Cardiac Amyloidosis

Diagnosis and Treatment

Michele Emdin Giuseppe Vergaro Alberto Aimo Marianna Fontana Editors

Cardiac Amyloidosis

Michele Emdin • Giuseppe Vergaro Alberto Aimo • Marianna Fontana Editors

Cardiac Amyloidosis

Diagnosis and Treatment

Editors
Michele Emdin
Health Science Interdisciplinary Center
Scuola Superiore Sant'Anna
Fondazione Toscana Gabriele Monasterio
Pisa, Italy

Alberto Aimo Health Science Interdisciplinary Center Scuola Superiore Sant'Anna Fondazione Toscana Gabriele Monasterio Pisa, Italy Giuseppe Vergaro Health Science Interdisciplinary Center Scuola Superiore Sant'Anna Fondazione Toscana Gabriele Monasterio Pisa, Italy

Marianna Fontana National Amyloidosis Centre University College London London, UK

ISBN 978-3-031-51756-3 ISBN 978-3-031-51757-0 (eBook) https://doi.org/10.1007/978-3-031-51757-0

 $\ensuremath{\mathbb{O}}$ The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable

Preface

As William Osler wrote in 1892 in his internal medicine book: "There are three phases to treatment: diagnosis, diagnosis, and diagnosis." We can then state: "There are three phases to diagnosis: knowledge, knowledge, and knowledge," and that this is particularly true for cardiac amyloidosis (CA), a once called rare disease, now increasingly recognized and treated thanks to the advances of knowledge most recently achieved by an impressive worldwide research effort.

CA is a disease caused by the accumulation of amyloid fibrils in the extracellular space of the myocardium, leading to profound changes in the heart's substrate, electrical properties, and function, which are the basis for the clinical syndrome, characterized by arrhythmias, conduction disturbances, and a progressive impairment of diastole and systole, progressively leading to overt heart failure. Until very recently, CA was almost always diagnosed very lately and after multiple hospitalizations in emergency medicine, cardiology, pulmonology, and internal medicine wards. Once the clinical suspicion was raised, the demonstration of tissue amyloid deposits was required for the final diagnosis, using highly invasive procedures such as endomyocardial biopsy. Furthermore, when the diagnosis was made, no effective therapeutic options could be offered to the patient. The perception of CA as a rare disease did not stimulate the scientific community and the pharmaceutical industry to support the research and development of new dedicated tools for either diagnosis or treatment.

Afterwards, the intuition and tireless activity of several masters, including Claudio Rapezzi in Bologna and Ferrara; Giampaolo Merlini in Pavia, Italy; Angela Dispenzieri and Martha Grogan at the Mayo Clinic School in Rochester; Mathew Maurer at the Columbia University, NYC, USA; Julian Gillmore and Philip Hawkins, joined by Marianna Fontana at the University College London, UK, and paralleled in Italy by the initiative of Gianfranco Sinagra in Trieste; and Michele Emdin and Giuseppe Vergaro in Pisa, prompted a true revolution in our current approach to CA.

The goals of a noninvasive diagnostic algorithm for transthyretin CA (ATTR-CA), and of the availability of safe, disease-modifying, and lifesaving therapies for light-chain and variant or wild-type transthyretin CA, were achieved. National and international scientific societies, such as the International Society of Amyloidosis, were born; recommendations on diagnosis and management were issued; as well as a specialty journal such as *Amyloid*, research consortia and forum, and patient support

vi Preface

groups were formed, worldwide. In turn, this interest in CA and the increased disease awareness in the medical community, favored by several educational initiatives, prompted the identification of an increasing number of cases diagnosed and treated.

Much work is still needed: the ability to recognize and treat patients with CA should become part of the core curriculum of cardiologists as well as internal medicine specialists, general practitioners, neurologists, nephrologists, and hematologists, and both individual and collaborative research should focus on the unsolved issues regarding CA pathophysiology, epidemiology, diagnostics, and therapeutics, as well as on novel strategies for promoting screening in high-risk populations and noninvasive, comprehensive diagnostic paths including novel answers at a local, regional, and national level through the creation of clinical and research networks supported by the scientific societies, as it is the case for Italy.

Our purpose is to give to all the clinicians and researchers interested in the field the integration of the state-of-the-art knowledge with the contribution of specialists from the leading centers in Europe and the United States.

The book is dedicated first to Claudio Rapezzi, to the man who paved the way for the current clinical and research approach to CA, as well as to the clinicians working all over the world to prolong survival and improve the quality of life of patients with CA, and, finally, to our patients, whose well-being is the final goal of all our efforts.

Pisa, Italy Pisa, Italy Pisa, Italy London, UK Michele Emdin Giuseppe Vergaro Alberto Aimo Marianna Fontana

Contents

1	Tribute to Claudio Rapezzi Gianfranco Sinagra and Aldostefano Porcari	1
2	Giampaolo Merlini and the Pavia School	9
3	A Brief History of Amyloidosis Assuero Giorgetti, Angela Pucci, and Alberto Aimo	13
4	Pathophysiology, Classification, and Epidemiology of Amyloidosis Alberto Giannoni, Chiara Arzilli, and Alberto Aimo	23
5	Amyloid Light Chain (AL) Amyloidosis	39
6	Hereditary Transthyretin Amyloidosis Laura Obici, Giorgia Panichella, and Roberta Mussinelli	53
7	Wild-Type ATTR Amyloidosis. Federico Perfetto, Francesco Cappelli, Giorgia Panichella, Alessia Argirò, and Mathew S. Maurer	69
8	Electrocardiographic Patterns . Stefano Perlini, Lucio Teresi, Andrea Rossi, and Gianluca Mirizzi	83
9	Echocardiography: A Gatekeeper to Diagnosis	99
10	Cardiovascular Magnetic Resonance: Characterization of Myocardial Involvement Marianna Fontana, Ignazio Alessio Gueli, Gianluca Di Bella, and Andrea Barison	115
11	Biomarkers: Monoclonal Protein and Indicators of Cardiac Damage. Vincenzo Castiglione, Maria Franzini, Silvia Masotti, Chiara Arzilli, Michele Emdin, and Giuseppe Vergaro	133

viii Contents

12	Plasma Transthyretin and Its Ligands
13	Cardiac Scintigraphy with Bone-Avid Tracers: Old and New Applications
14	PET-CT: A Tool for Etiological Diagnosis. 177 Dario Genovesi and Assuero Giorgetti
15	The Role of Tissue Biopsy: Identification of the Amyloid Precursor and Beyond
16	From Red Flags to Diagnosis
17	Risk Prediction and Follow-Up
18	Differential Diagnoses in Clinical Mimics
19	Applications of Artificial Intelligence in Amyloidosis
20	Treatment of Amyloid Light-Chain Amyloidosis
21	Treatment of ATTR Amyloidosis: From Stabilizers to Gene Editing
22	Treatment of Cardiac Complications
23	Monitoring Disease Progression and Response to Disease-Modifying Treatments
24	Cardiac Amyloidosis: Open Issues and Future Perspectives

Tribute to Claudio Rapezzi

1

Gianfranco Sinagra and Aldostefano Porcari

There may be many ways to start a tribute to Claudio Rapezzi, no one is easy in the heart of those who have spent part of their life with him. He was a unique and extremely rare concentration of human and scientific qualities that cannot be expressed only with words. If we were to choose a single characteristic to describe Claudio, we would say that he was primarily a mentor with the unique ability to ignite the minds and the hearts of friends and colleagues with his scientific passion. Many have known him as a brilliant mind, many others as a trustful and distinguished partner in research with flashes of extraordinary intelligence, and many more as a close friend with extremely sharp irony and culture.

Although he was aware of his exceptional qualities, Claudio was extremely humble and had a natural disposition in human relationships, with his eyes wide open to the world of young physician and advancing medical knowledge. Claudio dedicated his life to the study of medicine and became a master in the art of observation. During a career spanning almost 50 years, he has deeply transformed the

Centre for Diagnosis and Treatment of Cardiomyopathies, Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI), University of Trieste, European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Trieste, Italy

e-mail: gianfranco.sinagra@asugi.sanita.fvg.it

A. Porcari

Centre for Diagnosis and Treatment of Cardiomyopathies, Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI), University of Trieste, European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Trieste, Italy

Division of Medicine, National Amyloidosis Centre, University College London, London, UK e-mail: aldostefano.porcari@nhs.net

G. Sinagra (⊠)

cardiological and the amyloidosis community worldwide. Crossing the path of Claudio marked a fundamental moment in the career of many young researchers, sometimes in unexpected ways.

Claudio approached the many congresses on heart failure and cardiomyopathies as useful opportunities to connect with young physicians and discuss the grey areas encountered in clinical practice, the limitations of the official guidelines for the treatment of heart failure and the need to follow critical thinking when approaching uncommon clinical scenarios (Fig. 1.1). As a teacher, he embodied the qualities of curiosity, critical thinking, observation, passion and creativity. He inspired and feed deep passion for medical knowledge, analysis of details and inconsistencies in clinical profiles and presentation, and for deduction as preferred methodology to deal with the many problems faced in clinical practice of medicine. He had that exceptional quality of merging scientific knowledge with his passion for the philosophy of Kant, Popper, the nosological question raised by Umberto Eco, the renewed songs from Vasco Rossi and his love for Art. His friends and colleagues will never forget his ability to use iconic paintings such as Arcimboldo' self-portrait to explain

Fig. 1.1 Professor Claudio Rapezzi during a discussion at the "Advances in Heart Failure, Cardiomyopathies and Pericardial Diseases" held in Trieste (Italy)

the heterogeneous clinical phenotypes of patients presenting with systemic amyloidosis.

He was the exemplar of the physician and detective character in a contemporary version of Sherlock Holmes [1]. He shared with the cardiology community the "red flag approach" in cardiomyopathies and, particularly, in amyloidosis [2, 3]. He was among the first researchers to understand the key value of carpal tunnel syndrome as an early clinical marker of future development of cardiac amyloidosis [4, 5]. In the old days, through his expert interpretation of surface ECG, Claudio was able to characterise myocardial tissue composition and spot the presence of amyloid deposits. This is something that endomyocardial biopsy and cardiac magnetic resonance would have demonstrated many years later [6, 7]. He was very passionate on dissecting the heterogeneous clinical phenotype of ATTR amyloidosis [8, 9]. He has identified 3 main clinical phenotypes—cardiac, neurological and mixed—that have been implemented in clinical practice for diagnosing ATTR amyloidosis and for orienting therapeutic strategies worldwide. He was involved in the Transthyretin Amyloid Outcome Survey (THAOS), with the final aim of understanding and characterising the natural history of ATTR amyloidosis [10]. In seminal papers published in early 2000s, Claudio demonstrated the clinical applications of scintigraphy with bone tracers for the diagnosis of cardiac amyloidosis [11, 12]. Ten years later, that intuition paved the way for the development of a non-invasive algorithm for the diagnosis of transthyretin amyloid cardiomyopathy (ATTR-CM) in an international collaboration with the National Amyloidosis Centre (London, UK) which has deeply transformed the paradigm for diagnosing ATTR-CM [13–15].

Claudio coordinated the international phase 3 Safety and Efficacy of Tafamidis in Patients With Transthyretin Cardiomyopathy (ATTR-ACT) trial of tafamidis [16], which is the only drug ever tested in ATTR-CM with a proven impact on survival. In 2018, he presented the results of the ATTR-ACT at the European Society of Cardiology Congress held in Munich and ignited the audience with his passion and culture. Claudio considered tafamidis as the drug of the first four times:

- The first time that a drug is effective in ATTR-CM.
- The first example of precision medicine in the treatment of a cardiomyopathy.
- The first time a drug is effective in heart failure with preserved ejection fraction.
- The first time a drug without anti-neurohormonal activity is effective in heart failure.

The ATTR-ACT study has transformed the treatment of ATTR cardiomyopathy and represented a real revolution for patients and physicians worldwide (Fig. 1.2).

On top of his undisputed scientific expertise, Claudio was a great estimator of the writer Umberto Eco and the philosopher Karl Popper and was highly considered for his critical approach to the clinical methodology. A recent example is offered by the impossible interview between Sherlock Holmes and David Sackett about the fundamental question "how much can we trust the guidelines?" [17]. His pupils will never forget his positive approach to "error in medicine" as a source of thinking and a unique opportunity to overcome grey areas in medicine. In the field of classification

Tafamidis improves outcome in transthyretin amyloid cardiomyopathy

Fig. 1.2 Professor Rapezzi presenting the results of the ATTR-ACT study at the European Society of Cardiology congress held in Munich

and nosology, Claudio was part of an international group of researchers that defined the criteria for classification of cardiomyopathies in 2008 [18]. More recently, he identified the limitations of that classification among patients diagnosed and managed in the real world, especially in the setting of restrictive cardiomyopathy. Therefore, he has proposed a new definition of this specific form of heart disease [19].

In the latest years, Claudio moved the centre of his activity to Ferrara where he closely collaborated with Prof. Roberto Ferrari, estimated colleague and friend. At the Ferrara University, Claudio entered in a very fruitful phase of his career characterised by multicentre collaborations. With the national and international network that he built during 50 years of clinical and scientific activity, Claudio started a

number of research collaborations with friends and young physician with an interest in cardiac amyloidosis all around the world. In Ferrara, he conceived the design of the CAUSATIVE study, which is currently ongoing, with the aim of investigating the potential applications of computed tomography for the identification of cardiac amyloidosis among patients with severe aortic valve stenosis. With this project, he strenghtened the connections created with other Italian centres such as the cardiological amyloidosis community in Pisa under the leadership of Prof. Michele Emdin, close friend and partner in research, and his team of young physicians. The proposal for a re-definition of restrictive cardiomyopathy in the contemporary era was born from the intense cultural relationship between Claudio, Michele and the cardiological community in Trieste [19]. In Trieste, Claudio was used to attend the bi-annual congress "Incontri in Cardiologia" and give lectures on unmet needs in heart failure and cardiomyopathies. Young and adult cardiologists from Trieste keep a special memory of Claudio and, in particular, of the strong human and professional connection with him. With his unconventional spirit, he has inspired and encouraged, always with laughter, them and many young researchers to step into his path in the international amyloidosis community.

Claudio never forgot his old pupils from Bologna, grown in the research field of amyloidosis and disseminated in Italy and worldwide. His spirit and attitude were brighter when he met them during international congresses, he had that glimpse in his eyes when he had the opportunity of spending some time with them, a bond that time and life events could not weaken in any way.

Among the last quests of Claudio, there is definitively the foundation of the Italian Network for cardiac amyloidosis [20], that he has designed to promote collaboration among Italian centres for diagnosis and treatment of patients with suspected or confirmed cardiac amyloidosis. Sadly, Claudio has left us with many grey areas to untagle in the field of amyloidosis as well as with many ideas and research questions that awaits to be explored by his pupils disseminated worldwide. He was an extremely active part in many research projects, part of which are still ongoing such as the role of electrocardiography in the contemporary care of patients with cardiac amyloidosis [21], the cardiomyopathy-oriented interpretation of ECG findings [22, 23], the different behaviour of bone tracers validated for the diagnosis of ATTR-CM [24], the impact of tafamidis in ATTR-CM patients with NYHA class III, genotype-phenotype correlation in ATTR amyloidosis, gender differences in ATTR-CM [25–27], new treatment strategies and the possibility of combination therapy [28].

Professor Claudio Rapezzi was a giant of the amyloid field, an unattainable mentor and a unique friend.

We are close to his beloved Marinella, friends and colleagues in Ferrara, Bologna and all around the world.

He will be greatly missed and will continue being an inspiration for the next generations.

References

- Ferrari R. A memory for Claudio Rapezzi. Eur Heart J. 2023; https://doi.org/10.1093/eurheartj/ehac773/7115482.
- Rapezzi C, Arbustini E, Caforio ALP, Charron P, Gimeno-Blanes J, Helio T, et al. Diagnostic work-up in cardiomyopathies: bridging the gap between clinical phenotypes and final diagnosis. A position statement from the ESC Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2013;34(19):1448–58.
- 3. Garcia-Pavia P, Rapezzi C, Adler Y, Arad M, Basso C, Brucato A, et al. Diagnosis and treatment of cardiac amyloidosis: a position statement of the ESC Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2021;42(16):1554–68.
- 4. Porcari A, Pagura L, Longo F, Sfriso E, Barbati G, Murena L, et al. Prognostic significance of unexplained left ventricular hypertrophy in patients undergoing carpal tunnel surgery. ESC Hear Fail. 2022;9(1):751–60.
- 5. Milandri A, Farioli A, Gagliardi C, Longhi S, Salvi F, Curti S, et al. Carpal tunnel syndrome in cardiac amyloidosis: implications for early diagnosis and prognostic role across the spectrum of aetiologies. Eur J Heart Fail. 2020;22(3):507–15.
- Rapezzi C, Merlini G, Quarta CC, Riva L, Longhi S, Leone O, et al. Systemic cardiac amyloidoses. Circulation. 2009;120(13):1203–12.
- Maurer MS, Elliott P, Comenzo R, Semigran M, Rapezzi C. Addressing common questions encountered in the diagnosis and management of cardiac amyloidosis. Circulation. 2017;135(14):1357–77.
- Rapezzi C, Longhi S, Milandri A, Lorenzini M, Gagliardi C, Gallelli I, et al. Cardiac involvement in hereditary-transthyretin related amyloidosis. Amyloid Int J Exp Clin Investig. 2012;19(Suppl 1):16–21.
- 9. Porcari A, Merlo M, Rapezzi C, Sinagra G. Transthyretin amyloid cardiomyopathy: an uncharted territory awaiting discovery. Eur J Intern Med. 2020;82:7–15.
- 10. Maurer MS, Hanna M, Grogan M, Dispenzieri A, Witteles R, Drachman B, et al. Genotype and phenotype of transthyretin cardiac amyloidosis: THAOS (transthyretin amyloid outcome survey). J Am Coll Cardiol. 2016;68(2):161–72.
- 11. Perugini E, Guidalotti PL, Salvi F, Cooke RMT, Pettinato C, Riva L, et al. Noninvasive etiologic diagnosis of cardiac amyloidosis using 99m Tc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy. J Am Coll Cardiol. 2005;46(6):1076–84.
- 12. Rapezzi C, Quarta CC, Guidalotti PL, Pettinato C, Fanti S, Leone O, et al. Role of (99m) Tc-DPD scintigraphy in diagnosis and prognosis of hereditary transthyretin-related cardiac amyloidosis. JACC Cardiovasc Imaging. 2011;4(6):659–70.
- Rauf MU, Hawkins PN, Cappelli F, Perfetto F, Zampieri M, Argiro A, et al. Tc-99m labelled bone scintigraphy in suspected cardiac amyloidosis. Eur Heart J. 2023; https://doi.org/10.1093/ eurheartj/ehad139/7083543.
- 14. Porcari A, Baggio C, Fabris E, Merlo M, Bussani R, Perkan A, et al. Endomyocardial biopsy in the clinical context: current indications and challenging scenarios. Heart Fail Rev. 2022;28(1):123–35.
- Gillmore JD, Maurer MS, Falk RH, Merlini G, Damy T, Dispenzieri A, et al. Nonbiopsy diagnosis of cardiac transthyretin amyloidosis. Circulation. 2016;133(24):2404–12.
- Maurer MS, Schwartz JH, Gundapaneni B, Elliott PM, Merlini G, Waddington-Cruz M, et al. Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N Engl J Med. 2018;379(11):1007–16.
- 17. Rapezzi C, Sinagra G, Merlo M, Ferrari R. The impossible interviews-Sherlock Holmes interviews David Sackett: "how much can we trust the guidelines?". Eur Heart J Engl. 2021;42:3422-4.
- 18. Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi F, Charron P, et al. Classification of the cardiomyopathies: a position statement from the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2008;29(2):270–6.

- 19. Rapezzi C, Aimo A, Barison A, Emdin M, Porcari A, Linhart A, et al. Restrictive cardiomyopathy: definition and diagnosis. Eur Heart J. 2022;43(45):4679–93.
- 20. Sinagra G, Emdin M, Merlo M, Vergaro G, Aimo A, Biagini E, et al. Rationale and significance of the Italian Network for Cardiac Amyloidosis. G Ital Cardiol (Rome). 2023;24(2):93–8.
- 21. Cipriani A, De Michieli L, Porcari A, Licchelli L, Sinigiani G, Tini G, et al. Low QRS voltages in cardiac amyloidosis. JACC CardioOncol. 2022;4(4):458–70.
- 22. Merlo M, Porcari A, Pagura L, Cameli M, Vergaro G, Musumeci B, et al. A national survey on prevalence of possible echocardiographic red flags of amyloid cardiomyopathy in consecutive patients undergoing routine echocardiography: study design and patients characterization the first insight from the AC-TIVE study. Eur J Prev Cardiol. 2022;29(5):e173–7.
- 23. Merlo M, Pagura L, Porcari A, Cameli M, Vergaro G, Musumeci B, et al. Unmasking the prevalence of amyloid cardiomyopathy in the real world: results from phase 2 of the AC-TIVE study, an Italian nationwide survey. Eur J Heart Fail. 2022;24(8):1377–86.
- Porcari A, Hutt DF, Grigore SF, Quigley AM, Rowczenio D, Gilbertson J, et al. Comparison of different technetium-99m-labelled bone tracers for imaging cardiac amyloidosis. Eur J Prev Cardiol. 2023;30(3):e4–6. https://doi.org/10.1093/eurjpc/zwac237/6763179.
- 25. Patel RK, Ioannou A, Razvi Y, Chacko L, Venneri L, Bandera F, et al. Sex differences among patients with transthyretin amyloid cardiomyopathy from diagnosis to prognosis. Eur J Heart Fail. 2022;24(12):2355–63.
- Aimo A, Tomasoni D, Porcari A, Vergaro G, Castiglione V, Passino C, et al. Left ventricular wall thickness and severity of cardiac disease in women and men with transthyretin amyloidosis. Eur J Heart Fail. 2023;25(4):510

 –4.
- Caponetti AG, Rapezzi C, Gagliardi C, Milandri A, Dispenzieri A, Kristen AV, et al. Sexrelated risk of cardiac involvement in hereditary transthyretin amyloidosis: insights from THAOS. JACC Heart Fail. 2021;9(10):736–46.
- Porcari A, Fontana M, Gillmore JD. Transthyretin cardiac amyloidosis. Cardiovasc Res. 2023;118(18):3517–35.

Giampaolo Merlini and the Pavia School

Michele Emdin

The great advances in the diagnosis and treatment of cardiac amyloidosis (CA) are the result of a collective effort inspired by the pioneering work of a few masters. Among them Giampaolo Merlini (Fig. 2.1) is a giant, whose work and research contributed to advance modern clinical hematology and internal medicine. Giampaolo Merlini graduated in medicine and surgery at the University of Pavia as a student of the Ghislieri College and specialized in Hematology and Laboratory Medicine at the University of Pavia. Afterwards, he trained in clinical and laboratory investigations of monoclonal gammopathies at Malmö General Hospital, Lund University, Sweden under the supervision of Jan Waldenström. The teaching of Waldenström shaped his scientific interests, which have focused on the investigation of the molecular mechanisms of diseases, and namely on the biological activities of monoclonal proteins and related conditions. He further developed these research lines at the Institute of Cancer Research, College of Physicians & Surgeons, Columbia University, New York City, under the supervision of Elliott Osserman and together with chemist Elvin Kabat. Osserman introduced him to systemic amyloidoses and specifically to amyloidosis caused by misfolded monoclonal immunoglobulin light chains.

He was then the director of the center for the study and treatment of systemic amyloidosis and of the biotechnology research laboratories located in Pavia at the San Matteo Polyclinic Foundation, long recognized as a national referral center for the disease. This center, currently directed by Giovanni Palladini, a former student of Merlini, was founded in 1986 and employs the most advanced diagnostic tools and the most recent therapeutic resources, including experimental ones. This center

M. Emdin (⊠)

Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna, Pisa, Italy

Cardio-thoracic Department, Fondazione Toscana Gabriele Monasterio, Pisa, Italy e-mail: m.emdin@santannapisa.it

10 M. Emdin

Fig. 2.1 Giampaolo Merlini

is devoted to the care of patients with amyloidosis, has been instrumental in the introduction of new tools for diagnosis, risk prediction, and management, and has been one of the leading centers in the world in terms of scientific output [1]. He was full Professor (now *Emeritus*) of Clinical Biochemistry at the University of Pavia and President of the Postgraduate Course in Medical Biotechnology. Further, he directed the International Society of Amyloidosis and the Italian Society for Amyloidosis and was the Chairman of the Committee on Plasma Proteins of the International Federation of Clinical Chemistry and Laboratory Medicine.

Prof. Merlini's research interests included the pathogenesis, natural history, diagnosis, and treatment of monoclonal gammopathies, namely of immunoglobulin light chain amyloidosis. His research focused on the study of the molecular mechanisms of cardiac damage, the investigation of biomarkers for the assessment of prognosis and response to therapy, and on the development of new therapeutic agents and treatments. He was principal investigator of several research projects funded by the European Community and by national and international research agencies, and received several international awards: the Ham-Wasserman Lecture 2017 at the American Society of Hematology Congress, the Robert Kyle Award at the International Workshop on Waldenström's Macroglobulinemia in 2018, the Jan G. Waldenström Award of the International Myeloma Society in 2019, the Giampaolo Merlini Prize by the International Society of Amyloidosis in 2020, dedicated to his person, the "Standing on the Shoulders of the Giants" Award by the International Academy of Clinical Hematology in 2022.

His scientific output is extraordinary, with an H index of 102 (Scopus, June 2023) and over 650 publications; he is a highly cited researcher for the years 2021 and 2022. His most notable scientific achievements include a novel system to stage multiple myeloma [2]; the proposal of biphosphonates as effective drugs in multiple

myeloma [3]; the identification of 4'-iodo-4'-deoxy doxorubicin as a possible treatment for amyloidosis [4]; N-terminal pro-B-type natriuretic peptide as a possible biomarker for this condition [5]; the proposal of the melphalan-dexamethasone combination as an effective and safe treatment regimen for AL amyloidosis [6]; and the most recent evidence of the efficacy of birtamimab (a novel humanized monoclonal antibody designed to neutralize light chain aggregates and deplete organ-deposited amyloid via macrophage-induced phagocytosis) plus standard of care in Mayo stage IV light chain amyloidosis patients [7].

On a personal note, he was, and still is, always there, when I asked for an advice either on a difficult patient or on the research strategy and clinical governance: His words were always, and still are, enlightening. We share our faith in man and our commitment to the patient.

Curiositas felix, great culture and deep humanity, ability to organize and educate are some of the unique qualities of the man. Finally, Dante Alighieri's words "Facesti come quei che va di notte, che porta il lume dietro e sé non giova, ma dopo sè fa le persone dotte" ("You acted like who goes at night carrying a light behind him, and does not help himself but makes people learned") [8] best describe Giampaolo Merlini's attitude toward his disciples and his lesson to scholars, physicians, and researchers.

References

- 1. http://www.amiloidosi.it/index.php/it/
- Merlini G, Waldenström JG, Jayakar SD. A new improved clinical staging system for multiple myeloma based on analysis of 123 treated patients. Blood. 1980;55:1011–9.
- Attardo-Parrinello G, Merlini G, Pavesi F, Crema F, Fiorentini ML, Ascari E. Effects of a new aminodiphosphonate (aminohydroxybutylidene diphosphonate) in patients with osteolytic lesions from metastases and myelomatosis. Comparison with dichloromethylene diphosphonate. Arch Intern Med. 1987;147:1629–33.
- 4. Merlini G, Ascari E, Amboldi N, Bellotti V, Arbustini E, Perfetti V, Ferrari M, Zorzoli I, Marinone MG, Garini P, et al. Interaction of the anthracycline 4'-iodo-4'-deoxydoxorubicin with amyloid fibrils: inhibition of amyloidogenesis. Proc Natl Acad Sci U S A. 1995;92:2959–63.
- Palladini G, Campana C, Klersy C, Balduini A, Vadacca G, Perfetti V, Perlini S, Obici L, Ascari E, d'Eril GM, Moratti R, Merlini G. Serum N-terminal pro-brain natriuretic peptide is a sensitive marker of myocardial dysfunction in AL amyloidosis. Circulation. 2003;107:2440–5.
- Palladini G, Perfetti V, Obici L, Caccialanza R, Semino A, Adami F, Cavallero G, Rustichelli R, Virga G, Merlini G. Association of melphalan and high-dose dexamethasone is effective and well tolerated in patients with AL (primary) amyloidosis who are ineligible for stem cell transplantation. Blood. 2004;103:2936–8.
- Gertz MA, Cohen AD, Comenzo RL, Kastritis E, Landau HJ, Libby EN, Liedtke M, Sanchorawala V, Schönland S, Wechalekar AD, Zonder JA, Palladini G, Walling J, Guthrie S, Nie C, Karp C, Jin Y, Kinney GG, Merlini G. Birtamimab plus standard of care in light chain amyloidosis: the phase 3 randomized placebo-controlled VITAL trial. Blood. 2023;142:1208–18. https://doi.org/10.1182/blood.2022019406. Epub ahead of print. PMID: 37366170.
- 8. Alighieri D. Divina Commedia. Purgatorio, Canto XXII, 67–69.

A Brief History of Amyloidosis

Assuero Giorgetti, Angela Pucci, and Alberto Aimo

Abbreviations

AL Amyloid light chain amyloidosis

ATTR Amyloid transthyretin amyloidosis (v, variant; wt, wild-type)
ATTR-ACT Tafamidis in transthyretin cardiomyopathy clinical trial

CA Cardiac amyloidosis

PET Positron emission tomography

Amyloidoses are considered rare diseases resulting from the extracellular deposition of amyloid, a fibrillar material derived from various precursor proteins that self-assemble with highly ordered abnormal cross β -sheet conformation. Deposition of amyloid can occur in the presence of an abnormal protein (e.g., variant transthyretin amyloidosis [ATTRv] and immunoglobulin light-chain [AL] amyloidosis), in association with prolonged and excessive secretion of a normal protein (e.g., reactive systemic amyloidosis and β 2-microglobulin dialysis-related amyloidosis), or, in ageing process with unknown mechanisms (e.g., wild-type ATTR [ATTRwt] and atrial natriuretic peptide in isolated atrial amyloidosis) [1].

A. Giorgetti (⊠)

Fondazione Toscana Gabriele Monasterio, Pisa, Italy

e-mail: asso@ftgm.it

A. Pucci

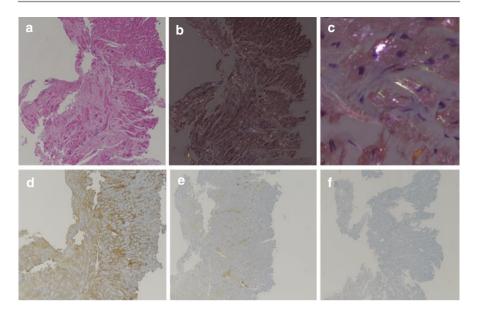
University Hospital of Pisa, Pisa, Italy e-mail: a.pucci@ao-pisa.toscana.it

A. Aimo

Fondazione Toscana Gabriele Monasterio, Pisa, Italy

Scuola Superiore Sant'Anna, Pisa, Italy

e-mail: aimoalb@ftgm.it


14 A. Giorgetti et al.

The term "amyloid" was introduced in the scientific literature by the German botanist Matthias Schleiden (1804–1881), who first applied the iodine-sulfuric acid test for starch in plants [2]. Schleiden demonstrated the presence of a starch-like substance, which he defined as "amyloid" in his book *Grundzige der wissenschaftlichen Botanik* ("Principles of Scientific Botany"), published in 1842–1843 [3]. The term derives from the Greek άμυλου and Latin "amylum", meaning "starch" [2].

Lesions attributable to amyloid deposits had already been described in the liver and spleen, already in 1639 [2]. The first use of the term "amyloid" in human disease is attributed to the physician and physiologist Rudolf Virchow (1821–1902) in his publication *Über eine in Gehirn und Rückenmark des Menschen aufgefundene Substanz mit der chemischen Reaction der Cellulose* ("About a substance found in the human brain and spinal cord with the chemical reaction for cellulose"), dating to 1854 [4]. In this text, Virchow described small roundish deposits in the gray matter of individuals with dementia, stating that those structures showed the same color reaction with iodine and sulfuric acid, i.e., a change from brown to blue, as starch. Virchow then proposed that these lesions had the same composition of starch, and defined them as "corpora amylacea." Over the following years, Virchow used the staining method with iodine and sulfuric acid on other amyloid-laden tissues [2].

In 1859, the German chemist August Kekulé (1829–1896) reported that organs infiltrated by amyloid had a high nitrogen content. Kekulé then proposed that the amyloid substance was composed mainly of protein, rather than carbohydrate, compounds [2]. Virchow did disagree with this conclusion, that he deemed wrong because whole tissue specimens were analyzed, rather than the lesions alone [5]. Virchow also did not agree with the use of methyl violet stain to detect amyloid, which was proposed independently by three scientists in 1875. Already in 1876, Soyka reported having found amyloid in the cardiac tissue with the use of this new method. Ackroyd and Ehrlich described methyl violet stain as "metachromatic" in 1878. Metachromatic stains challenged Virchow's iodine sulfuric acid test for decades, but were eventually replaced by Congo red [2, 5].

The Congo red dye was invented by the German chemist Paul Böttiger in 1884 as the first dye that did not require additional substances for fixation to the textile fibers [6]. In 1922, the German chemist Herman Bennhold discovered the Congo red ability to bind amyloid [7]. Reactivity with Congo red stain or "Congophilia with apple green birefringence" became the first diagnostic criterion for amyloid, introduced by the Belgian physician Paul Divry in 1927 [8]. The Puchtler's modification of Congo red staining, developed in 1962, is currently used to detect amyloid in histological specimens [9]. For histology, the samples are mostly formalin-fixed and paraffin-embedded, then 8–10 µm thick sections (such thickness increasing the staining sensibility) are stained with Congo red, and viewed in a light microscope under polarized light where amyloid is shown as green birefringent homogeneous material (red staining without light polarization is not specific of amyloid) [2]. Congo red is a symmetrical molecule with a hydrophobic center composed of two phenyl rings and two charged terminal naphthalene moieties; the terminal parts of Congo red contain sulphonic acid and amine groups. Although the interaction mechanisms between Congo red and amyloid fibrils have been intensively

Fig. 3.1 Histology findings on an endomyocardial biopsy specimen. Routine histology showing enlarged interstitial spaces with amorphous and eosinophilic deposits (a). Amyloid deposits are demonstrated by green birefringence on the Congo red staining under polarized light (b), highlighting also very thin amyloid deposits surrounding single myocytes (c). Immunohistochemistry shows immunoglobulin light-chain Lambda immunoreactivity (d) with negative light-chain λ (e) and transthyretin (TTR) immunostaining (f). (a) Hematoxylin and eosin staining; (b, c): Congo red staining; (d-f): Immunoperoxidase staining and hematoxylin counterstaining. Original magnification: a, b and d-f: 4×; c: 40×

investigated, the process is not completely clarified. Congo red binding has been assumed to depend on the secondary, β -pleated configuration of the fibril, possibly mediated by hydrophobic interactions of the benzidine centers as well as the electrostatically charged terminal groups. The binding of Congo red to amyloid induces a characteristic shift in the maximal optical absorbance of the molecule from 490 nm to 540 nm, which causes the characteristic apple green birefringence under polarized light [2, 10] (Fig. 3.1).

3.1 Characterization of the Structure and Biochemical Composition of Amyloid Deposits

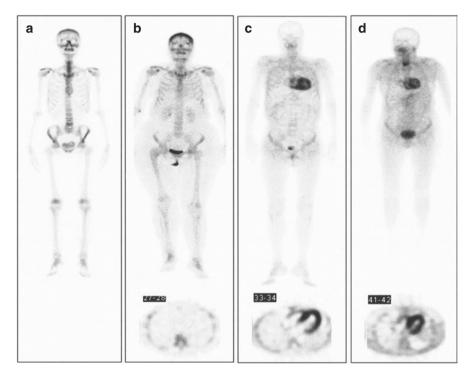
Besides the identification of amyloid in the brain of a patient with dementia by Alzheimer, in 1907 [11], no major breakthroughs in the research on amyloid came before the late 50 s. American researchers Alan S Cohen and Evan Calkins described the first extraction method that consisted of gentle physical separation and homogenization of the material in saline, followed by low-speed centrifugation [12]. Alternative methods involving the use of an alkaline solution of sodium glycinate

16 A. Giorgetti et al.

[13] and, most importantly, the "water extraction method" of Pras were proposed [14]. This last method has been widely used to extract almost all amyloid types except for A β and prion protein amyloid and enabled the identification of the β -pleated sheet configuration of amyloid proteins and the discovery of the biochemical structure of those proteins [2].

The secondary structure of amyloid consists of the polypeptide backbone, mostly in the β -pleated sheet conformation, oriented perpendicular to the fibril axis. This β -pleated sheet structure was revealed by X-ray diffraction analysis of isolated amyloid protein fibrils starting from 1968 [15, 16]. Glenner and coworkers also reported the relationship between "primary" amyloidosis and immunoglobulin light chains [17].

During the following years, many amyloid proteins were identified. Inflammationassociated amyloidosis, previously called the "secondary" and today AA amyloidosis, was shown to be caused by amyloid protein A, an acute phase protein in 1971 [18]. In 1978, prealbumin (now known as transthyretin, TTR) was found to be the protein constituent of amyloid deposits in familial amyloid polyneuropathy [19], the disorder described in 1951 by Corino Andrade in Portugal [20]. Similar disorders were found in the subsequent decades especially in Japan and Sweden. The Finnish type of familial amyloidosis, today known as AGel amyloidosis, was described in 1969 [21]. In 1980, TTR was characterized as the amyloid protein also in "senile cardiac amyloidosis" [22], later renamed as senile systemic amyloidosis, and now as ATTR. Over the following years, more than 30 circulating proteins were identified in tissue deposits in patients with amyloidotic disorders, including the AB peptide in Alzheimer disease and β2-microglobulin in dialysis-related arthropathy [2]. The development of molecular biology techniques allowed also to identify a growing number of mutations associated with hereditary forms and to establish some correlations between the genotype and clinical phenotype.


The identification of the amyloid precursors led to the development of the modern nomenclature of amyloidosis. The first official nomenclature committee was established in 1979 [2], and the latest nomenclature update was published in 2022 [23].

3.2 Novel Diagnostic Techniques

Thioflavin stain allows amyloid visualization using the fluorescence microscope. Thioflavin-T (Basic Yellow 1 or CI 49005) is a benzothiazole salt. When the dye binds to β sheets, it undergoes a 120 nm red shift of its excitation spectrum that may selectively be excited at 450 nm, resulting in a fluorescence signal at 482 nm. Thioflavin-S is a mixture of compounds resulting from the methylation of dehydrothiotoluidine with sulfonic acid. The fluorescence method is specific for amyloid similarly to Congo red and very sensitive [24]. Thioflavin stains are possible alternatives to Congo red staining. In both cases, the identification of the amyloid protein requires immunohistochemistry techniques, and then the use of antibodies targets the amyloid precursors. A definite diagnosis requires amyloid typing by

immunohistochemistry, immunoelectron microscopy, or mass spectrometry-based proteomic analysis, the latter one preferably after isolation of amyloid plaques by laser microdissection [25].

A major breakthrough in the field of diagnosis was the finding that technetium-based bone tracers bind ATTR deposits in the heart [26] (Fig. 3.2). In a multicenter center study on 1217 patients referred with suspected cardiac amyloidosis, an abnormal bone scintigraphy scan combined with a negative evaluation for a monoclonal gammopathy was shown to have a positive predictive value of 100% for ATTR cardiac amyloidosis (CA) [27]. An algorithm for the noninvasive diagnosis of ATTR-CA was then developed, in 2016 [27], and is now recommended by all the international documents to diagnose this condition [28].

Fig. 3.2 Proposal of the Perugini scoring system. Representative examples illustrating the spectrum of \$99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid (\$99mTc-DPD) uptake among patients with transthyretin (TTR)-related or monoclonal immunoglobulin light-chain (AL) cardiac amyloidosis and unaffected controls (top row = whole-body scans, anterior view; bottom row = cross-sectional views of cardiac single-photon emission computed tomography in the same patients). A: Unaffected control subject without visually detectable uptake. B: Patient with AL amyloidosis and echocardiographic documentation of cardiac involvement without any visually detectable sign of myocardial \$99mTc-DPD\$ uptake; mild uptake of the tracer is visible only at the soft tissue level. C and D: Two patients with TTR-related amyloidosis and echocardiographic documentation of cardiac involvement, both showing strong myocardial \$99mTc-DPD\$ uptake (with absent bone uptake); in one of the patients (D), splanchnic uptake is also visible. Reprinted with permission from: Perugini et al. JACC [26]

18 A. Giorgetti et al.

In 1988, Hawkins described the use of antibodies targeting the amyloid serum P component (a protein found in all types of amyloid deposits) and labelled with ¹²³I, in a murine model of amyloidosis [29]; two years later, the same technique was employed successfully in human patients [30]. Another novel development was the discovery of Pittsburgh compound B, a positron emission tomography (PET) tracer labelled with ¹¹C and able to bind selectively the Aβ peptide. This tracer allowed to detect noninvasively the amyloid deposits in patients with suspected Alzheimer disease [31]. ¹⁸F-labelled tracers, including ¹⁸F-flutemetamol, ¹⁸F-florbetapir, and ¹⁸F-florbetaben are increasingly investigated in view of their longer half-time that avoids the need for on-site cyclotrons. Contrary to bone tracers, positron emission tomography amyloid-binding tracers demonstrate higher affinity for light-chain fibrils and may accurately distinguish patients with different types of CA. Specifically, patients with AL-CA display a persistent tracer uptake, while there is a rapid decrease in the signal in patients with ATTR-CA or those without CA [32]. Assessment of the diagnostic yield of PET imaging versus histological analysis is pending.

3.3 Therapeutic Approaches

AL and ATTR amyloidosis account for the vast majority of cases of CA. Their treatment will be analyzed in detail in dedicated chapters.

The therapy of AL amyloidosis has evolved in parallel with the therapy of multiple myeloma. The main stages of this process were the identification of melphalan as an effective therapy (in the 1970s and 1980s) [33], autologous stem cell transplantation (beginning of the 1990s) [34], the introduction of immunomodulatory agents and proteasome inhibitors (beginning of the 2000s) [35], and the recent identification of daratumumab as a possible first-line therapy [36].

As for ATTR amyloidosis, the attention was focused for a long time on hereditary forms, and particularly on patients with polyneuropathy. Liver transplantation was introduced at the beginning of the 1990s and was soon restricted to patients with early-onset, Val30Met-related disease (in whom cardiac involvement is much less common than polyneuropathy) [37]. The TTR tetramer stabilizer tafamidis was first characterized as an effective drug for patients with polyneuropathy [38]. In 2018, the phase 3 study tafamidis in Transthyretin Cardiomyopathy Clinical Trial (ATTR-ACT) demonstrated that tafamidis (a drug that stabilizes the TTR tetramer) improves the prognosis of patients with ATTR amyloidosis (either wild-type or variant) and cardiac involvement [39]. Following this study, tafamidis became the first approved drug for ATTR-related cardiomyopathy in May 2019. At present, tafamidis is the only therapeutic option for patients with ATTRwt-CA or ATTRv with isolated cardiac involvement, while those with cardiomyopathy and polyneuropathy may receive either tafamidis or patisiran (a blocker of TTR translation in the liver) [40]. Many therapies are under investigation, including gene editing [41] or the removal of tissue amyloid deposits through specific antibodies [42].

3.4 Conclusions

Our knowledge of amyloidosis has dramatically improved from the description by Virchow, but the term "amyloid" is still used to identify the abnormal substance whose tissue accumulation causes heterogeneous disease manifestations. Except for the noninvasive diagnosis of ATTR-CA by means of bone scintigraphy and the exclusion of a monoclonal protein, amyloidosis is always diagnosed by demonstrating tissue amyloid deposits and identifying the amyloidogenic protein. Major challenges are the need to perform often highly invasive biopsies (such as endomyocardial or renal biopsy), and the availability of immunohistochemistry, immunoelectron microscopy, or proteomics. An intriguing perspective is the introduction of an algorithm for the noninvasive diagnosis of AL-CA through PET tracers. While the mechanisms, whereby these tracers bind amyloid fibers, are still incompletely understood, the in-depth characterization of the amyloidogenic cascade has allowed the development of targeted therapeutic strategies such as TTR tetramer stabilizers, gene editing, or antibodies targeting tissue fibers.

References

- Wechalekar AD, Gillmore JD, Hawkins PN. Systemic amyloidosis. Lancet. 2016;387:2641–54.
- Tanskanen M. "Amyloid"—historical aspects. In: Feng D, editor. Amyloidosis [Internet]. London: IntechOpen; 2013. [cited 2022 Dec 27]. https://www.intechopen.com/chapters/44870. https://doi.org/10.5772/53423.
- Scleiden MJ, Schwann T, Schulze M. Klassische Schriften zur Zellenlehre. In: Ostwalds klassiker der exakten Wissenschaften, band 275: Verlag Harri Deutsch. http://www.books.google/fi/books/about/Klassische_Schriften_zur_Zellenlehre.html?=h9_WFhLD8uYC&redir_esc=y.
- Virchow R. Über eine im Gehirn und Rückenmark des Menschen aufgefundene Substanz mit der chemischen Reaction der Cellulose. Virchows Archiv Pathol Anat Klinische Med Berlin. 1854:6:135–8.
- 5. Kyle RA. Amyloidosis: a convoluted story. Br J Haematol. 2001;114:529–38.
- 6. SteensmaDP. "Congo" red: out of Africa? Arch Pathol Lab Med. 2001;125:250-2.
- 7. Bennhold H. Eine spezifische Amyloidfärbung mit Kongorot. Münchener Medizinische Wochenschrift (November) 1922:1537–1538.
- 8. Divry P. Etude histo-chimique des plaques seniles. J de Neurologie et de Psychiatrie. 1927:27:643–57.
- 9. Puchtler H, Sweat F, Levine M. On the binding of Congo red by amyloid. J Histochem Cytochem. 1962;10:355–64.
- Yakupova EI, Bobyleva LG, Vikhlyantsev IM, Bobylev AG. Congo red and amyloids: history and relationship. Biosci Rep. 2019;39:BSR20181415.
- Alzheimer A. Über eine eigenartige Erkrankung der Hirnrinde. Allg Zeitschr Psychtiatr Psych Gerichtl Med. 1907;64:146–8.
- 12. Cohen AS, Calcins E. Electron microscopic observations on a fibrous component in amyloid of diverse origins. Nature. 1959;183:1202–3.
- 13. Glenner GG, Bladen HA. Purification and reconstitution of the periodic fibril and unit structure of human amyloid. Science. 1966;154:271–2.
- Pras M, Schubert M, Zucker-Franklin D, Rimon A, Franklin EC. The characterization of soluble amyloid prepared in water. J Clin Invest. 1968;47:924–33.
- 15. Eanes ED, Glenner GG. X-ray diffraction studies on amyloid filaments. J Histochem Cytochem. 1968;16(11):673–7.

20 A. Giorgetti et al.

 Bonar L, Cohen AS, Skinner MM. Characterization of the amyloid fibril as a crossbeta protein. Proc Soc Exp Biol Med. 1969:131:1373–5.

- 17. Glenner GG, Terry W, Harada M, Isersky C, Page D. Amyloid fibril proteins: proof of homology with immunoglobulin light chains by sequence analyses. Science. 1971;172:1150–1.
- 18. Bendit EP, Eriksen N. Chemical similarity among amyloid substances associated with long standing inflammation. Lab Investig. 1971;26:615–25.
- 19. Costa PP, Figueira AS, Bravo FR. Amyloid fibril protein related to prealbumin in familial amyloidotic polyneuropathy. Proc Natl Acad Sci U S A. 1978;75:4499–503.
- Corino de Andrade M. Preliminary note on an unusual form of peripheral neuropathy. Rev Neurol. 1951;85:302–6.
- 21. Meretoja J. Familial systemic paramyloidosis with lattice dystrophy of the cornea, progressive cranial neuropathy, skin changes and various internal symptoms. A previously unrecognized heritable syndrome. Ann Clin Res. 1969;1:314–24.
- Sletten K, Westermark P, Natvig JB. Senile cardiac amyloid is related to prealbumin. Scand J Immunol. 1980;12:503–6.
- 23. Buxbaum JN, Dispenzieri A, Eisenberg DS, Fändrich M, Merlini G, Saraiva MJM, Sekijima Y, Westermark P. Amyloid nomenclature 2022: update, novel proteins, and recommendations by the International Society of Amyloidosis (ISA) Nomenclature Committee. Amyloid. 2022, 29:213–9.
- 24. Biancalana M, Koide S. Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim Biophys Acta. 2010;1804:1405–12.
- 25. Wisniowski B, Wechalekar A. Confirming the diagnosis of amyloidosis. Acta Haematol. 2020;143:312–21.
- Perugini E, Guidalotti PL, Salvi F, Cooke RM, Pettinato C, Riva L, Leone O, Farsad M, Ciliberti P, Bacchi-Reggiani L, Fallani F, Branzi A, Rapezzi C. Noninvasive etiologic diagnosis of cardiac amyloidosis using 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy. J Am Coll Cardiol. 2005;46:1076–84.
- 27. Gillmore JD, Maurer MS, Falk RH, Merlini G, Damy T, Dispenzieri A, Wechalekar AD, Berk JL, Quarta CC, Grogan M, Lachmann HJ, Bokhari S, Castano A, Dorbala S, Johnson GB, Glaudemans AW, Rezk T, Fontana M, Palladini G, Milani P, Guidalotti PL, Flatman K, Lane T, Vonberg FW, Whelan CJ, Moon JC, Ruberg FL, Miller EJ, Hutt DF, Hazenberg BP, Rapezzi C, Hawkins PN. Nonbiopsy diagnosis of cardiac transthyretin amyloidosis. Circulation. 2016;133:2404–12.
- 28. Rapezzi C, Aimo A, Serenelli M, Barison A, Vergaro G, Passino C, Panichella G, Sinagra G, Merlo M, Fontana M, Gillmore J, Quarta CC, Maurer MS, Kittleson MM, Garcia-Pavia P, Emdin M. Critical comparison of documents from scientific societies on cardiac amyloidosis: JACC state-of-the-art review. J Am Coll Cardiol. 2022;79:1288–303.
- Hawkins PN, Myers MJ, Lavender JP, Pepys MB. Diagnostic radionuclide imaging of amyloid: biological targeting by circulating human serum amyloid P component. Lancet. 1988:1:1413–8.
- Hawkins PN, Lavender JP, Pepys MB. Evaluation of systemic amyloidosis by scintigraphy with 123I-labeled serum amyloid P component. N Engl J Med. 1990;323:508–13.
- 31. Klunk WE, Wang Y, Huang GF, Debnath ML, Holt DP, Mathis CA. Uncharged thioflavin-T derivatives bind to amyloid-beta protein with high affinity and readily enter the brain. Life Sci. 2001;69:1471–84.
- 32. Genovesi D, Vergaro G, Giorgetti A, Marzullo P, Scipioni M, Santarelli MF, Pucci A, Buda G, Volpi E, Emdin M. [18F]-Florbetaben PET/CT for differential diagnosis among cardiac immunoglobulin light chain, transthyretin amyloidosis, and mimicking conditions. JACC Cardiovasc Imaging. 2021;14:246–55.
- 33. Kyle RA, Wagoner RD, Holley KE. Primary systemic amyloidosis: resolution of the nephrotic syndrome with melphalan and prednisone. Arch Intern Med. 1982;142:1445–7.
- 34. Majolino I, Marcenò R, Pecoraro G, et al. High-dose therapy and autologous transplantation in amyloidosis-AL. Haematologica. 1993;78:68–71.

- 35. Kumar SK, Rajkumar SV, Dispenzieri A, et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood. 2008;111:2516–20.
- 36. Kastritis E, Palladini G, Minnema MC, Wechalekar AD, Jaccard A, Lee HC, Sanchorawala V, Gibbs S, Mollee P, Venner CP, Lu J, Schönland S, Gatt ME, Suzuki K, Kim K, Cibeira MT, Beksac M, Libby E, Valent J, Hungria V, Wong SW, Rosenzweig M, Bumma N, Huart A, Dimopoulos MA, Bhutani D, Waxman AJ, Goodman SA, Zonder JA, Lam S, Song K, Hansen T, Manier S, Roeloffzen W, Jamroziak K, Kwok F, Shimazaki C, Kim JS, Crusoe E, Ahmadi T, Tran N, Qin X, Vasey SY, Tromp B, Schecter JM, Weiss BM, Zhuang SH, Vermeulen J, Merlini G, Comenzo RL, ANDROMEDA Trial Investigators. Daratumumab-based treatment for immunoglobulin light-chain amyloidosis. N Engl J Med. 2021;385:46–58.
- 37. Ericzon BG, Wilczek HE, Larsson M, Wijayatunga P, Stangou A, Pena JR, Furtado E, Barroso E, Daniel J, Samuel D, Adam R, Karam V, Poterucha J, Lewis D, Ferraz-Neto BH, Cruz MW, Munar-Ques M, Fabregat J, Ikeda S, Ando Y, Heaton N, Otto G, Suhr O. Liver transplantation for hereditary transthyretin amyloidosis: after 20 years still the best therapeutic alternative? Transplantation. 2015;99:1847–54.
- 38. Coelho T, Maia LF, Martins da Silva A, Waddington Cruz M, Planté-Bordeneuve V, Lozeron P, Suhr OB, Campistol JM, Conceição IM, Schmidt HH, Trigo P, Kelly JW, Labaudinière R, Chan J, Packman J, Wilson A, Grogan DR. Tafamidis for transthyretin familial amyloid polyneuropathy: a randomized, controlled trial. Neurology. 2012;79:785–92.
- Maurer MS, Schwartz JH, Gundapaneni B, et al. Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N Engl J Med. 2018;379:1007–16.
- 40. Garcia-Pavia P, Rapezzi C, Adler Y, Arad M, Basso C, Brucato A, Burazor I, Caforio ALP, Damy T, Eriksson U, Fontana M, Gillmore JD, Gonzalez-Lopez E, Grogan M, Heymans S, Imazio M, Kindermann I, Kristen AV, Maurer MS, Merlini G, Pantazis A, Pankuweit S, Rigopoulos AG, Linhart A. Diagnosis and treatment of cardiac amyloidosis: a position statement of the ESC Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2021;42:1554–68.
- 41. Gillmore JD, Gane E, Taubel J, Kao J, Fontana M, Maitland ML, Seitzer J, O'Connell D, Walsh KR, Wood K, Phillips J, Xu Y, Amaral A, Boyd AP, Cehelsky JE, McKee MD, Schiermeier A, Harari O, Murphy A, Kyratsous CA, Zambrowicz B, Soltys R, Gutstein DE, Leonard J, Sepp-Lorenzino L, Lebwohl D. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N Engl J Med. 2021;385:493–502.
- 42. Griffin JM, Rosenblum H, Maurer MS. Pathophysiology and therapeutic approaches to cardiac amyloidosis. Circ Res. 2021;128:1554–75.

Pathophysiology, Classification, and Epidemiology of Amyloidosis

4

Alberto Giannoni, Chiara Arzilli, and Alberto Aimo

Abbreviations

AL Amyloid light chain amyloidosis

ATTR Amyloid transthyretin amyloidosis (vATTR, variant form; wtATTR, wild-

type form)

ISA International Society of Amyloidosis

SAA Serum amyloid A protein

SAP Serum amyloid P component

TTR Transthyretin

4.1 Definition and Nomenclature

The definition of "amyloidosis" encompasses a group of disorders caused by tissue deposition, mainly extracellular, of misfolded proteins, which aggregate into insoluble fibrils that compose the amyloid substance [1]. Immunohistochemistry or proteomic analyses allow classifying the different types of amyloidosis based on the

A. Giannoni (⊠) · A. Aimo

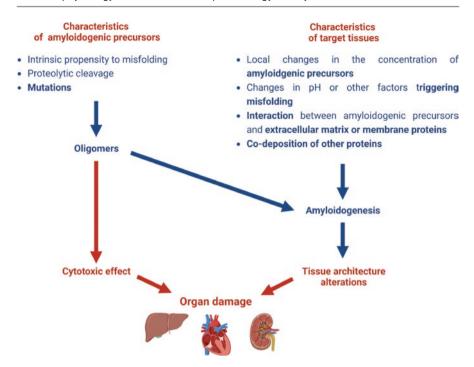
Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna, Pisa, Italy

Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy e-mail: alberto.giannoni@santannapisa.it; aimoalb@ftgm.it

C. Arzilli

Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy

e-mail: carzilli@monasterio.it


24 A. Giannoni et al.

specific proteins that form the amyloid fibrils. The International Society of Amyloidosis (ISA) currently recognizes 42 different amyloidogenic proteins in humans. According to the nomenclature established by ISA, the amyloid protein is defined by the letter "A," followed by a suffix indicating the specific protein. This notation is also used to designate the different pathologies. The term amyloid refers to the specific protein involved, while amyloidosis refers to the disease caused by the amyloid protein. For example, when amyloid deposits are composed of immunoglobulin light chains, the amyloid protein is designated as AL and the disease is AL amyloidosis [1].

4.2 Amyloid Fibers

All forms of amyloidosis are characterized by tissue accumulation of insoluble fibrils composed of misfolded proteins. Amyloid fibrils have a 7–13 nm diameter and are composed by of 2–8 protofilaments, each having a 2–7 nm diameter, either intertwined or arranged side by side. Protofilaments are composed of β -sheet structures with hydrogen bonds between amino and carboxyl terminals of the amino acid chain [2]. The extremely regular structure of amyloid fibrils explains the characteristic apple green birefringence that can be seen on polarized light after Congo red staining [2].

The mechanisms underlying the formation of amyloid fibrils have not been completely characterized, but it is thought to depend on the intrinsic characteristics and local concentration of the amyloidogenic protein, its interaction with cell membranes and the extracellular matrix, and the insufficient removal of misfolded proteins by proteasomes (before protein release into the circulation) and macrophages [3–5]. The amyloidogenic potential of a protein is related to at least three factors, not mutually exclusive: (1) the intrinsic propensity of a protein to form amyloid deposits, (2) proteolytic changes, and (3) changes in the amino acid sequence. Some proteins are defined as "intrinsically misfolded" as they have at least a region without a fixed secondary or tertiary structure and can then change their conformation to better interact with their ligands [6]. Some examples are apolipoproteins AI, AII and the serum amyloid A protein (SAA) [7, 8]. The propensity to form amyloid deposits can be increased in some conditions, for example, when circulating concentration increases, as in the case of β2-microglobulin amyloidosis [9]. Alternatively, a normal protein can undergo proteolytic changes within the cell or in the extracellular spaces, and this process can increase its propensity to form amyloid deposits: this process occurs in many forms of amyloidosis [3] and has been well characterized in Alzheimer's disease [10]. Furthermore, a gene mutation can reduce protein stability, as in the familial forms of amyloidosis [11] or in mutations in the variable regions of immunoglobulin light chains [12–14] (Fig. 4.1).

Fig. 4.1 Main characteristics of the amyloidogenic process and the resulting organ damage. The formation of amyloid deposits in tissues is attributed both to intrinsic characteristics of the amyloidogenic protein and to specific aspects of target tissues. Organ damage is caused by structural changes caused by amyloid deposition, and possibly also by a direct cytotoxic effect of protein oligomers

The process of amyloidogenesis is characterized by at least two phases. Indeed, all the interactions and conformational changes needed to form an initial amyloid deposit require a very long time to occur. After the so-called nucleation phase, the velocity of protein deposition increases markedly ("elongation phase" or "phase of sigmoidal growth"). During this phase, new nucleation processes can occur at the surface of fibrils or as a result of fibril fragmentation [3, 6].

In addition to amyloid fibrils, amyloid deposits include other protein components such as collagen [4], glycosaminoglycans, and proteoglycans (particularly dermatan sulfate and heparan sulfate), which form a scaffold promoting amyloid deposition [15] and may concur to cause organ tropism of amyloidogenic precursors [3]. Another protein very frequently encountered in deposits is serum amyloid P component (SAP), a pentraxin that has a high affinity for amyloid fibrils and protects them from proteolytic degradation and phagocytosis [16].