Denis Panjuta - Jafar Jabbarzadeh

| Learning (#
Through

Small Projects

&) Springer

Learning C# Through Small Projects

Denis Panjuta - Jafar Jabbarzadeh

Learning C#
Through
Small Projects

@ Springer

Denis Panjuta Jafar Jabbarzadeh

Panjutorials GmbH Panjutorials GmbH
Koln, Germany Ko6ln, Germany
ISBN 978-3-031-51913-0 ISBN 978-3-031-51914-7 (eBook)

https://doi.org/10.1007/978-3-031-51914-7

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the
whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or informa-
tion storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give
a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that
may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

https://doi.org/10.1007/978-3-031-51914-7

In the ever-evolving world of software development, the ability to adapt, learn, and inno-
vate is paramount. C# has emerged as a versatile and powerful language, enabling devel-
opers to craft everything from enterprise applications to captivating games. However, the
journey to mastering C# can be daunting, especially when faced with dense textbooks and
abstract concepts. Learning C# by Small Projects seeks to bridge this gap, offering a
hands-on approach to understanding advanced C# concepts through engaging projects and
minigames.

The rationale behind this book is simple: learning by doing. Instead of wading through
pages of theory, you’ll be diving straight into the action, building 11 distinct projects that
range from an interactive storytelling program to a responsive Discord chatbot. Each proj-
ect is meticulously designed to introduce and reinforce specific C# concepts, ensuring that
you not only understand the theory but can also apply it in real-world scenarios.

The book is structured to provide a gradual learning curve. The initial chapters lay the
foundation, introducing you to the basics of C# programming. As you progress, the proj-
ects become more intricate, delving into advanced topics such as asynchronous opera-
tions, data integrity, and API integration. By the end of your journey, you’ll have a
comprehensive understanding of C# and a portfolio of projects to showcase your skills.

As the authors of this book, we, Denis Panjuta and Jafar Jabbarzadeh, have the privilege
of sharing our expertise with a combined student base of over 300,000. This book is more
than just a guide—it’s a mentor. Our extensive teaching experience is evident in every
chapter, ensuring that complex topics are broken down into easily digestible segments.
Moreover, our commitment to practical learning ensures that every concept is paired with
a hands-on project, reinforcing your understanding and building your confidence.

In essence, Learning C# by Small Projects is more than just a book—it’s a journey. A
journey that takes you from the foundational concepts of C# to its advanced applications,
all while building tangible projects that you can proudly showcase. Whether you’re an
aspiring game developer, an enterprise software engineer, or simply a coding enthusiast,
this book promises to be an invaluable resource in your C# learning journey.

Vi Preface

So, grab your computer, roll up your sleeves, and let’s dive into the fascinating world
of C# development. Your journey to mastering C# starts here.

Koln, Germany Denis Panjuta
Jafar Jabbarzadeh

Contents

1 HelloWorld! 1
1.1 The Technology of Choice., 2
1.2 WhatCanYouDo With C#? 4

1.2.1 C# for Web Application Development. 4
1.2.2 C# for Windows Applications 4
1.2.3 C# for Linux and macOS Applications 5
1.2.4 C# for Mobile App Development. 5
1.2.5 C# for Video Game Development 6
1.3 Getting Started with CH. i 6
1.4 Hello World! A Simple Interactive Storytelling App.................. 14
1.4.1 OurProject. 14
142 OurCodeottt 15
143 Source Code.ottt 20
IS Summary 20
References. 21

2 C#DataTypesand Variables 23
2.1 Variables in CH#. 24
2.2 Variable Data Typesottt 26

2.2.1 int (Integral Numeric Types) 27
2.2.2 float (Floating-Point Numeric Types) 27
2.2.3 char (Unicode UTF-16 Character).......................... 27
2.24 bool (BooleanValue) it 28
2.2.5 The C# Built-in Value and Reference Types
(Tables 2.1 and 2.2) e 28
2.3 Variables Types in C# 29
2.3.1 StaticVariables. 29
2.3.2 Instance Variables i 30
2.3.3 Array Variables 30
234 Value Parameters, 30
2.3.5 Reference Parameters. 31

Vil Contents
2.3.6 Output Parameters 32

2377 Local Variables. i 33

24 TheRandom Class.ottt 33
2.4.1 Generating a Random Number 34

2.5 ARandom Number i 35
2.5.1 OurProject....... ... 35

252 0OurCodeot 36

253 Source Code.oini 42

2.0 SUMMALY . .ottt ettt e e e e e e 42
References.o 42
3 C# Operators and Conditionals. i, 45
3.1 What Are Operators and EXpressionsoouenan.... 46
3.2 Types of Operators.ottt e e e e 49
3.3 Operator Priorityt 50
3.3.1 Operator Precedenceco.iuiiiiiinnnnn .. 51

3.3.2 Operator ASSOCIAtiVILY oottt 52

3.3.3 OperandEvaluation.......... 53

3.4 Conditional Statementsiiiriiiii 54
34.1 Theif Statement. i, 55
3.4.2 The Ternary Operator “7: 58

3.4.3 The Switch Statement, 59

3.5 ROCK-Paper-SCissors 61
3.5.1 TheProject.o 62

352 0urCodeot 62

3.6 SOUICE ..ottt e e 69
37 SUMMATY . .ottt e e e 69
References. 70
4 C# Classes, Methods, and User Input. 73
4.1 Classesin Object-Oriented CH#. i 74
4.1.1 Definition of Class.t 74
4.1.2 Object Creationouuiniriininaninnanann.. 76

4.13 ClassInheritance 77
4.1.4 A Brief Introduction to Test-Driven Development 79

42 Methodsin CH# . ..o 80
4.2.1 DefiningaMethod.......... 81

4.2.2 Static and Non-static Methods. 82

423 CallingaMethod........... 83
424 Method Return Types.t 88

4.3 Expanding on the Console Class 90
43.1 TheConsole Classouuunininin . 90
4.3.2 Console Properties.c..o .. 91

433 Console Methodsoiiii i 93

Contents IX
4.4 The Convert Classottt et ans 96
4.4.1 Definition of the Convert Class 96
4.4.2 Outcomes to CONVEISIONSvvvtetvinenen .. 96

443 Convert Methods i 99

45 Guessthe Number i 100
45.1 TheProject. 101
452 OurCodeot e 101

453 SourceCode.t 111

4.6 SUMMATY © oottt ettt e e e e e e e ettt 111
References. 112
5 C#Collections and Tteratorsov ittt 115
5.1 Arraysin CH. . oo 116
5.1.1 The Definition of an Array., 116

5.1.2 Declaring ATTaysottt e 117

5.1.3 Types Of ATTays . ..ottt e 119

5.1.4 Array Properties and Methods. 122

5.2 Collections inCHo 123
5.2.1 The Definition of aCollection.ccovvir.n... 123

5.2.2 System.Collections Classest .. 125

5.2.3 System.Collections.Concurrent Classes. 126

5.2.4 System.Collections.Generic Classesc.cvu.... 127

5.2.5 Collection Properties and Methods 129

5.2.6 Differences Between Array and Collection................... 131

5.2.7 The Shared System.Linq Namespace 132

5.3 TIteration Statements in CH# 134
5.3.1 Loopsand Iteratorsc..uuiuininennenenennnn... 135

5.3.2 Types of Iterators and Loops inC# 136

54 TIicTaCTOR. . oottt 141
54.1 TheProject. 141

542 0OurCodevviii 142

543 Source Code. .. .o.vnii i 163

5.5 SUMMALY . .o ot 163
References. 164
6 CHFIe Systemottt 167
6.1 The System.JO Namespacec.uuiiiinineinnenannnen.. 168
6.1.1 System.IO Definition. 168

6.1.2 SystemJO Classesoouvtn i 169

6.1.3 System.IO Structs, Enums, and Delegates. 174

6.1.4 System.IO for Linux and macOS. 175

6.2 String Manipulation. 176
6.2.1 The Immutability of Strings. 176

6.2.2 Verbatim and Quoted Strings., 178

Contents

6.2.3 String Escape Sequences 178
6.2.4 Format Stringsottt 179
6.2.5 SubStiNgS. . .ot 180
6.3 Guessthe Word i 181
6.3.1 The Project. i 182
6.32 OurCodeot 182
6.3.3 Source Code.oi i 196
6.4 SUMMATLY . ..ottt e e e e 196
References. 197
C# ASyNc OPerationsttt e 199
7.1 The Central Processing Unit, 200
7.1.1 How Does Asynchrony Workonthe CPU.................... 200
7.1.2 Asynchrony Versus Multi-threading 200
7.2 Asynchronous Programming in C# 201
7.2.1 What Is Asynchronous Programming inC# 202
7.2.2 Common Use Cases and WhentoUse....................... 202
7.2.3 Overview of the Asynchronous Model 207
7.3 Pattern Matching 211
7.3.1 WhatIs Pattern Matching 212
7.3.2 Pattern MatchinginC# i 212
733 Typesof Patterns i, 215
7.4 Diffusethe Bomb. 217
7.4.1 TheProject.o 217
7.4.2 OurAlgorithm 217
743 Source Code. ... ovi it 233
7.5 SUMMALY . oottt e e e e e e e 233
References. 234
C# Hashing and Checksum. i, 237
8.1 Datalntegrity........ ..o 238
8.1.1 WhatIsDatalntegrityoiiuiniinan.. 238
8.1.2 Why Do We Care About Data Integrity...................... 239
8.1.3 Typesof Datalntegrityt 239
8.2 CheckSum. 241
8.2.1 WhatIsChecksum. i 241
8.2.2 Checksum Inconsistencies and Why We Shall Not Forget
the Simple Things 243
83 Hashing 244
8.3.1 WhatlsHashing.......... i 244
8.3.2 What Is the Difference Between Cryptographic Hashing
and Non-cryptographic Hashing 246

8.3.3 Types of Cryptographic Hashing Algorithms 247

Contents Xl

10

8.4 Checksum Checker i 250
8.4.1 TheProject....... ... 251
842 OurCodeot 251
843 Source Code.ottt 266
8.5 SUMMArY . ..o 267
References.o 267
C# Cryptography. oo 269
9.1 CyberSECUTILY . . o v vttt e et e e e e 270
9.1.1 What Is Cybersecurity and Why Should We Care.............. 270

9.1.2 What Is the Difference Between Datasecurity
and Cybersecurityt 271
9.1.3 Cybersecurity Categories.ovuuernernennenneennen.. 272
9.2 EncryptioninCH# 273
9.2.1 WhatIsEncryption ... 274
9.2.2 Why DoWe Encrypt? 274
9.2.3 Difference Between Hashing and Encryption 275
9.24 Typesof Encryption. 276
9.3 The Process of Encrypting and Decrypting Data. 277
9.3.1 Advanced Encryption Standard 277
9.32 HowDoWeEncryptData.............. ... i, 278
9.33 HowDoWeDecryptData...............coiiiiiia. .. 280
9.4 The Message Encryptor.ttt 282
9.4.1 TheProject.o 282
942 OurCodeot 283
943 Source Code.ottt 302
0.5 SUMMALY . ..ot 302
References. 303
C# Simple Mail Transfer Protocol 305
10.1 Simple Mail Transfer Protocol or SMTP. 306
10.1.1 How Does SMTPWork o i 306
10.1.2 HowDoWe Use SMTP. 308
10.1.3 SMTP and Receiver Protocols. 312
10.2 SOLID Programming.ouuutntntnt e, 313
10.3 JavaScript Object Notationor JSON 318
10.3.1 HowDoWeUsealJSONFile? 318
10.4 A Mass Email Sender App. . ..o oot i e 321
10.4.1 TheProject. 322
1042 OurCodeoiuiiii i 322
1043 Source Code.oiuiin it 339

105 SUMMArY ..ot 339

Xl Contents

11 C# Application Programming Interface 341
1] APIS e 342
11.1.1 WhatIsan APIL. i 343

11.1.2 Why DoWe Use APIst 344

11.1.3 How APIsWork o 345

11.1.4 APIvsRESTvs SDK 346

11.2 The HTTP Class.o ittt e e e e e e 347
11.3 Working with APIs. i 349
11.3.1 What a Simple API Project Would Look Like................ 349

11.4 A Discord E-Commerce Bot 355
11.4.1 The Project. i e 355

11.42 OurCode . ..o vt e e 356

11.4.3 Source Code. . ..o vt e 390

T1S Summary 390

References. 391

This Chapter Covers

* Using the C# programming language

* Creating a C# Console Application project

» Touring our template of choice

* Developing in Visual Studio Community Edition
* Building an interactive storytelling app

Learning a new skill can often be a daunting and scary task. While certainly not unob-
tainable, it feels far to reach and hard to grasp. One must think about finding a better way
of accomplishing these goals without turning the journey into a regrettable memory. If we
try to search for our favorite learning experiences, we tend to remember moments of
accomplishment, self-improvement, and problem-solving. We tend to think of moments
when we tried to use our abilities and got closer to mastering them every time. While
learning theory is most important, it is practice that makes us experts.

This makes us consider why we cannot just turn the learning process into real-life
problem-solving exercises. So it is this concept this book focuses on, learning to master a
language in a dynamic yet meaningful way.

In this chapter, we will go over the steps to build a simple interactive storytelling appli-
cation. Similar to Twine or Ren’Py, interactive storytelling applications allow us to write
interactive stories with multiple choices and endings.

From a simple storytelling app to working efficiently with APIs,! we will try to learn
the C# programming language through a small project in each chapter. To make that
happen, we will start by getting to know our technology of choice, its relevance, what

'Application Programming Interface. A set of programming code that enables data transmission
between one software product and another.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 1
D. Panjuta, J. Jabbarzadeh, Learning C# Through Small Projects,
https://doi.org/10.1007/978-3-031-51914-7_1

https://doi.org/10.1007/978-3-031-51914-7_1

2 1 Hello World!

makes this language stand out compared to other options, and where it truly exceeds.
Furthermore, we will deep dive into C# development with our first project, learning its
similarities with other programming languages we might know and familiarizing our-
selves with the entire development process. Let us start this book with our first question:
What is C#?

1.1 The Technology of Choice

If we come from a C, C++, Java, or Javascript background, we will already be familiarized
with the C family of languages. Coming from the C family of languages, the C# object-
oriented, type-safe? programming language is a general-purpose, multi-paradigm? pro-
gramming language.

C#’s transition to an open-source model has significantly broadened its scope and
appeal, as it enables a collaborative environment where developers can contribute to its
evolution and adapt it to emerging technologies and platforms. The modern design of C#
facilitates the creation of secure and robust software, and when combined with the .NET
Framework, which is also open-source, it empowers developers to build cross-platform,
native multi-platform applications. At its core, C# is an object-oriented language enriched
with component-oriented features. Its evolution, driven in part by its open-source nature,
has incorporated language elements that cater to contemporary design paradigms, making
it highly versatile for various applications, including Web apps, games, and mobile apps.

This blend of an open-source ecosystem and a continually evolving language design
contributes to C#’s position as a staple programming language for many applications, like
the following.

* Static typing with support for dynamic typing. Variable types are usually declared in
advance, and by default, only parameters with the correct data type can be passed. This
allows for compile-time checking of type safety, meaning that type errors can be found
before the code is run, making the code more reliable. However, since C# 4, C# also
supports dynamic typing, which enables variables to be typed at runtime, allowing for
more flexibility at the cost of foregoing some compile-time type checking.

* Lexically scoped. Variables are only accessible from within the code block in which
they are defined, helping to keep the code organized and easy to read.

* Imperative and Declarative. It covers both issuing commands to the computer and
describing what the program should do, leaving no space for external complications
to arise.

2C#t is considered type-safe because it strictly enforces data types and prevents operations that could
lead to unpredictable behavior or memory access violations by catching errors at compile time or
runtime.

3 A programming paradigm is the classification, style, or way of programming. It is an approach to
solve problems by using programming languages.

1.1 The Technology of Choice 3

* Functional. This programming paradigm treats computation as the evaluation of math-
ematical functions without changing state and mutable data. It makes it easier to reason
and write correct and robust code. Although we will not go any deeper into this within
this book, it is an important feature that further solidifies C# in the industry.

* Generic. Defines algorithms in terms of types that can be specified later and instanti-
ated when needed. It allows for creating data types that are not specific to any one
program. This allows for the reusability of code and the ability to create more versatile
programs.

* Object-oriented. C# supports object-oriented programming (OOP), which primarily
revolves around encapsulating data and functions into units called objects. While OOP
is often linked with concepts like inheritance and polymorphism, these are not funda-
mental to all OOP languages. OOP can be handy for modeling real-world scenarios, but
it is not a one-size-fits-all solution. For instance, capturing intricate relationships using
OOP can sometimes be cumbersome or lead to design issues. The structure that OOP
provides can result in cleaner and more maintainable code, but like any tool, it can be
misused. Knowing when and how to use OOP effectively is key.

* Language interoperability. The ability of two or more languages to interact with each
other. This is important because it allows developers to choose the best language for the
task at hand rather than being forced to use a single language for everything.

* And component-oriented. The technique of developing software applications by com-
bining pre-existing and new components. This means that developers can create librar-
ies of code that can be used in multiple applications. This can save a lot of time and
money and make it easier to develop large and complex applications.

All C# programs run on .NET, using a virtual system called Common Language
Runtime (CLR)* and some class libraries. C# code is compiled into an Intermediate
Language’® compatible with the Common Language Interface (CLI), allowing languages
and libraries to work together smoothly.

.NET provides libraries for various tasks, organized into namespaces (C# groups for
related types and members). These libraries include features for file handling, string
manipulation, XML parsing, Web frameworks, and Windows Forms controls. We’ll
explore namespaces more in a later chapter.

C# is one of the most well-known languages. Its community and range of abilities give
it a place in almost every project.

Nonetheless, there is a question we want to cover to exemplify the current position of
C# in the industry and, simultaneously, learn the different paths we, as developers, could
go down in our C# careers.

“Implementation by Microsoft of the Common Language Infrastructure (CLI).

SIntermediate Language (IL), programming language designed to be used by compilers for the .NET
Framework before static or dynamic compilation to machine code.

4 1 Hello World!

1.2 What Can You Do With C#?

Usually, the best way to know if a given technology is the right choice for our use case is
to find out if similar projects are done with it. If we are building a Web application, make
sure that Web applications were built before with that technology. If we are making games,
we need to find games made with that language. Although this book’s projects will stay
within a console application, learning a language capable of accomplishing our favorite
tasks is, naturally, more often than not the path we will want to take. So to ensure that C#
is the right fit, we should learn about some known use cases for C# and its frameworks.
Starting with an all-time favorite, Web application development.

1.2.1 C# for Web Application Development

C# has been popular for creating Web sites and Web applications, thanks to its ability to
help build sites that can change and update in real time. To do this, C# can be used with
the .NET Core platform, which is a collection of tools and libraries that makes it easier to
develop Web applications.

One of the tools within .NET Core is called ASPNET Core, which is an open-source
Web application framework. ASP.NET Core is used for “server-side” Web development.
This means it deals with the behind-the-scenes logic that happens on the Web server (a
powerful computer that hosts Web sites) before a Web page is sent to your browser.

One particular part of ASP.NET Core is called Razor Pages. It makes it simpler to build
web pages that primarily stand on their own and do not have overly complicated interac-
tion with other pages or parts of the site. It is said to be more “accessible” for developers
because it is simpler to understand and work with, especially for those new to Web
development.

Another interesting tool is Blazor, which allows us to build Web pages where much of
the action happens in our web browser and not on the Web server. This means that after the
page has loaded, it can continue to update and change without having to reload the page.

The Xbox Web site, xbox.com, is a great example of a C#-based Web site. Trustpilot
uses C# for web services and app development. Furthermore, StackOverflow, renowned
among the programming community for its invaluable resources and discussions, also
exemplifies a successful application of these technologies.

1.2.2 Ci#for Windows Applications

This example illustrates a clear application, taking into account that C# was developed
both by and for Microsoft. This context streamlines the development process significantly,
as every feature needed for Windows application development is seamlessly integrated
into the C# language and its encompassing ecosystem.

http://xbox.com

1.2 What Can You Do With C#? 5

To serve as examples, we can develop Windows applications through platforms such as
WinForms, a platform to write client applications for desktop, laptop, and tablet PCs, aim-
ing to simplify this development. Windows presentation foundation, or WPF for short, is a
UI framework that creates desktop client applications. Or the MetroFramework, similar to
WinForms, is a framework that helps to develop clean applications through a simplified
interface.

Alternatively, we can also develop Windows applications through a console applica-
tion, as done with the projects covered in this book.

Examples of applications built with C# include Visual Studio and Microsoft Office.

1.2.3 Ci for Linux and macOS Applications

Although Linux and macOS applications are not the first things that come to mind when
discussing a Microsoft-focused technology, any application can be optimized for Unix-
based systems using .NET Core. Its cross-platform development capabilities allow it to
develop code usable in most operating systems with little to no required modifications.
These applications include, as an example, the previous two mentioned in the preceding
subsection.

For current-gen ARM processors, like the M1 and M2 chip in the newest Mac comput-
ers, Microsoft has an SDK that will allow building and running .NET code on the newest
ARM devices

(direct link https://dotnet.microsoft.com/en-us/download/dotnet/thank-you/
sdk-6.0.302-macos-arm64-installer/).

Visual Studio can also be used for ARM processors, starting with Visual Studio 2022
for Mac version 17.4

(direct link https://learn.microsoft.com/en-us/visualstudio/releases/2022/
mac-release-notes-preview#17.0.0-pre.5).

1.2.4 Ci# for Mobile App Development

Using C# Xamarin, mobile app development can be possible since Xamarin (direct link
https://dotnet.microsoft.com/en-us/apps/xamarin) allows us to wrap native components
and libraries into the .NET layer, without the need to rewrite almost any code. As of 2022,
a new replacement for Xamarin has arrived with MAUI (direct link https://learn.microsoft.
com/en-us/dotnet/maui/what-is-maui?view=net-maui-7.0), a cross-platform framework
for developing native mobile and desktop apps with C# and XAML. Although currently in
its early days, it is expected to, once mass adoption takes place, serve as an evolution to
Xamarin-based applications. Also, some apps can be directly developed in C# and built for
mobile uses, like games.

https://dotnet.microsoft.com/en-us/download/dotnet/thank-you/sdk-6.0.302-macos-arm64-installer
https://dotnet.microsoft.com/en-us/download/dotnet/thank-you/sdk-6.0.302-macos-arm64-installer
https://learn.microsoft.com/en-us/visualstudio/releases/2022/mac-release-notes-preview#17.0.0-pre.5
https://learn.microsoft.com/en-us/visualstudio/releases/2022/mac-release-notes-preview#17.0.0-pre.5
https://dotnet.microsoft.com/en-us/apps/xamarin
https://learn.microsoft.com/en-us/dotnet/maui/what-is-maui?view=net-maui-7.0
https://learn.microsoft.com/en-us/dotnet/maui/what-is-maui?view=net-maui-7.0

6 1 Hello World!

We can include apps like the Slack mobile app built on top of Xamarin and various
mobile games we will go over next.

1.2.5 Cit for Video Game Development

If we include indie titles,® games are mostly made in C# since it is the primary language in
game engines like Unity. According to the Unity Gaming Report 2022, the number of
games made on the Unity platform increased by 93% this last year (Unity Technologies,
2022) (direct link https://images.response.unity3d.com/Web/Unity/%7B10460b81-
b6e7-4784-a735-e7347afdf06e%7D_Unity-Gaming-Report-2022.pdf?utm_
source=demand-gen&utm_medium=ceros&utm_campaign=acquisition&utm_
content=2022-gaming-report-ebook&elqTrackld=d813896edf9f48e6af45a569577d8
845&elqaid=4085&elqat=2).

It is also an option in engines like CryEngine, Godot, and Stride. Furthermore, it is pos-
sible in the popular game engine Unreal Engine, although an initial setup is needed.

However, it’s important to mention that while C# is versatile and beginner-friendly,
some game developers have concerns regarding its performance characteristics, particu-
larly due to its garbage-collected nature. Garbage collection can occasionally cause per-
formance hiccups, which can be critical in games that require consistent frame rates. This
is why several famous game developers prefer languages with manual memory manage-
ment, such as C++.

Nevertheless, many successful games, including Cities Skylines, Escape from Tarkov,
and mobile games like Genshin Impact, Honkai: Star Rail, and Hearthstone, have been
developed using C#.

C# and .NET can also be run on a Raspberry Pi identically to any other platform. A
.NET app can run as a self-contained app or in framework-dependent deployment modes.
With the community behind this programming language and its wide variety of career
paths, C# quickly becomes one of the essential programming languages that everyone
must learn.

So let us start by learning a bit about our context and the environment we will be
working in.

1.3 Getting Started with C#

Usually the best approach to learning a new language is to first learn everything that sepa-
rates it from other languages through studying its context and preferred integrated devel-
opment environment (IDE).

®An “indie title” refers to an independently developed video game, typically created by individuals
or small teams without the financial backing or support of a major publisher.

https://images.response.unity3d.com/Web/Unity/{10460b81-b6e7-4784-a735-e7347afdf06e}_Unity-Gaming-Report-2022.pdf?utm_source=demand-gen&utm_medium=ceros&utm_campaign=acquisition&utm_content=2022-gaming-report-ebook&elqTrackId=d813896edf9f48e6af45a569577d8845&elqaid=4085&elqat=2
https://images.response.unity3d.com/Web/Unity/{10460b81-b6e7-4784-a735-e7347afdf06e}_Unity-Gaming-Report-2022.pdf?utm_source=demand-gen&utm_medium=ceros&utm_campaign=acquisition&utm_content=2022-gaming-report-ebook&elqTrackId=d813896edf9f48e6af45a569577d8845&elqaid=4085&elqat=2
https://images.response.unity3d.com/Web/Unity/{10460b81-b6e7-4784-a735-e7347afdf06e}_Unity-Gaming-Report-2022.pdf?utm_source=demand-gen&utm_medium=ceros&utm_campaign=acquisition&utm_content=2022-gaming-report-ebook&elqTrackId=d813896edf9f48e6af45a569577d8845&elqaid=4085&elqat=2
https://images.response.unity3d.com/Web/Unity/{10460b81-b6e7-4784-a735-e7347afdf06e}_Unity-Gaming-Report-2022.pdf?utm_source=demand-gen&utm_medium=ceros&utm_campaign=acquisition&utm_content=2022-gaming-report-ebook&elqTrackId=d813896edf9f48e6af45a569577d8845&elqaid=4085&elqat=2
https://images.response.unity3d.com/Web/Unity/{10460b81-b6e7-4784-a735-e7347afdf06e}_Unity-Gaming-Report-2022.pdf?utm_source=demand-gen&utm_medium=ceros&utm_campaign=acquisition&utm_content=2022-gaming-report-ebook&elqTrackId=d813896edf9f48e6af45a569577d8845&elqaid=4085&elqat=2

1.3 Getting Started with C# 7

We begin our C# journey with a simple ‘“Hello World” project.

Nevertheless, do not worry. The projects will increase in difficulty exponentially, start-
ing slow to familiarize us with the context and getting harder over time to challenge the C#
proace we are getting along the way.

Our first step is to learn about our integrated development environment (IDE), the tool
with which we can write and test our code of choice.

Luckily, C# counts with a native IDE, Visual Studio. To be specific, Microsoft Visual
Studio Community 2022. The community edition, also used with the popular game
engine “Unity,” is free to use and can be downloaded through the official Web site (direct
link https://visualstudio.microsoft.com/downloads/). Visual Studio Community is a fully
featured, extensible, free IDE made for creating modern applications for Android, iOS,
and Windows, Web applications, and cloud services, so chances are that we might have
familiarized ourselves with it before.

After setting up and starting Visual Studio, a process discussed in the appendix in case
we need it, we will find ourselves at the project creation window. Here is where we can
begin our first traditional project.

We want to write some code that displays a “Hello World!” message, such as with
HTML tags, labels, pop-ups, or other methods that we typically find in other programming
languages and frameworks. In our case, we will display it using our Console, so a simple
message will show when running the program.

Simple enough, but remember that our primary goal is to familiarize ourselves with the
process. We will have to tackle asynchronous programming and application programming
interfaces soon enough.

In the Microsoft Visual Studio Launcher, we will find a few options. One of them is to
create a new project. That is what we want to do. Continue by clicking on “Create a new
project” (Fig. 1.1).

Iﬂf Open a project or solution

Open a local Visual Studio project or .sin file

E’; Open a local folder

Navigate and edit code within any folder

e .

@ Create a new project [}
Choose a project template with code scaffolding
to get started

Continue without code =

Fig. 1.1 We are starting by selecting the “Create a new project” option

In the next screen, select the template we will use for this project, a Console App.

We will also find the last template used in “Recent project templates” if we previously
created a project on the left side. Since we are starting this book, assuming we have not yet
created a project, we will have to select it from the list on the right.

https://visualstudio.microsoft.com/downloads/

1 Hello World!

We will find a list of templates currently installed on our device. This list varies depend-
ing on the packages we choose in the installation process.

Usually, the first template is the one we want here, specifically the C# Console App. We
do need to make sure to select the correct one since there are several console app tem-
plates. We will only need the plain Console App (Fig. 1.2).

B Console App E‘ Console App
A project for creating a command-line application that can run on .NET Core on

Windows, Linux and mac0S
i WPF App (NETE

E‘:“ Console App

A project for creating a command-line application that can run on .NET Core on
Windows, Linux and macOS

c=

Linux macOs Windows Console

C# Linux macOs Windows Console

Fig. 1.2 We will mainly use the Console App project template for the projects in this book

This template will give us a preconfigured project to create a command-line application
on .NET Core on Windows, Linux, and macOS devices.

After continuing by pressing the Next button, we will be prompted with a window that
asks us for a project name, location, and Solution Name. We want to provide a descriptive
name, like “Hello World,” and place it in our preferred directory. Also, there will be a
checkbox to place the solution. A solution is a container for one or more projects. It allows
us to manage dependencies and target different platforms with our code. We can see a
solution as a box containing several projects, and since they are together, they can share
code among them, simplifying development. This is generally done with, for example,
Web development.

Although we can create a single solution for each of our projects, this time, for simplic-
ity and to keep the projects separate, we will create a new solution for each one.

We can change the solution location individually by unchecking, but that will not be

needed here; therefore, we will keep it checked. In case it does not default to a checked
state, just make sure to check it.

Then continue by pressing the Next button again (Fig. 1.3).

Project name

| HelloWerld |

Location

Solution name ©

I_7| Place solution and project in the same directory I

Fig. 1.3 Name the project correctly and check the checkbox

1.3 Getting Started with C# 9

In the next window, we can decide which framework to use for the project.

This option is the target framework we will be working on. Since we do not want to
start a project entirely from scratch, we always want to start with something. In this exam-
ple, we are building a .NET application, meaning we need to use a .NET Framework.

The available versions depend on the ones we installed before. In our case, we can find
.NET 6 and .NET 5. We will be working with .NET 6 in this project, so just select “.NET
6.0 (Long term support)” from the dropdown menu and press “Create” to finally start up
our first project.

In newer versions of Visual Studio we can also find a checkbox for “Do not use top-
level statements.” Although we typically will leave that unchecked, it will not be relevant
for the correct following of this book, as we will provide the base code we will start with
in every chapter. However, in short, when we check that checkbox, we get the traditional
structure with a “Program” class and Main() method as a result. If not, we will get our
result we will see shortly (Fig. 1.4).

Framework

.NET6.0 (Long-term support) u I —

C0n50|e App Cc# Linux macOS Windows Console

Framework ()

‘ .NET 6.0 (Long-term support)

Fig. 1.4 We will be using .NET version 6.0 for our projects

A ready-to-go console app setup should greet us with the project configured to use
.NET 6. Now, what do we want to achieve, and how do we plan to do it?

Our application will be a simple program to print a “Hello, World!” message in our
Console. This goal should be, especially now with .NET 6, really straightforward.

Looking at the current project, we can see that the chosen template has already gener-
ated a Program.cs file, which includes a line of code with the exact message we want to
display. But does that mean we are already done with our project? Is that it? Technically
yes! However, we are not here just for that. We are here to understand how all of this works
(Fig. 1.5).

// See https://aka.ms/new-console-template for more information
Console.WriteLine("Hello, World! ");\ T

Fig. 1.5 We can see the base template given by the chosen console app template

10 1 Hello World!

First, let us investigate what the project template includes to understand our working
environment better.

On the right-hand side, we can see the Solution Explorer. That window will show our
project file structure, including the Program.cs file we just discovered. If we right-click on
the project name and select “Open Folder in the File Explorer,” we can see the entire folder
structure that Visual Studio generated.

The .sln file represents the solution that Visual Studio uses. That is the solution we
selected a location for in the project configuration and is what we will be opening with
Visual Studio in the future.

Alongside the .sln file, we can find all the project contents. From the Program.cs file we
saw open earlier to all the future files and folders we will be creating in future projects.
This folder structure will change depending on the template, especially with more feature-
rich templates. The number of folders and the depth of the layers can increase (Fig. 1.6).

Name Date modified Type Size

NS File folder

bin File folder

obj File folder
HelloWorld.csproj C# Project file 1KB
8 HelloWorld.sin Tvoe CZ Project file Visual Studio Solu... 2KB
B Program.cs 5 C# Source File 1KB

Fig. 1.6 The project structure within the Windows file explorer

Double-click on “Program.cs” to open directly in our IDE to get back to our project. We
can open these files with other text editors we might have installed, but when installing
Visual Studio, it sets itself as the default tool to open files with the .cs extension type.

The advantage of using Visual Studio instead of a standard text editor is mainly in the ease
of use but it is not limited to that. One significant advantage is Visual Studio’s advanced error
detection, IntelliSense. If we were to type out incorrect code, a regular text editor would not
detect these issues, while our IDE notifies us and gives us possible solutions to that error.
This advantage significantly eases the building and debugging of our applications.

Since .NET 6, the Visual Studio template has been simplified to the point where the
files we work with do not have anything other than our custom code, with no need to add
any boilerplate code. In the past, we usually found namespace and class declarations. Now,
we only find the code that we want to run. That does not mean that namespace and class
declarations are not needed anymore, but the structure changed such that we do not need
to repeat that code in every program we create.

.NET 6 brought that requirement down by introducing top-level statements. This lan-
guage feature allows us to implicitly set an entry point by writing statements outside a type
declaration. By doing this, we no longer need to explicitly set a Main() method. Technically,

1.3 Getting Started with C# 1

we do not need to write a single class in our project. Although we still will later exemplify
other methods for C# development

(direct link https://learn.microsoft.com/en-us/dotnet/core/tutorials/top-level-templates).

As the included link in the code explains, “Starting with .NET 6, new C# projects using
the console template generate different code than previous versions:” and “The new output
uses recent C# features that simplify the code you need to write for a program. Traditionally,
the console app template generated the following code:” with the relevant code included,
respectively:

// See https://aka.ms/new-console-template for more information
Console.WriteLine ("Hello, World!");

And:

using system;

namespace MyApp // Note: actual namespace depends on the project name.
{
internal class Program
{
static void Main(string[] args)
{
Console.WriteLine ("Hello World!");

However, as the official “.NET 6 template changes” documentation states, “These two
forms represent the same program. Both are valid with C# 10.0. When we use the newer
version, we only need to write the body of the Main method.”

Although we do not need to include the other program elements, we will include them
later to ease our understanding of the processes and increase our programs’ transparency
as soon as classes in C# are introduced.

For now, we will continue reviewing the current code we are presented with in our
“Program.cs” file.

In the first line, we can find a text with the link we followed earlier at the very top.
Comments are programmer-readable explanations or annotations in the source code of a
computer program. They are written to make the source code easier to understand for
humans. While compilers and interpreters generally ignore them, there are exceptions,
such as C#’s XML documentation comments, which are meaningful to the IDE and can be
used to generate documentation. Essentially, comments function in the same way across
different programming languages but with some variations in how they can be utilized.

https://learn.microsoft.com/en-us/dotnet/core/tutorials/top-level-templates

12 1 Hello World!

In C#, these are marked with two forward slashes ““//” for single-line comments and an
opening forward slash with an asterisk, closed by an asterisk forward slash “/* Comment
*/” for multi-line comments, as in the following example.

// I am a single-line comment
/*

I am a

multi-line comment

*/

In this case, it was added by default to include the link we followed earlier, which
explained all the changes done by the template we used.

After that, we find the line at the beginning that included our message. That message is
added inside of a method call. We will explain methods in further detail in the later sec-
tions of this book, but to understand what we are looking at, let us try to learn at least the
basics of a method.

A method is code that performs a specific task. A program causes the code contained to
be run by calling the method and specifying anything else needed for that method to run
correctly.

The Console.WriteLine method specifically is a method that will write the data given
within its argument list and move the cursor to the following line, meaning that if two or
more WriteLines are added, the second one will be displayed on the following line, as in
the following example.

Console.WriteLine ("Hello,");
Console.WriteLine (" World!"™);
/*Output:

Hello,

World!*/

Inside the parenthesis of WriteLine, we can specify strings, numbers, even operations
on data types, and many more. We will also look over data types and operations in the fol-
lowing sections. Right now, what we wanted was to show a simple message.

Before going into much detail with this first purely introductory chapter, let us quickly
wrap up this first project by seeing if we get the result we are after.

How we want to run our program highly depends on our situation. If we are already accus-
tomed to working with Web apps or gaming software, we will know that the execution often
happens outside of Visual Studio. However, since we only have a single line we want to display
in our Console, the only thing needed in this specific case is to select the green Start arrow on
the Visual Studio toolbar or by pressing F5. Additionally, to achieve the same from the com-
mand line, navigate to the project folder and use the “dotnet run” command (Fig. 1.7).

1.3 Getting Started with C# 13

Debug - AnyCPU . ol =M 12 A
P Helloword

7 HelloWord

// See 5 rassoenrmee JONS0le—tenplate for more information

Console.Writ World!");

Fig. 1.7 Running any program using Visual Studio’s built-in tool

This action will result in a window popping up, the Microsoft Visual Studio Debug
Console. In this, we will see the result of our code. Then, as we can see, it successfully
displays our “Hello, World!” message.

If the Console does not show up in our specific case, as is common on macOS devices,
this can be found by pressing the Command key + F and searching for “terminal.” Or
searching for the “command prompt” in the search window for Windows-based systems
(Fig. 1.8).

B Microsoft Visual Studio Debug Console - m} X
ello, World! A

HellokWorld.exe (process 5968) exited with ¢
de ©.
o automatically close the console when debugging stops, enable Tools->Options->Debugging->Automatically close the conso
le when debugging stops.
ress any key to close this window

Fig. 1.8 The result of running our first project

Even if our system is identical to the one used for the figures in this book, our Console
might look different from the one shown in Fig. 1.9. That is solely due to us using a simple
console property to modify the background color and text color to improve the readability
of the results. These are the following lines used at the very top of the code, so before
everything else in our Program.cs file:

Console.BackgroundColor = ConsoleColor.White;
Console.Clear () ;
Console.ForegroundColor = ConsoleColor.Black;

Using these is not necessary unless we want to achieve the same look. If you are inter-
ested, we will go through console properties in a future chapter of this book. For now, let
us continue with this chapter.

As a reminder of what we have learned so far, let us try adding another Console.
WriteLine line to the code and write whatever message we want to display.

After a quick comment explaining this second Console.WriteLine, we will show the
text “How are you?”

// The following Console.WriteLine is meant to
// ask the reader how they feel like
Console.WriteLine (“How are you?”);

1 Hello World!

This would be what we are left with.

// See https://aka.ms/new-console-template for more information

Console.WriteLine (“Hello, World!”);
// The following Console.WriteLine is meant to ask the reader

// how they feel like
Console.WriteLine (“How are you?”);

Then after rerunning it, we get the following result (Fig. 1.9).

// The following Console.WriteLine is meant to ask the reader how they feel like
Console.WriteLine("How are you?");

- o X
Hello, world! ~
How are you?

Hellokorld.exe {process 18016) exited with code 8.
To automatically close the console when debugging stops, enable Tools->Options->Debugging->Automatically close the console when debugging stops.
pre: =

Fig. 1.9 After some additions, we can see our new result

There we go. Naturally, that was quite a simple task. Practically, we only repeated the same
existing lines and created a second comment and WriteLine combo. So, let us go deeper and
try to make something fun that necessitates a tiny bit more complexity. If we come from a dif-
ferent programming language, we will surely recognize the code we will be developing now.
However, if there is anything that might not be clear, rest assured that we will go over it during
the following chapters. Now, we want to make something fun, so let us see what that will be.

NOTE The projects for this chapter and Chap. 2 will use concepts not directly covered in each
chapter. However, these concepts should and will be familiar to anyone with intermediate C#
knowledge or knowledge about any other object-oriented language. With that said, although this
may sound like a call to skip the first two chapters, it is not recommended to do so, as these contain
valuable information even for those well versed in C#. Also, the projects are pretty cool, I think.

1.4 Hello World! A Simple Interactive Storytelling App

Let us continue with the project we created and build our first proper app. Although we
will keep the complexity low, we will try to make something that can already count as a
finished application. After all, our goal is to make as many projects as possible so that you
can then take them and extend them to the largest they can be. So, what is it, then?

1.4.1 Our Project

Let us analyze what we want to achieve here to determine the next step.
Our theory currently only includes the first steps and understanding “how to ‘hello,
world!”” in the C# language. So for this project, we will want to include more than that.

1.4 Hello World! A Simple Interactive Storytelling App 15

You might know about conditional statements and simple input management if you are
familiar with similar programming languages. If not, as said, follow along for now since
we will learn more about these topics further down the line.

We will be using these to build a simple interactive storytelling application. If you
have heard about Twine (direct link https://twinery.org/) or Ren’Py (direct link https://
www.renpy.org/), you will know that interactive storytelling applications allow us to
write interactive stories with multiple choices and endings. Although simple, we can use
light apps like these to, for example, showcase a storyline we have for a project online
for users to enjoy and give you feedback before any actual production begins.
Furthermore, if this topic interests us, we can expand its capabilities and features with
everything we learn down the line and even develop some serious competition for cur-
rent options.

Naturally, this chapter’s project will not yet be a competitor in the storytelling app mar-
ket but will be an excellent introduction to learning about this language’s possibilities.

1.4.2 OurCode

Starting our project, we could simply go ahead and erase anything we had set before and
end up with a blank project. So make sure to do so next.

We will only work with what we have seen now and a few simple additions. These addi-
tions include the ReadKey() method, which simply waits for the user to press any key and
keeps a record of it, and an if statement, which is the same as in any other programming
language. Well, at least conceptually, that is.

This project will not include a story builder mechanic since that exceeds this chapter’s
scope, so we will simply build our story within the code as console messages using the
Console.WriteLine() method primarily. Starting with our initial prompt.

Console.WriteLine (“‘Hello, World!’ - A tiny story by TutorialsEU”);
Console.WriteLine (

“Press any key to progress,

and either ‘a’ or ‘b’ when prompted”

)

We are introducing our story and adding a small tutorial of sorts. This marks the next
step as being a key press. As we just mentioned, we can use ReadKey() for that. Just like
Console.WriteLine() add a Console.ReadKey() right after our current text.

Console.WriteLine (“‘Hello, World!’ - A tiny story by TutorialsEU”);
Console.WriteLine (

“Press any key to progress,

and either ‘a’ or ‘b’ when prompted”

)7
Console.ReadKey () ;

https://twinery.org/
https://www.renpy.org/
https://www.renpy.org/

16 1 Hello World!

This line will stop the execution of the program and wait for any kind of key press.
Once pressed, we can start our story right after.

Console.WriteLine (“"\n You are walking through a dense forest where
visibility is limited to a mere few meters. Time is passing by,
and it feels like hours have passed since you last saw
anything that wasn’t just trees.”);

You might have noticed that there is an \n at the beginning of the text. That \n can sim-
ply be seen as if the “Enter” key was used. It will move the written text to the next line
leaving a clear space between each text. If you come from Web development, you might
remember the
 tag doing something similar. In concept, it would be the same.

Now simply keep adding ReadKey()s and more text until you want to get to a choice
point, like we did here, for example.

Console.WriteLine (“\n You are walking through a dense forest where
visibility is limited to a mere few meters. Time is passing by,
and it feels like hours have passed since you last saw
anything that wasn’t just trees.”);

Console.ReadKey () ;

Console.WriteLine (“\n What seems like a clearing opens up in front
of you as you desperately try to approach it. Revealing a path
that splits into two, which path may you choose?
path ‘a’ or ‘b’'?”);

As we can see, we are asking the user to press either “a” or “b” to choose from two dif-
ferent paths. We need to somehow get what key the user pressed and then continue the
story accordingly. This can be done by adding the result of ReadKey() to a variable.
Variables are a space to store data in, which is also similar to other languages.

The way we would do that is as follows.

Console.WritelLine (“\n What seems like a clearing opens up in front of
you as you desperately try to approach it. Revealing a path that splits
into two, which path may you choose? path ‘a’ or ‘b’?”);

var path = Console.ReadKey ().Key;

We are adding Console.ReadKey() to a “var” or variable called “path.” Also, we are
adding a “.Key” at the end of our ReadKey(). The latter is to get what key was pressed
specifically. There we will get things like “Escape” if the user presses the Esc key, or
“Space” if the user presses the space key. Really simple behavior that will serve us to get
interaction from the user. So now that “path” has stored the exact key the user pressed, we
can use that to branch the story.

For that, we use the if statement. In short, this will execute the code within the “if” if
the condition is met. If not, we get sent to an optional else. For now, we will need some-
thing like this:

1.4 Hello World! A Simple Interactive Storytelling App 17

if (path == ConsoleKey.A)
{
//1f path is the A key then this is executed.
}
else
{
//1f path is NOT the A key then this is executed.

The condition to meet for the inside of the if statement to happen is “path ==
ConsoleKey.A.” This means that if the user presses the “a” key, we will run whatever
code is contained within the curly braces. If it is not the “a” key, anything within the else
is run. In this project, we will use the else to detect if the user pressed the “b” key. Not
perfect since any other key will be detected as a “b” key as well, but it will work for what
we need right now.

So, next, simply write your story depending on the choice made.

if (path == ConsoleKey.A)
{
Console.WriteLine (“\n You decide to follow path ‘a’. The path
leads you to a sign stating ‘west’. If you are heading
west, you hope to find a way out of the forest. Suddenly,
a rumbling sound comes from the mountainside.”);
Console.ReadKey () ;
Console.WriteLine (“\n As it appears to be a landslide, you try
to avoid it by going down the right side of the path
towards what appears to be a safe zone.”);
Console.ReadKey () ;
Console.WriteLine (“\n It seems as you avoided the disaster, you
look towards the path you are on now and see a sign, it
says ‘north’.”);
Console.ReadKey () ;
Console.WriteLine (“\n Seeing as you cannot go back anymore, you
decide to continue this way.”);

else

Console.WritelLine (“\n You decide to follow path ‘b’. The path
leads you to a sign stating ‘north’. Meaning that you are
heading north you hope to find a way out of the forest.
Suddenly, you hear a distant rumble.”);

Console.ReadKey () ;

Console.WriteLine (“"\n Further up dust clouds seem to form, being
far enough from the danger, it seems like you are safe.

You continue on your path”);

18 1 Hello World!

To clarify, our story will return to the same storyline after branching into two. If you are
interested, this writing style is called a foldback structure in narrative. So we want to add
the shared storylines right after our if statement like this:

Console.WriteLine (“\n Further up dust clouds seem to form, being
far enough from the danger, it seems like you are safe.
You continue on your path”);

}

Console.ReadKey () ;

Console.WriteLine (“\n Following the path north, you encounter a young
person looking directly at you with a friendly face. Nonetheless,
you feel the need to be cautious.”);

Console.ReadKey () ;

Console.WriteLine (“\n ‘Hello, traveler! Fret not, for you now save!’
Says the friendly figure. ‘Should I trust him?’ You ask yourself.

What do you do? Trust him ‘a’, or not ‘b’?”);

And after a few lines, we are back to another choice. Now, we would simply have to
repeat the same block as before. With a tiny change, we do not have to write “var” again,
just the variable name, like this:

path = Console.ReadKey ().Key;
Then, again, branch out our story into two.

if (path == ConsoleKey.A)
{
Console.WritelLine (“\n You decide to trust him, following him to
an opening that reveals the escape you sought after for so
long. It was good to trust him! He lead you to freedom!”);
Console.ReadKey () ;
Console.WriteLine (“\n ‘Hello, World!’ He exclaims. Are you safe now?”);
Console.ReadKey () ;
Console.WriteLine (“"\n You look back, and he is gone, together with
the forest. Only a vast open space is what is visible from
your point of view. Are you safe now? You do not know the answer.”);
}
else
{

Console.WriteLine (“\n You decide to not trust him, going back the way
you came from. Although something is changed. It does not seem
like you truly are going back. The path is not the same anymore.
But a clearing appears, making you run towards it in hopes of
finding an escape.”);

Console.ReadKey () ;

