the new IDE, these are now dependent on the version of the compiler in use—
avr-g++ by default—so the path can be quite convoluted.

The Arduino Language (eventually) compiles down to calling functions within the AVR
Library (henceforth referred to as AVRLib), and the header files are to be found in location

1.2 Coding Style 3

/home /norman/ .arduinol5/packages/arduino/tools/avr-gcc/xxxxx/avr/
include/avr.

Here, “xxxxx” is the avr-g++ compiler version and name, currently 7.3 .0-atmel3.6.
1-arduino7, but this may change as new releases of the compiler are implemented by the IDE.

So, if you see a file referred to as SARDINC/Arduino.h in the text, you will know that this
means the file

¢ /home/norman/.arduinol5/packages/arduino/hardware/avr/1.8.6/cores/
arduino/Arduino.h on Linux.

You can see why I'm using abbreviations now, can’t you?

If you wish to examine the files on your system that I am discussing in the book, see Appendix A
for a couple of useful tips on how to avoid always having to type the full paths.

1.2 Coding Style

Code listings in the book will be displayed as follows:

#define ledPin LED BUILTIN
#define relayPin 2
#define sensorPin 3

void loop () (1)

{

// Flash heartbeat LED.

digitalWrite(ledPin, HIGH) ;

delay(100) ;

digitalWrite(ledPin LOW) ; (2)

(1) This is a callout that attempts to bring your attention to something in the code which will be
described beneath the code listing in question.
(2) This is another callout; there can be more than one.

In the book’s main text, where you see words formatted like USCROA or PORTB, then these are
examples of Arduino pin names, AVR microcontroller registers, bits within those registers, and/or
flags within the ATmega328P itself, as well as references to something listed in the data sheet for the
device. Where code listings are being explained, then variables from the code will be shown in this
style too.

Arduino pin numbers will be named Dn or An as appropriate. This is slightly different from the
normal usage of the digital pins, which normally just get a number; I prefer to be a little more formal
and give the digital pins their full title. <grin>

4 1 Introduction

Tip
Tips are exactly that. They give you a clue about something that may not be too well known in
the Arduino world, but which might be incredibly useful. (Or, maybe, just slightly useful!)

Note
This is a note. It brings your attention to something that may require a little more information.
It could be useful to pay attention to these notes. Maybe!

Warning

Warnings are there to highlight potential problems with something in the software or just
something that the data sheet needs you to take extra care over. There may be a possibility
of damage to your Arduino if you don’t pay particular attention. Occasionally, the data sheet
warns against doing something—so it’s best not to do what it says not to do!

1.2.1 Number Formats

Throughout this book, I need to refer to numbers in decimal, binary, or hexadecimal, from time to
time. To this end

Binary Binary numbers are written with a prefix of “Ob” and a space every four bits, for
example, 0b0101 1011 0000 1101. All binary numbers will have this prefix, apart
from those which are single bit, that is, 0 and 1.

Hexadecimal Hexadecimal numbers are written with a prefix of “Ox”. There are no spaces in
hexadecimal numbers, for example, 0x5SBOE.

Decimal These numbers are written as you and I would normally write them, with no prefixes.
Commas will be used to separate the major groupings, for example, 23,310.

1.3 The Arduino Language

I should perhaps point out that there isn’t really such a thing as the Arduino Language. I may refer
to it frequently within the pages of this book, but technically, it doesn’t exist. What it is is simply an
abstraction of the C/C++ language, written in such a way as to make life easier for people learning to
make stuff with their Arduino. Which of the following is easier to understand?

digitalWrite (13, HIGH);

or

PORTB |= (1 << PORTBS5) ;

1.4 Coming Up 5

The first is definitely the easiest to understand; however, the latter is by far the quicker of the
two as it just does what it says; it sets pin 5, on PORTB of the ATmega328P, to HIGH. The name,
digitalWrite (), appears to be a different language, but it isn’t; it’s that abstraction away from
plain AVR C/C++ which makes life easier for us all.

1.4 Coming Up

In Chapter 2, I explain how a sketch gets massaged into a proper C++ program and how the libraries
used in the sketch are incorporated into it. Following the brief overview of how compiling a sketch
operates, I then document the Arduino’s main () function, the various header files that it includes,
and the initialization carried out by the init () function. These initializations are part of every sketch
that you compile, so it helps if you know what the Arduino system is doing, hidden in the background,
just for you.

In Chapter 3, I explain about the features and facilities of the Arduino Language. This will include
all the commands such as pinMode (), digitalWrite (), and so on. I talk through all the
functions that relate to the Arduino, with particular emphasis on the code that applies to the standard
Arduino boards, those based on the ATmega328P family of AVR microcontrollers.

Chapter 4 looks into a number of the C++ classes (or objects) which are supplied with, and
used by, the Arduino Language. The classes of main interest here are the HardwareSerial
class which provides us with the Serial interface and its commands like Serial.begin() or
Serial.println (). However, the HardwareSerial class is not fully self-contained, so the
other, lesser known, supporting classes are also explained in this chapter.

Chapter 5 takes a brief look at how to cast off the bonds of the Arduino Language and delve into
the brazen world of AVR C++ itself, where you bypass the likes of pinMode () calls and talk to the
AVR microcontroller in something akin to its own language. Here, you will learn how you can set
the pinMode () for up to eight pins with a single instruction or how to digitalWrite () those
same eight pins, again with one instruction, and other efficient methods of communication with your
board.

Chapter 6 demonstrates a couple of alternatives to the Arduino IDE. Some people don’t get on
with it; I myself have a sort of love-hate relationship with it as I find versions 1.x of the editor a little
clumsy and slow for my liking. The new, improved versions 2.x of the IDE are much, much better,
however.

In this chapter, I will show you how you can write code for Arduino boards in both the Arduino
Language and plain AVR C/C++ code using the ‘“PlatformIO” system and also give you a hefty
overview of the latest release of the arduino-cli utility used in versions 2.x of the IDE but available
for stand-alone use in Makefiles.

Chapter 7 is where I delve deeper into some features of the ATmega328P which, while not strictly
software, are fundamental to configuring the ATmega328P how you might like it and not as the
Arduino designers, however talented they may be, have decided.

In this chapter, I’ll be looking at the ATmega’s fuses, power reduction modes, sleep modes, and
similar features which determine how the ATmega328P works, but not necessarily what it does.

Chapters 8 and 9 are where I delve deeper into some more features of the ATmega328P which,
while not strictly software, are either important in understanding the Arduino Language or just useful
to know about. Hardware features such as the Analog Comparator (AC), Timer/counters—referred to
as timers henceforth—the Analog-to-Digital Converter (ADC), and the Universal Synchronous/Asyn-
chronous Receiver/Transmitter (USART) are covered in some detail.

6 1 Introduction

Finally, in the Appendixes, there are a number of topics that may be of interest or are kept together
in one place for reference. In here, you will find all the helpful reference material you might need,
such as pinout diagrams, and potentially useful (or unusual) code to upload to your Arduino.

There’s even an index!

Without any further ado, let’s dive in to what happens when you want to compile a sketch in the
Arduino IDE.

®

Check for
updates

This chapter is all about what happens when you compile an Arduino sketch and how the various
header files are used. Hopefully, by the time you have read (and understood) this part of the book,
you’ll have a much better idea of what happens during the compilation of an Arduino sketch. However,
before we dive into the gory details of a sketch’s compilation, we need to understand a bit about some
of the text files that live in and around the SARDINST directory.

These files are used to set up the IDE’s menu options and to define the AVR microcontroller and
Arduino board to be used. Additionally, the IDE needs to know how to compile and upload sketches,
and with lots of different boards nowadays, not just those with AVR microcontrollers, these numerous
text files help the IDE configure the build tools and so on, for the specific board chosen from the
Boards menu in the IDE.

Once we have discussed the various text files, we can then get down and dirty in the compilation
process and also take a look at the hidden C++ files that the Arduino environment keeps well away
from us.

2.1 Settings.json

The file settings.json holds all the preferences for the Arduino IDE, and under versions
2.x of the IDE, it is found in /home/norman/.arduinoIDE which is a new hidden
directory, created on the first run of the version 2 IDE. On Windows, this would be
C:\Users\norman)\ .arduinoIDE.

You should be able to find the file after the first run of the IDE; if you have not yet done so, there
will not be a settings. json file to be found.

As you may have guessed, the file is in JSON format, which is still a text format, but has a different
layout to the preferences . txt file in previous versions of the IDE.

In the IDE, if you click Filer Preferences, a dialog will be displayed showing the current
preferences. These have been read from settings. json. Just like the old preferences. txt
file, there are limited preferences that can be set on this dialog. However, there are a lot more
preferences than meets the eye!

© Norman Dunbar 2024 7
N. Dunbar, Arduino Software Internals, Maker Innovations Series,
https://doi.org/10.1007/979-8-8688-0171-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/979-8-8688-0171-6protect T1	extunderscore 2&domain=pdf
https://doi.org/10.1007/979-8-8688-0171-6_2
https://doi.org/10.1007/979-8-8688-0171-6_2
https://doi.org/10.1007/979-8-8688-0171-6_2
https://doi.org/10.1007/979-8-8688-0171-6_2
https://doi.org/10.1007/979-8-8688-0171-6_2
https://doi.org/10.1007/979-8-8688-0171-6_2
https://doi.org/10.1007/979-8-8688-0171-6_2
https://doi.org/10.1007/979-8-8688-0171-6_2
https://doi.org/10.1007/979-8-8688-0171-6_2
https://doi.org/10.1007/979-8-8688-0171-6_2
https://doi.org/10.1007/979-8-8688-0171-6_2

8 2 Arduino Compilation

2.1.1 Finding Other Hidden Settings

The new IDE has a hidden preferences system similar to that in VSCode. You access it via the
CTRLA+SHIFT+P key combination. This opens a new search bar in the editor and waits for you to
type something. Type “settings” without the quotes, which will give you a number of options. For
example:

* Open Settings (UI)

* Open User Settings

* Open Workspace Settings

¢ Open Workspace Settings (JSON)

The last option will allow you to edit the settings. json file directly in the IDE; this is very
useful and, at times, quicker than using CTRL+SHIFT+P. The others all appear to display the same
dialog in the IDE, and there are numerous settings available, too many to be honest.

A small example of using this option follows where we will search for the current tab size and
change it to “4,” but inserting spaces instead of a hard TAB character.

2.1.2 Setting Tab Stops

Now, you would think that an editor, for writing code, would at least allow you the ability to easily
adjust the width of the tab stops—not so the Arduino IDE!

All is not lost, as we do have that ability, but it involves editing the settings.json file;
however, we don’t have to edit it manually. These instructions only apply to version 2.x of the IDE:

* Open the IDE if not already open.
e Press CTRL+SHIFT+P.

* Type “settings” without quotes.

e Choose “Open Settings (UI).”

A new tab named “Preferences” will open in the IDE. There are two main options to the left side:

e User
* Workspace

The former will affect everything the current user does in the IDE; the latter will affect only the
current workspace or sketch.

¢ Click “User” and note that there are a number of categories of settings that can be changed.

* In the search box, type “tab size” without quotes. One of the displayed options is “Editor: Tab
Size.”

* Change the default of “2” to some other value that you prefer; I like four spaces, so I've configured
mine to be “4.”

Another useful setting to search for is “spaces.” This will allow you to configure the IDE to insert
spaces instead of actual tab characters. “Editor: Insert Spaces” is the appropriate setting.

2.2 Globally Defined Properties 9

Search or scroll through any of the other settings and configure the defaults for your user as you
desire. The changes take place immediately, and you no longer have to close the IDE and reopen it to
make the changes happen.

Once happy with all your changes, close the Preferences tab.

The preceding changes cause tabs to indent four characters from the default of two characters. I
don’t know about you, but I find two character indents quite unreadable when looking at the structure
of a sketch; I use four for just about everything I do. This makes editing in the IDE a little more
comfortable, in my opinion.

The settings. json file will be updated with your changes. If you subsequently upgrade the
IDE to a newer version, as they become available, then your changes will not be overwritten.

2.2 Globally Defined Properties

Before the various text files are read, the Arduino IDE defines some properties defining various paths,
and so on, for itself. These properties are global and can be used within any of the other configuration
files, including your own. These globally defined properties are listed next.

runtime.platform.path The absolute path of the directory which is the
folder containing the current boards.txt file
(SARDINST, for example).

runtime.hardware.path The absolute path of the hardware directory which is
the folder containing the current platform. txt file
(also SARDINST).

runtime.ide.path The absolute path of the directory where the arduino-
ide application, the Arduino IDE, or the arduino-cli,
if that is currently being used to compile a sketch, is
found. For the version, this is simply where you ex-
tracted the zip file. If you installed the flatpak version,
it’s where the arduino-ide and/or
arduino-cli executables are to be found.

runtime.ide.version The version number of the Arduino IDE as a six-
digit number. Each component of the version number
will be converted to use two digits. Then all the dots
are stripped out, and finally, any leading zeros are
removed, leaving the final value. For example, the
Arduino IDE version 2.1.0 will become “02.01.00”
which becomes “020100” before finally being assigned
as runtime.ide.version=20100. IDE versions
prior to version 1.6.0 used a single digit for the IDE
version number. For example, version 1.5.6 was 156 as
opposed to 10506.

ide_version An alias for runtime.ide.version, used for
compatibility with previous versions.

runtime.os The operating system that the IDE is currently ex-
ecuting on. The values are “linux,” “windows,” and

“macosx.”
software The name of the software. Set to “ARDUINO.”

name
_id

build. fgbn

build.source.path

build.library discovery phase

compiler.optimization flags

extra.time.utc

extra.time.local
extra.time. zone

extra.time.dst

2 Arduino Compilation

The name of the platform vendor.

The board ID of the board that the sketch is being
compiled for. Taken from the “name” parameter for the
board in the boards . txt or boards.local.txt
files.

The board’s fully qualified board name. Used when
compiling sketches. For an Uno, this will be ‘“ar-
duino.avr.uno” in the format of “vendor.architecture
.board_id”. For my Nano, it’s “arduino.avr.nano:cpu
=atmega328” which is the format “vendor.architec-
ture.board_id:menu_idv=option”. Multiple options are
permitted, comma separated.

The absolute path of the sketch being compiled. If
the sketch has not yet been saved, this will point to a
temporary directory.

If zero, then this is the normal phase of the build. If one,
then this is in the discovery phase of the build where
the IDE does lots of work in the background to ensure
that your sketch becomes a valid C++ source file, with
all headers included, function prototypes inserted, and
SO on.

“Debug” or “Release” according to the compilation
in progress. The IDE sets this using the Sketchr
Optimize for Debugging option.

Unix time, in seconds since the epoch—00:00:00 on
01/01/1970—as per the machine that the build is run-
ning on. UTC.

Unix time with local timezone offsets and Daylight
Saving Time (DST) applied.

Local timezone offset from UTC. Does not include any
DST adjustments.

Local timezone offset for DST.

These global settings may be used in platform.txt, boards.txt, or perhaps, but not
very likely, in programmers.txt. You may also use these paths in your amendments to the
configuration files or in the various “local” versions that you create.

Note

Interestingly, while the IDE version 1.8.19 correctly gives 10819 for runtime.ide
.version, IDE version 2.1.0 is hardcoded to use 10607 which implies that it is really IDE

version 1.6.7!

You can see the setting in a clean verbose compile. Find the line that states “Compiling

sketch. ..”; the line after that is the first compilation line. In the command-line option, -

113

DARDUINO=xxxxx", “xxxxx” is the runtime . ide.version.

2.3 Boards.txt 11

Tip
Various configuration files can have a local version; boards . txt, for example, may have
boards.local. txt. This local version allows you to make changes to the system configu-
ration and not have to reconfigure every time the Arduino IDE is updated.

Unfortunately, not all of the configuration files have a local version—programmers. txt
is one that I have come across that doesn’t. See https://github.com/arduino/Arduino/issues/8556
for details, if you are interested.

23 Boards.txt

The $SARDINST/boards. txt file defines the various menu options for different types of micro-
controller devices. These options will either appear on the Boards menu in the Arduino IDE or will
be used when a specific board is selected from that menu. The file is read and the various options are
decoded and used by the IDE at startup.

New boards can be added quite simply, if desired, by editing this file, although it’s better to add
any changes to the boards.local. txt instead—to prevent your changes from being overwritten
when an update is applied.

You should be aware that changes have been made to the manner in which some parameters are
listed in boards. txt and boards.local.txt. This appears to be a result of changes made to
the IDE between versions 1 and 2.

You will see both forms of the settings from time to time, as the following two versions of the same
setting show:

uno.upload.tool=arduino:avrdude
uno.upload.tool=avrdude

The first line is the format used in the newer IDE, while the second is the old style. Currently, both
variants are accepted—at least, in version 2.1.0 of the IDE.
Let’s look inside boards . txt at the entry for the Arduino Uno.

2.3.1 Arduino Uno Example

The following is the complete listing of all entries for the Arduino Uno, in the IDE version 2.1.0:

uno.name=Arduino/Genuino Uno (1)

uno.vid.0=0x2341 (2)
uno.pid.0=0x0043
uno.vid.1l=0x2341
uno.pid.1=0x0001
uno.vid.2=0x2A03
uno.pid.2=0x0043
uno.vid.3=0x2341
uno.pid.3=0x0243
uno.vid.4=0x2341
uno.pid.4=0x006A

https://github.com/arduino/Arduino/issues/8556
https://github.com/arduino/Arduino/issues/8556
https://github.com/arduino/Arduino/issues/8556
https://github.com/arduino/Arduino/issues/8556
https://github.com/arduino/Arduino/issues/8556
https://github.com/arduino/Arduino/issues/8556
https://github.com/arduino/Arduino/issues/8556

uno.upload port.
uno.upload port.
uno.upload port.
uno.upload port.
uno.upload port.
uno.upload port.
uno.upload port.
uno.upload _port.
uno.upload port.
uno.upload port.

.vid=0x2341
.pid=0x0043
.vid=0x2341
.pid=0x0001
.vid=0x2A03

.vid=0x2341
.pid=0x0243
.vid=0x2341
.pid=0x006A

2 Arduino Compilation

uno.upload port.

uno.upload.tool=avrdude
uno.upload.protocol=arduino
uno.upload.maximum size=32256
uno.upload.maximum data size=2048
uno.upload.speed=115200

uno.bootloader.
uno.bootloader.
uno.bootloader.high fuses=0xDE
uno.bootloader.
uno.bootloader.unlock bits=0x3F
uno.bootloader.
uno.bootloader.

uno.build.mcu=atmega328p
uno.build.f cpu=16000000L
uno.build.board=AVR UNO
uno.build.core=arduino
uno.build.variant=standard

0
0
1
1
2
2.pid=0x0043
3
3
4
4
5

.board=uno

tool=avrdude
low_fuses=0xFF

extended fuses=0xFD

lock bits=0x0F
file=optiboot/optiboot atmega328.hex

(D
2

3)
“4)

®)
(6)

This is the board name.

This section defines identification settings used to determine the board’s identity when it is
plugged into the USB port on your computer.

This section defines serial discovery port properties used to determine the board’s identity when
it is plugged into the USB port on your computer. These settings are only used if the platform
supports serial discovery.

These settings define parameters used for uploading compiled code to the board.

Bootloader settings are listed in this section.

Various build options are specified here.

The Arduino Wiki at https://arduino.github.io/arduino-cli/0.30/platform-specification/ states that

This file contains definitions and meta-data for the boards supported. Every board must be referred through its
short name, the board ID. The settings for a board are defined through a set of properties with keys having the
board ID as prefix.

The board ID prefix mentioned is, in this case, “uno.” This is extracted from each of the “xxx.name”

entries in the boards . txt file.

https://arduino.github.io/arduino-cli/0.30/platform-specification/
https://arduino.github.io/arduino-cli/0.30/platform-specification/
https://arduino.github.io/arduino-cli/0.30/platform-specification/
https://arduino.github.io/arduino-cli/0.30/platform-specification/
https://arduino.github.io/arduino-cli/0.30/platform-specification/
https://arduino.github.io/arduino-cli/0.30/platform-specification/
https://arduino.github.io/arduino-cli/0.30/platform-specification/
https://arduino.github.io/arduino-cli/0.30/platform-specification/
https://arduino.github.io/arduino-cli/0.30/platform-specification/
https://arduino.github.io/arduino-cli/0.30/platform-specification/

2.3 Boards.txt 13

2.3.1.1 Board Identifier
The name parameter here identifies the board and defines what name will be displayed in the Tools >
Board menu in the IDE:

uno.name=Arduino/Genuino Uno

When you select “Arduino/Genuino Uno” from the board selector dialog, then the properties of an
Uno are read from the boards . txt file, ready for use.

2.3.1.2 Identification Settings

This section’s settings help to identify a genuine Arduino Uno. When you plug a device into a USB
port, the device is queried to obtain a vendor and product identifier. This helps the system load the
correct drivers (mainly for Windows) or, on the very first time, to prompt you to load the appropriate
drivers for the device. For the Uno, the following five pairs of vendor and product identifiers are known
to be genuine:

uno.vid.0=0x2341
uno.pid.0=0x0043
uno.vid.1=0x2341
uno.pid.1=0x0001
uno.vid.2=0x2A03
uno.pid.2=0x0043
uno.vid.3=0x2341
uno.pid.3=0x0243
uno.vid.4=0x2341
uno.pid.4=0x006A

In the settings

* Vid is the vendor identifier.
* Pid is the product identifier for the specific vendor.

From this, we can clearly see two vendors—“0x2431” and “0x2A03”—and the appropriate product
identifiers to suit each vendor. Bear in mind that it isn’t necessarily the actual manufacturer of
the Arduino board that is being identified, it is most likely to be the chip that converts the data
on the USB port into the correct format for the microcontroller. Some Uno boards have another
AVR microcontroller taking care of the communications, while others have an FTDI chip—both will
register as different pids.

Note

Genuine boards, such as my own Duemilanove, which use an FTDI chip for communications,
will not necessarily be recognized as the correct board. This is due to the FTDI chip which uses
a generic pid and vid and is used by numerous different boards. However, this is nothing to
worry about.

Following the vendor and product IDs, we have pluggable discovery settings based on the five
pairs of vendor and product IDs earlier. These are not available for every board, only those which the
platform supports pluggable discovery.

