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Preface 

Vibrations occur all around us: in the human body, in mechanical systems and sensors, 
in buildings and structures, and in vehicles used in the air, on the ground, and in the 
water. In some cases, these vibrations are undesirable, and attempts are made to 
avoid them or to minimize them; in other cases, vibrations are controlled and put 
to beneficial uses. Irrespective of the objective of a vibration analysis, the vibrating 
systems must be modelled. Therefore, the main goal of the book is to take the large 
body of material relating to the modeling and analysis of vibrating elastic systems 
and present it in such a manner that one can select the least complex model to capture 
the essential features of the system being investigated. The essential features of the 
system could include such effects as in-plane forces, elastic foundations, in-span 
attachments and attachments to the boundaries, and such complicating factors as 
piezoelectric elements, elastic coupling to another system, variable geometry, and 
fluid loading. To assist in the model selection, a very large number of numerical 
results has been generated for this book so that one is able compare the various 
models to determine how changes to boundary conditions, system parameters, and 
complicating factors affect the natural frequencies and mode shapes and the response 
to externally applied displacements and forces. 

The material presented is reasonably self-contained and employs only a few solu-
tion methods to obtain the results. For continuous systems, the governing equations 
and boundary conditions are derived from the determination of the contributions to 
the total energy of the system and the application of the extended Hamilton’s prin-
ciple. To make the application of the energy approach more efficient, an appendix, 
Appendix B, is provided with a summary of a general derivation of the extended 
Hamilton’s principle for systems with one or more dependent variables and the 
conditions necessary for one to be able to generate orthogonal functions. Since a 
primary solution method employed in this book is the separable of variables, the 
generation and use of orthogonal functions is very important. Consequently, the use 
of energy approach, the application of the extended Hamilton’s principle, and the 
results of Appendix B provide the basis for a consistent approach to deriving the 
governing equations and boundary conditions and the basis for two very powerful 
solution techniques: the generation of orthogonal functions and the separation of
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variables and the Rayleigh-Ritz method. The expression for the total energy of the 
system is used directly as the starting point for the Rayleigh-Ritz method. Irrespec-
tive of the solution method, almost all solutions that are obtained in this book have 
been numerically evaluated by the author and presented in tables and annotated 2D 
and 3D graphs. 

For this edition, multiphysics applications have been added and include: fluid 
loading on the exterior of beams, plates, and cylindrical shells; fluid loading on the 
interiors of beams (pipes) and cylindrical shells; beams with in-span single degree-
of-freedom systems and inerters, and layered piezoelectric beams for use as energy 
harvesters. In addition, a new chapter, Chap. 7, introducing the Mindlin-Reissner 
plate theory has been added, the material on thin rectangular plates with two opposite 
edges hinged has been expanded, and the following new topics included: inerters, 
pre-twisted beams, moving masses on beams, beam with a pendulum, finite-length 
metamaterial beams, and beams with functionally graded materials. 

The book is organized into eight chapters, seven of which describe different vibra-
tory models and their ranges of applicability. In Chap. 2, single and two degree-of-
freedom system models are used to obtain a basic understanding of vibration isolators 
and absorbers. In this regard, new material on inerters, quasi-zero stiffness spring 
configurations, and bio-inspired designs are introduced. 

In Chap. 3, the Euler-Bernoulli beam is presented. The effects on the vibratory 
response of this model are determined for various factors: in-span and boundary 
attachments such as a concentrated spring, concentrated mass, single degree of 
freedom system, or inerter. The latter two are examined for their ability to act as vibra-
tion absorbers. The effects of the cross-section properties on the natural frequencies 
are examined in detail: continuously varying tapers, constant with abrupt changes in 
properties, extended rigid mass, and pre-twist. 

In Chap. 4, the response to forced excitation for various complicating factors for 
the Euler-Bernoulli beam are considered. The complicating factors include beams 
with a single degree-of-freedom system or an inerter, the coupling of torsion and 
bending, fluid loading, beams conveying fluids, and a piezoelectric layered beam used 
as an energy harvester. The beam with an in-span single degree of freedom system 
vibration absorber is extended to form a metamaterial and then used to illustrate the 
band gap phenomenon. 

In Chap. 5, the Timoshenko theory is introduced, which gives improved estimates 
for the natural frequency. One of the objectives of this chapter is to numerically 
show under what conditions one can use the Euler-Bernoulli beam theory and when 
one should use the Timoshenko beam theory. Therefore, many of the same systems 
that are examined in Chap. 3 are re-examined in this chapter and the results from 
each theory are compared and regions of applicability are identified. Lastly, the 
natural frequencies are determined for Timoshenko beams with functionally graded 
materials. 

The transverse vibrations of thin rectangular and annular circular plates are 
presented in Chap. 6 along with extensive numerical results. For solid circular plates, 
the effects of a concentrated mass and the effects of fluid loading are determined.
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In Chap. 7, the Mindlin-Reissner plate theory is introduced, and the natural 
frequencies and mode shapes are determined for a rectangular plate hinged on all 
four edges and for a clamped solid circular plate. The results for each of these cases 
are compared to those obtained in Chap. 6 for the thin plate theory. 

In the last chapter, Chap. 8, the Donnell and Flügge theories are introduced for 
cylindrical shells and used to obtain the natural frequencies and mode shapes for 
several boundary conditions. The results from these shell theories are compared to 
each other and to those predicted by the Euler-Bernoulli and Timoshenko beam 
theories and regions of applicability are identified. The effects of fluid loading when 
a fluid is in the interior of the shell and when it is on the exterior of the shell are 
determined. 

College Park, USA Edward B. Magrab
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Chapter 1 
Introduction 

Abstract The importance of vibrations and how vibrating systems are analyzed is 
presented. This is followed by a statement of the book’s goals and a discussion of 
how they will be met. 

1.1 A Brief Historical Perspective 

It is likely that the early interest in vibrations was due to the development of musical 
instruments such as whistles and drums. In was in modern times, starting around 
1583, when Galilei Galileo made his observations about the period of a pendulum, 
that the subject of vibrations attracted scientific scrutiny. In the 1600s, strings were 
analyzed by Marin Mersenne and John Wallis; in the 1700s, beams were analyzed by 
Leonhard Euler and Daniel Bernoulli and plates were analyzed by Sophie Germain; 
in the 1800s, plates were analyzed by Gustav Kirchhoff and Simeon Poisson, and 
shells by D. Codazzi and A. E. H. Love. A complete historical development of 
the subject can be found in [1]. Lord Rayleigh’s book Theory of Sound, which 
was first published in 1877, is one of the early comprehensive publications on the 
subject of vibrations. Since the publication of his book, there has been considerable 
growth in the diversity of devices and systems that are designed with vibrations 
in mind: mechanical, electromechanical, biomechanical and biomedical, ships and 
submarines, and civil structures. Along with this explosion of interest in quantifying 
the vibrations of systems came great advances in the computational and analytical 
tools available to analyze them. 

1.2 Importance of Vibrations 

Vibrations occur all around us. In the human body, where there are low-frequency 
oscillations of the lungs and the heart and high-frequency oscillations of the larynx 
as one speaks. In man-made systems, where any unbalance in machines with rotating

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
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2 1 Introduction

parts such as fans, washing machines, centrifugal pumps, rotary presses, and turbines, 
can cause vibrations. In buildings and structures, where passing vehicular, air, and 
rail traffic or natural phenomena such as earthquakes and wind can cause oscillations. 

In some cases, oscillations are undesirable. In structural systems, the fluctuating 
stresses due to vibrations can result in fatigue failure. When performing precision 
measurements such as with an electron microscope externally caused oscillations 
must be substantially minimized. In air, roadway, and railway vehicles, oscilla-
tory input to the passenger compartments must be reduced. In machinery, vibra-
tions can cause excessive wear or cause situations that make a device difficult to 
control. Vibrating systems can also produce unwanted audible acoustic energy that 
is annoying or harmful. 

On the other hand, vibrations also have many beneficial uses in such widely diverse 
applications as vibratory parts feeders, paint mixers, transducers and sensors, ultra-
sonic devices used in medicine and dentistry, sirens and alarms for warnings, deter-
mining fundamental properties of materials, and stimulating bone growth. During the 
last few decades, there has been an increase in the development of electromechan-
ical devices and systems at the micrometer and nanometer scale. These developments 
have led to new families of devices and sensors such as vibrating cantilever beam 
mass sensors, piezoelectric beam energy harvesters, carbon nanotube oscillators, and 
vibrating cantilever beam sensors for atomic force microscopes. 

1.3 Analysis of Vibrating Systems 

The analyses of systems subject to vibrations or designed to vibrate have many 
aspects. Typically, a system is designed to meet a set of vibration performance criteria 
such as to oscillate at a specific frequency, avoid a system resonance, operate at or 
below specific amplitude levels, have its response controlled, and be isolated from its 
surroundings. These criteria may involve the entire system or only specific portions of 
it. To determine if the performance criteria have been met, experiments are performed 
to determine the characteristics of the input to the system, the output from the system, 
and the system itself. Some of the characteristics of interest could be whether the 
input is harmonic, periodic, transient, or random and its respective frequency content 
and magnitude. Some of the characteristics of the output of the system could be the 
magnitude and frequency content of the force, velocity, displacement, acceleration, 
or stress at one or more locations. Some of the characteristics of the system itself 
could be its natural frequencies and mode shapes and its response to a specific input 
quantity. 

To design a system to meet its performance criteria, it is often necessary to model 
the system and then to analyze it in the context of these criteria. The type of model 
one uses may be a function of its size: the sub micrometer scale, micrometer scale, 
millimeter scale, or the centimeter scale and greater. The model will also be a function 
of its shape, the way in which it is expected to oscillate, the way it is supported, and 
how it is constrained. If shape can be ignored, then the system can be modeled as a
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spring-mass system. If geometry is important, then one must choose an appropriate 
representation such as a beam, plate, or shell and decide if the geometry can be treated 
as a constant geometry or if it must be treated as a system with variable geometry. 
The system’s environment, in conjunction with its size, will determine which type 
of damping is important and if it must be taken into account. The model may also 
have to include the effects of any attachments to its interior and to its boundaries and 
may have to account for externally applied constraints and forces such as an elastic 
foundation, in-plane forces, and coupling to other elastic systems. Thus, there are 
many decisions that must be made regarding what should be included in the model 
so that it adequately represents the actual system. 

1.4 About the Book 

The main goal of the book is to take the large body of material relating to the modeling 
and analysis of vibrating elastic systems that include single and two degree-of-
freedom spring-mass systems and inerters, Euler–Bernoulli and Timoshenko beams, 
thin and Mindlin-Reissner rectangular and circular plates, and Donnell and Flügge 
theories of cylindrical shells and present it in such a manner that one is able to select 
the least complex model that can be used to capture the essential features of the 
system being investigated. The essential features of the system could include such 
effects as in-plane forces, elastic foundations, an appropriate form of damping, in-
span attachments and attachments to the boundaries, and such complicating factors 
as piezoelectric elements, elastic coupling to another system, and fluid loading. To 
assist in the model selection, a very large number of numerical results has been gener-
ated so that one is able compare the various models to determine how changes to 
boundary conditions, system parameters, and complicating factors affect the natural 
frequencies and mode shapes and the response to externally applied displacements 
and forces. 

To be able to cover the wide range of models and complicating factors in suffi-
cient detail, an efficient means of presenting the material is required. The approach 
employed here has been to obtain an expression for the total energy of each model and 
then to use the extended Hamilton’s principle to derive the governing equations and 
boundary conditions. The expression for the total energy of the system includes the 
effects of any complicating factors. In addition to providing an efficient and consis-
tent way in which to obtain the governing equations and boundary conditions, the 
expression for the total energy of the system can be used directly as the starting point 
for the Rayleigh–Ritz method. Another advantage of the energy approach is that the 
results given here can be extended to systems that include other effects by modifying 
the expression for the total energy. A list of the elastic systems, their boundary and 
in-span attachments, and their additional factors that are considered in this book are 
given in Table 1.1.

To make the application of the energy approach more efficient, an appendix, 
Appendix B, is provided with a summary from a general derivation of the extended
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6 1 Introduction

Hamilton’s principle for systems with one or more dependent variables and the 
conditions necessary for one to be able to generate orthogonal functions. Since a 
primary solution method employed in this book is the separable of variables, the 
generation and use of orthogonal functions is very important. Consequently, the use 
of energy approach, the application of the extended Hamilton’s principle, and the 
results of Appendix B provide the basis for a consistent approach to deriving the 
governing equations and boundary conditions and the basis for two very powerful 
solution techniques: the generation of orthogonal functions and the separation of 
variables and the Rayleigh–Ritz method. It will be seen that a major advantage of 
the use of the extended Hamilton’s principle is that the boundary conditions are 
a natural consequence of the method. This will prove to be very important when 
the Timoshenko beam theory, thin plate and Mindlin-Reisner plate theories, and 
thin cylindrical shell theories of Donnell and Flügge are considered. In these cases, 
obtaining the boundary conditions can be quite involved if the force balance and 
moment balance methods are used. 

To determine the effects that various parameters and complicating factors have on 
a system, the following procedure is employed. For each elastic system, a solution for 
a very general set of boundary conditions and complicating factors as is practical is 
obtained. Once the general solution has been obtained, many of its special cases are 
examined in a direct and straightforward manner. This approach, while introducing 
a little more algebraic complexity at the outset, is a very efficient way of obtaining 
a solution to a class of systems and greatly reduces the need to re-solve and/or re-
derive the equations each time another combination of factors is examined. In most 
instances, the systems’ special cases are listed in tables. 

To be able to use the least complex model to represent a system, each subsequent 
system is compared to its simpler model. For example, the determination of the condi-
tions when the Euler–Bernoulli beam theory can be used instead of the Timoshenko 
beam theory, when the thin plate theory can be used instead of the Mindlin-Reissner 
plate theory, and when a beam can be used to model a shell. 

An underlying aspect that allows one to present the large amount of material 
given in this book is the availability of the modern computer environments such 
as Mathematica® and Matlab®. These programs permit one to devote less space to 
presenting special numerical solution techniques and more space to the development 
of the governing equations and boundary conditions, obtaining the general solu-
tions, and presenting and discussing the numerical results. Consequently, virtually 
all solutions that are derived in this book have been numerically evaluated by the 
author. This has produced a substantial amount of annotated graphical and tabular 
results that illustrate the influence that the various system parameters have on their 
respective responses. In addition, the numerical results are presented in terms of non 
dimensional quantities making them applicable to a wide range of systems.
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Chapter 2 
Spring-Mass Systems and Inerters 

Abstract Several single degree-of-freedom system models are created by arranging 
their viscous dampers and springs in different configurations. These configurations 
create the Kelvin model, the Maxwell model, various quasi-zero stiffness models, and 
bio-inspired designs. For several of these configurations, the response to transient and 
harmonic force and base excitation are obtained. The definitions of the amplitude 
and phase response functions and the transmissibility are given. Two degree-of-
freedom systems are presented and discussed in their role of vibration absorber and 
their frequency–response functions are defined. Single and two degree-of-freedom 
inerters are presented and the role of the inerter as a vibration absorber is indicated. 

2.1 Introduction 

In determining the response of structural systems to dynamic excitation, one often 
encounters situations wherein certain aspects of the response are undesirable. In 
some of these cases, this response can be improved with the attachment of a single 
degree of freedom system. In other cases, one attempts to minimize the interactions of 
vibrating object with its support structure using vibration isolation techniques. When 
the support structure is a flexible one, e.g., a beam or plate, the vibration isolation 
system is affected by the structure’s flexibility and, therefore, must be included in the 
model. Therefore, in this chapter, we shall analyze one and two degree-of-freedom 
systems in the absence of the flexible structural aspects; in the subsequent chapters, 
the structural interactions will be considered.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
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10 2 Spring-Mass Systems and Inerters

2.2 Some Preliminaries 

2.2.1 Single Degree-of-Freedom Systems 

A single degree-of-freedom system is shown in Fig. 2.1. This model with a spring 
and viscous damper in parallel is known as the Kelvin-Voigt model. In this figure, m 
(kg) is the mass, k (N/m) is the linear spring constant, and c (Ns/m) is the coefficient 
of viscous damping. The static displacement of the mass is δst . The mass undergoes 
a displacement x(t) (m) and the base has applied to it a known displacement y(t) (m).  
Both displacements are with respect to an inertial frame. The mass is subjected to an 
externally applied time-varying force f (t) (N) and a gravity force mg (N), where g = 
9.81 m/s2 is the acceleration of gravity. Examples of external forces acting on a mass 
are fluctuating air pressure loading such as that on the wing of an aircraft, fluctuating 
electromagnetic forces such as in a loudspeaker coil, electrostatic forces that appear 
in some microelectromechanical devices, forces caused by an unbalanced mass in 
rotating machinery, and buoyancy forces on floating systems. 

We shall derive the equations of motion using Lagrange’s equations. To do this, 
we determine the following. The kinetic energy is of the system is 

T = 
1 

2 
m ẋ2 (2.1) 

where the over dot indicates the derivative with respect to the time t. The potential 
energy is given by 

U = 
1 

2 
k(δst  + x − y)2 (2.2) 

The dissipation function is given by

Fig. 2.1 Vertical oscillations 
of a spring-mass-damper 
system with moving base 
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D = 
1 

2 
c( ̇x − ẏ)2 (2.3) 

The generalized force is 

Q = mg + f (t) (2.4) 

Upon substituting Eqs. (2.1) to (2.4) into Lagrange’s equation, which is given by 

d 

dt

(
∂T 

∂ ̇x

)
− 

∂T 

∂ x 
+ 

∂ D 
∂ ̇x 

+ 
∂U 

∂x 
= Q (2.5) 

we obtain, 

m 
d2x 

dt2 
+ c 

d 

dt  
x + k(x + δst  ) = mg + f (t) + c 

dy  

dt  
+ ky  N (2.6) 

It is seen from Eq. (2.6) that the time-independent portion of Eq. (2.6) about x = 0 
gives 

δst  = 
mg 

k 
m 

Then, Eq. (2.6) becomes 

m 
d2x 

dt2 
+ c 

d 

dt  
x + kx  = f (t) + c 

dy  

dt  
+ ky  N (2.7) 

In practice, Eq. (2.7) is used as follows. When  f (t) /= 0, y(t) = 0 and when y(t) /= 0, 
f (t) = 0. Equation (2.7) represents the motion of the mass about the static equilibrium 
position x = 0. 

It is noted from the above operations that ∂U/∂x is equal to the spring force, 
denoted Fs(x), applied to the mass by the extension (or contraction) of the spring. 
The spring constant is determined from 

k(x) = 
dFs 

dx  
N/m (2.8) 

In the present case, the force–displacement relation is linear and is of the form Fs(x) 
= k(x – y + δst). Then, Eq. (2.8) yields k(x) = k. As we shall see in Sect. 2.2.6 there 
are many situations in which the spring force is not linearly related to x. 

The dynamic force on the base is 

Fb = c 
dx  

dt  
+ kx (2.9) 

Before proceeding, the following definitions are introduced.
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Natural Frequency—ωn 

For translating systems 

ωn = 2π fn = 
/

k 

m 
=
/

g 

δst  
rad/s (2.10) 

where f n is the natural frequency in Hz and we have used the definition of the static 
displacement. 

Damping Factor—ζ 

For translating systems 

ζ = c 

2mωn 
= c 

2 
√
km 

= 
cωn 

2k 
(2.11) 

When 0 < ζ < 1 the system is called an underdamped system, when ζ = 1 it is a  
critically damped system, and when ζ > 1 it is an overdamped system. When ζ = 0, 
the system is undamped. 

We return to Eq. (2.7) and introduce Eqs. (2.10) and (2.11) into Eq. (2.7) to arrive 
at the following governing equation of motion in terms of the natural frequency and 
damping factor 

d2x 

dt2 
+ 2ζωn 

dx  

dt  
+ ω2 

nx = 
f (t) 
m 

+ 2ζωn 
dy  

dt  
+ ω2 

n y (2.12) 

If we let τ = ωnt, then Eq. (2.12) becomes 

d2x 

dτ 2 
+ 2ζ 

dx  

dτ 
+ x = y + 2ζ 

dy  

dτ 
+ 

f (τ ) 
k 

m (2.13) 

2.2.2 General Solution for Harmonically Varying Forcing 
and Base Excitation 

We examine two cases of Eq. (2.13) with the assumptions that 0 ≤ ζ < 1, the initial 
conditions are zero, and the forcing and base excitations are undergoing harmonic 
oscillations of the form 

f (t) = Foe 
jΩτ 

y(t) = Yoe jΩτ (2.14)
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where Ω = ω/ωn, Fo is the known magnitude of the applied force, and Yo is the 
known magnitude of the base’s displacement. It is seen that when ω = ωn, Ω = 1. In 
the first case, we set y(t) = 0 and in the second case we set f (t) = 0. For both cases, 
we assume that 

x(τ ) = Xoe 
jΩτ (2.15) 

For case 1 (Yo = 0), we substitute the first of Eqs. (2.14) and (2.15) into Eq. (2.13) 
to find that 

Xo = 
Fo 

k 
H(Ω)e− jθ(Ω)  m (2.16) 

where 

H (Ω) = 1/(
1 − Ω2

)2 + (2ζΩ)2 

θ(Ω)  = tan−1 2ζΩ

1 − Ω2 
(2.17) 

The quantity H(Ω) is called the amplitude response and the quantity θ (Ω) is called 
the phase response. From Eqs. (2.15) and (2.16), we find that 

x(τ ) = 
Fo 

k 
H(Ω)e j(Ωτ−θ(Ω)) m (2.18) 

A plot of  H(Ω) and θ (Ω) is shown in Fig. 2.2. When a harmonic force applied 
to the mass, it is seen from Fig. 2.2 that for viscous damping, the phase angle is 
90° when Ω = 1 irrespective of the value of ζ . In addition, there are three distinct 
frequency regions of H(Ω). The first region is when Ω ≪ 1, where H(Ω) ∼= 1 and, 
from Eq. (2.16), x(τ ) ~ 1/k. This region is denoted the stiffness-controlled region and 
is important in sensor design. The second region is when Ω ∼= 1, where H(Ω) ~ 1/  
(2ζ ) and from Eqs. (2.16) and (2.11) x(τ ) ~ 1/c. This region is called the damping-
controlled region and is important in the design of vibration absorbers. The third 
region is when Ω ≫ 1, where H(Ω) ~ 1/Ω2 and x(τ ) ~ 1/m. This region is called the 
mass-controlled region and is important in the design of vibration isolators.

For case 2 (Fo = 0), we substitute the second of Eq. (2.14) and Eq. (2.15) into  
Eq. (2.13) to find that 

Xo = Yo Hb(Ω)e jϕ(Ω) m (2.19) 

where

Hb(Ω) = H (Ω) 
/
1 + (2ζΩ)2
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Fig. 2.2 Response of a 
single degree-of-freedom 
system with viscous 
damping when a harmonic 
force excitation is applied to 
the mass. a Amplitude 
response. b Phase response

(a) 

(b) 

ϕ(Ω) = tan−1 2ζΩ3 

1 + Ω2(4ζ 2 − 1) 
(2.20)

A plot of  Hb(Ω) and ϕ(Ω) is shown in Fig. 2.3.

Transmissibility 

When a force is applied to the mass, the transmissibility, denoted TR, is defined as the 
ratio of the magnitude of the force transmitted to the fixed base to the force applied 
to the mass. To determine the magnitude of the force transmitted to the fixed base, 
we use Eqs. (2.9) and (2.18) to obtain 

|Fb| = Fo Hb(Ω) (2.21) 

where Hb(Ω) is given  by  Eq. (2.20). Then, the transmissibility is 

TR = 
|Fb| 
Fo 

= Hb(Ω) (2.22) 

When the base of the single degree-of-freedom is subjected to a harmonic displace-
ment, the transmissibility is defined as the ratio of the magnitude of the displacement
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Fig. 2.3 Response of a 
single degree-of-freedom 
system with viscous 
damping when a harmonic 
displacement excitation is 
applied to the base. 
a Amplitude response. 
b Phase response

(a) 

(b) 

of the mass to the magnitude of the base displacement. In this case, the transmissibility 
is, from Eq. (2.19), 

TR = 
|Xo| 
Yo 

= Hb(Ω) (2.23) 

We see that the expression for TR is the same for cases 1 and 2. 
Although the TR can be obtained from Fig. 2.3, it has been replotted in Fig. 2.4 for 

two values of the damping factor. From this figure, it is seen that the transmissibility 
ratio decreases as Ω increases and as ζ decreases. However, it is seen that to get, say, 
a 4%  TR, one can operate at a frequency ratio Ω = 5.2 when ζ = 0.03 whereas for a 
damping factor of ζ = 0.15 one must operate at a frequency ratioΩ= 8.2. Thus, when 
one seeks vibration isolation, one of the objectives is to have a natural frequency as 
low as possible. However, from Eq. (2.10) it is seen that this may require a large static 
displacement, which can lead to implementation difficulties. In Sect. 2.2.6, several 
vibration isolation systems to overcome this drawback will be discussed.
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Fig. 2.4 Percentage TR for 
two values of ζ 

2.2.3 Structural Damping 

Structural damping is a damping model that assumes that the dissipation in the system 
is due to losses in the material that provides the stiffness for the system. One type 
of structural damping model is obtained by assuming that the structural damping is 
independent of frequency. A model that satisfies this criterion is to replace k(x – y) 
in Eq. (2.7) with 

k(x − y) → k(x − y) + k 
2η 
ω 

∂ 
∂t 

(x − y) N (2.24) 

where η is an empirically determined constant. This model is restricted to systems 
undergoing harmonic oscillations at frequency ω. Then, Eq. (2.13) can be written as 

d2x 

dτ 2 
+ 2ζvs 

dx  

dτ 
+ x = y + 2ζvs 

dy  

dτ 
+ 

f (τ ) 
k 

(2.25) 

where 

ζvs =
(
ζ + 

η

Ω

)
(2.26) 

Thus, we can use results given by Eqs. (2.17) and (2.20) directly by replacing in 
these results ζ with ζ vs. Then, Eq. (2.18), which is for case 1, becomes 

x(τ ) = 
Fo 

k 
Hvs(Ω)e j(Ωτ−θvs (Ω)) m (2.27) 

where 

Hvs(Ω) = 1/(
1 − Ω2

)2 + (2ζΩ + 2η)2


