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Preface 

This volume is a compilation of research and survey papers in number theory, 
written by members of the Women in Numbers (WIN) network and their colleagues, 
principally by the collaborative research groups formed for the fifth Women in 
Numbers workshop. Women in Numbers 5 (WIN5), organized by Alina Bucur 
(University of California San Diego), Wei Ho (Institute for Advanced Study, Prince-
ton University, and University of Michigan), and Renate Scheidler (University of 
Calgary), was to take place on November 15–20, 2020 at the Banff International 
Research Station in Banff, Alberta, Canada. To our great regret, the event could not 
take place in-person on site at BIRS as planned due to the COVID-19 pandemic. 

The WIN network (womeninnumbertheory.org) was created for the 
purpose of increasing the number of active female researchers in number theory. 
The WIN conference series began in 2008 as the main mechanism for effect-
ing this goal. It introduced a novel research mentorship model where women 
at all career stages, from graduate students to senior members of the commu-
nity, joined forces to work in focused research groups on cutting-edge projects 
designed and led by experienced researchers. This model has proven so successful 
that to date there are over 25 research networks for women in mathematics, 
each of which holds Research Collaboration Conferences for Women as well 
as other conferences, workshops, special sessions, and symposia. The Associ-
ation for Women in Mathematics, funded by the National Science Foundation 
ADVANCE program, is supporting this highly effective research mentorship model 
(awm-math.org/programs/advance-research-communities). 

The goals for WIN5 were to generate research in significant topics in number 
theory, to broaden the research programs of women working in number theory 
(especially pre-tenure), to train graduate students and postdocs in number theory 
by providing experience with collaborative research and the publication process, 
to extend and strengthen a research network of potential collaborators in number 
theory and related fields, to enable faculty at small colleges to participate actively in 
research activities including the mentorship of graduate students and postdocs, and 
to highlight research activities of women in number theory. 
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vi Preface 

The typical working model for WIN conferences consists of three phases. Prior 
to the event, participants are organized into project groups by research interest and 
asked to acquire the necessary background for their project topics. At the workshop, 
the groups collaborate on their projects and generally achieve significant progress 
during that time. Following the conference, the groups continue their collaborations 
remotely, carrying on with their research and eventually writing up their results 
for publication. The workshop is arguably the highlight of the WIN experience 
as it offers everyone the opportunity to get to know the participants outside their 
group, network with women in their field, and immerse themselves in intense 
collaborative research. The WIN5 project groups were formed prior to the outbreak 
of the COVID-19 pandemic. Sadly, the pandemic precluded an in-person event, 
thus depriving participants of this enriching experience. By necessity, the format 
of WIN5 was adapted and changed to fit the online world. To their great credit, 
almost all the groups chose to nevertheless proceed with their collaborations. After 
consulting with group leaders and experienced organizers of online conferences, 
the WIN5 organizers elected to decline BIRS’s kind offer to host an online version 
of WIN5 during the originally scheduled dates. Instead, we felt that a sequence of 
more spread-out events would be more beneficial in supporting the collaborations 
academically, professionally, and socially. On June 30, 2020, we began with a virtual 
kick-off meet-and-greet plus Q&A for all WIN5 participants. This was followed by 
two panels on professional life in the virtual world and on grant writing, respectively. 
We held two online mini workshops in December 2020 and August 2021, where 
WIN5 groups gave talks to report on their progress. And throughout the period of 
pandemic-induced social distancing and forced working-from-home, we offered a 
weekly Wednesday evening virtual Happy Hour where WIN5 participants could 
voluntarily drop in and chat, usually over a non-virtual beverage of their choice. 

For this volume, the editors solicited contributions from the WIN5 collaboration 
groups and sought additional articles through the Women in Numbers Network 
mailing list and other platforms. The ten articles collected here span algebraic, 
geometric, and computational aspects of number theory, including topics in alge-
braic and algorithmic number theory, algebraic and arithmetic geometry, arithmetic 
dynamics, Diophantine equations, modular forms, and additive number theory. 
Several papers in this volume stem from collaborations between authors with 
different mathematical backgrounds, allowing the group to tackle a problem using 
multiple perspectives and tools. All submissions were sent to anonymous referees 
for rigorous peer review. 
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From Fontaine–Mazur Conjecture to 
Analytic Pro-p-groups: A Survey 

Ramla Abdellatif, Supriya Pisolkar, Marine Rougnant, and Lara Thomas 

1 Introduction 

The Fontaine–Mazur Conjecture is a core statement in modern arithmetic geometry. 
Several formulations of this conjecture were given since its original statement (as 
appeared in [10]), and various angles have been adopted by numerous authors to 
try to tackle it. To state the original Fontaine–Mazur Conjecture (FMC), we need 
to introduce some definitions and notations. Let K be a number field, . K be a fixed 
separable closure of K and .GK := Gal(K/K) be the corresponding absolute Galois 
group. Given a prime number p, a finite extension F of the field .Qp of p-adic 
numbers and a profinite group G, an  F -representation of G is a finite-dimensional 
vector space over F equipped with a continuous and linear action of G. When . F =
Qp, we call it a  p-adic representation of G. A  p-adic representation . ρ of .GK is 
called geometric if it ramifies only at a finite number of places of K and if, for each 
place v of K above p, the restriction of . ρ to . Gv is potentially semi-stable, as defined 
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by Fontaine in [11, Section 1.8]. Finally, for any integer r , we let .Qp(r) denote the 
r-th Tate twist of . Qp, as defined in [27, §3]. 

Conjecture 1.1 (Fontaine, Mazur) An irreducible p-adic representation of .GK is 
geometric if, and only if, it is isomorphic to a subquotient of an étale cohomology 
group with coefficients in . Qp(r), for some .r ∈ Z, of a (projective, smooth) algebraic 
variety over K . 

In short, the Fontaine–Mazur Conjecture predicts that p-adic representations of 
global Galois groups that are potentially semi-stable at primes dividing p and 
unramified outside finitely many places all come from algebraic geometry. 

In the recent years, substantial progress has been made using p-adic representa-
tions and deformation theory, allowing, for instance, Kisin [17] to prove the original 
conjecture for families of two-dimensional representations when . K = Q. In this  
special case, the conjecture asserts that potentially semi-stable representations with 
odd determinant come from modular forms. 

Conjecture 1.2 (Fontaine–Mazur Conjecture for .n = 2) Let . ρ : Gal(Q/Q) →
GL2(Qp) be an odd, irreducible representation that is unramified outside finitely 
many primes and whose restriction to the decomposition group at p is potentially 
semi-stable with distinct Hodge–Tate weights. Then . ρ is the twist of a Galois 
representation associated with a modular form of weight .k ≥ 2. 

Kisin’s proof relies on an intimate connection between modularity lifting 
theorems, the Breuil–Mézard conjecture [2], and Breuil’s p-adic local Langlands 
correspondence for .GL2 [3, 4]. In the same direction (meaning using local–global 
compatibility results and deformation theory), but using different tools (such as 
completed cohomology), Emerton proved further cases of this conjecture for two-
dimensional representations and .K = Q (see [9, Theorem 7.1.1]). 

In this chapter, we are interested in a different approach, which can be motivated 
as follows. First note that Conjecture 1.1 implies the following conjecture, which is 
elementary to state but completely out of reach for now (see [7] for instance). 

Conjecture 1.3 (Weak Fontaine–Mazur Conjecture) Every unramified pro-p-
extension of K whose Galois group is p-adic analytic is finite. 

Now recall that in [12], Golod and Shafarevich proved the existence of a number 
field K and a prime p such that K admits an everywhere unramified infinite pro-
p-extension L. (Note that they actually provide a way to obtain infinitely many 
such number fields.) Conjecture 1.3 then claims that the Galois group of such 
an extension .L/K cannot be an infinite analytic pro-p-group (i.e., isomorphic to 
a closed subgroup of .GLn(Zp) for some positive integer n). Hence the idea is 
that a counter-example to Conjecture 1.3 would produce an everywhere unramified 
Galois representation with an infinite image, which cannot “come from algebraic 
geometry” in the sense of Conjecture 1.1.
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From Lazard’s seminal work on p-adic analytic groups [19, III, 3.4.3], we 
know that any finite-dimensional p-adic analytic group contains a finite index open 
uniform subgroup. We can thus reformulate Conjecture 1.3 as follows. 

Conjecture 1.4 (Uniform Fontaine–Mazur Conjecture (UFMC)) There is no num-
ber field K for which there exists an infinite everywhere unramified Galois 
pro-p-extension L such that .Gal(L/K) is uniform. 

A major advantage in considering uniform groups is that they have a simple 
characterisation in terms of filtration by their subgroups, which does not hold for 
arbitrary analytic pro-p-groups. (Recall that a finitely generated pro-p-group is 
analytic if, and only if, it contains a uniform subgroup of finite index.) 

The first evidence in favour of Conjecture 1.4 was given by N. Boston in [5, 6], 
using purely group-theoretic methods based on the connections between powerful 
and uniform pro-p-groups instead of representation-theoretic tools. This chapter 
provides an introduction to these purely group-theoretic tools and methods, which 
are not so well known among (young) arithmetic geometers, and a review of some 
of the main results they bring about various conjectures related to Conjectures 1.1 
and 1.4. We also present some related questions on which are based recent, current 
and future works of the authors. We think that this survey paper may be of interest to 
anyone looking for a different viewpoint on the Fontaine–Mazur Conjecture, which 
does not require advanced knowledge in p-adic representation theory and highlights 
the number-theoretic nature of the problem. 

This chapter is organised as follows. Section 2 gathers the definitions and 
basic results we need about (uniform) pro-p-groups. Section 3 is devoted to 
study the proofs of the main result of [5], which is the following special case of 
Conjecture 1.4, and of its generalisation to cyclic extensions of degree prime to p, 
which is the main result of [6]. 

Theorem 1.5 (Boston) Given a prime number p and a number field F , let  K be 
a normal extension of F of prime degree .𝓁 /= p and such that p does not divide 
.h(F ), the class number of F . Then there is no infinite, everywhere unramified pro-
p-extension L of K such that .L/F is Galois and .Gal(L/K) is uniform. 

The main ingredient of the group-theoretic methods used to prove these results 
is the cyclic action on .Gal(L/K) of a generator . σ of .Gal(K/F). This works quite 
well when the action of . σ on .Gal(L/K) has no non-trivial fixed point. The study 
of such actions also appears in the work of Hajir and Maire [14], in their attempt to 
extend Boston’s strategy to (tamely) ramified extensions .L/K . The challenge here 
is to understand the behaviour of the fixed points introduced by the ramification and 
the resulting constraints on the arithmetic of .L/K . 

This work of Hajir and Maire motivates our interest in the two following 
Fontaine–Mazur-style conjectures, where we consider finitely and tamely ramified 
p-adic representations. These conjectures are known, respectively, as the Tame 
Fontaine–Mazur Conjecture (TFMC) [10, 5a] and the Uniform Tame Fontaine– 
Mazur Conjecture (UTFMC).
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Conjecture 1.6 (Tame Fontaine–Mazur Conjecture) Let K be a number field and S 
be a finite set of places of K that are prime to p. Set .GS := Gal(KS/K), where . KS

denotes the maximal pro-p-extension of K that is unramified outside S. Then any 
p-adic representation of .GS has finite image. 

The idea behind this statement is that the eigenvalues of a Frobenius element 
must become roots of unity under the action of a finitely tamely ramified p-adic 
representation. In this case, the image of such a representation is solvable, hence 
finite by class field theory. Class field theory also helps to prove that the conjecture 
holds for one-dimensional representations, as we show in Sect. 4.2. For higher 
dimensional representations, Conjecture 1.6 seems for now out of reach in general. 

Conjecture 1.7 (Uniform Tame Fontaine–Mazur Conjecture) Let K be a number 
field and . 𝚪 be a uniform pro-p-group of dimension .d > 2 (hence infinite). Then 
there does not exist a finitely and tamely ramified Galois extension .L/K whose 
Galois group .Gal(L/K) is isomorphic to . 𝚪. 

We elaborate on how these statements connect in Sect. 4 and on how the 
assumptions made matter. In Sect. 5, we expose some connected questions that are 
of interest to us, as well as recent results proven in this direction by some of the 
authors. 

General Notations From now on, we fix a prime integer p. We let .Qp be the 
field of p-adic numbers and .Zp be its ring of integers. Since the ring .Zp is 
isomorphic to the projective limit .lim←−

k≥1

Z/pkZ, there exists, for any integer .k ≥ 1, 

a natural ring isomorphism .ψk : Zp/pkZp ≃ Z/pkZ. These ring isomorphisms 
allow us to define principal congruence subgroups in this p-adic setting as follows. 
Given any integer .n ≥ 2, we consider the special linear group .SLn(Zp), which 
is a maximal open compact subgroup of .SLn(Qp). For any integer . k ≥ 1, we  
can then define the k-th-principal congruence subgroup of .SLn(Zp) as . 𝚪n,k :=
ker

(
SLn(Zp) ↠ SLn(Z/pkZ)

)
. Note that we choose to use this .𝚪n,k notation 

instead of the classical .Kn(k) notation to highlight the connection with the Galois 
context. 

Assume that we are given a group G. For any subsets X and Y of G and any 
positive integer n, we write . Xn for the subgroup of G generated by .{xn, x ∈ X} and 
.[X, Y ] for the subgroup of G generated by .{[x, y] := x−1y−1xy, (x, y) ∈ X × Y }. 
As usual, for any subgroup H of G, we let .[G : H ] denote the index of H in G. 

Finally, if . 𝚪 is a topological space and if . Ω is a subset of . 𝚪, then . Ω denotes the 
closure of . Ω in . 𝚪. If . 𝚪 is moreover a topological group, a closed subgroup of . 𝚪
is called topologically characteristic when it is stable under all continuous group 
automorphisms of . 𝚪.
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2 Preliminaries on Uniform Pro-p-groups 

Our main reference for this section is [8]. The goal here is to recollect all the 
information we need on uniform pro-p-groups to understand how they connect to 
the Fontaine–Mazur Conjecture via Boston’s method. The reader who is already 
familiar with uniform pro-p-groups can skip this section and go directly to Sect. 3. 

2.1 Some Basic Definitions Related to Profinite Groups 

We start by recalling some basic definitions, coming from [8, Chapter 1], which are 
fundamental for our purpose. The first definition we make is exactly [8, Definition 
1.1]. 

Definition 2.1 A profinite group is a compact Hausdorff topological group whose 
open subgroups form a basis of neighbourhoods of the identity. 

According to [8, Proposition 1.3], this is equivalent to the usual definition of 
profinite groups as inverse limits of finite groups. 

Definition 2.2 A profinite group G is finitely generated if it contains a finite subset 
X such that X topologically generates G, i.e., such that the subgroup of G generated 
by X is dense in G. 

Given a profinite group, we define its Frattini subgroup, which is a key tool in 
the forthcoming study of uniform pro-p-groups, as follows (see [8, Definition 1.8]). 

Definition 2.3 Let G be a profinite group. The Frattini subgroup of G is defined as 
.Ф(G) := ⋂

M , where the intersection runs over all maximal proper open subgroups 
of G. 

2.2 Pro-p-groups: Definition and Basic Properties 

Among all profinite groups, we will mainly focus on those arising as projective 
limits of p-groups. Such groups are called pro-p-groups and are usually defined as 
follows (see [8, Definition 1.10]). 

Definition 2.4 A pro-p-group is a profinite group in which every open normal 
subgroup has finite index equal to a power of p. 

By [8, Proposition 1.12], we know that a group is a pro-p-group if, and only if, it 
is isomorphic to an inverse limit of p-groups. (Recall that a p-group is just a finite 
group of p-power order.) 

Finitely generated pro-p-groups are nicely characterised (among pro-p-groups) 
by the topology of their Frattini subgroups, as proven in [8, Proposition 1.14].
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Proposition 2.5 A pro-p-group G is finitely generated if, and only if, its Frattini 
subgroup .Ф(G) is open in G. 

Also note that for pro-p-groups, we can fruitfully go beyond Frattini subgroups 
via the notion of lower p-series, defined as follows (see [8, Definition 1.15]). 

Definition 2.6 The lower p-series of a pro-p-group G is the series . (Pi(G))i≥1
of topologically characteristic subgroups of G defined by .P1(G)=G and: 
.∀ i≥1, Pi+1(G) := Pi(G)p[Pi(G),G]. 

The next key proposition shows that the Frattini subgroup of a pro-p-group G is 
actually encoded in the lower p-series of G [8, Proposition 1.13]. 

Proposition 2.7 For any pro-p-group G, we have .Ф(G) = P2(G) = Gp[G,G]. 
If G is a finitely generated pro-p-group, then [8, Proposition 3.7] ensures that the 

quotient .G/Ф(G) is a finite-dimensional .Fp-vector space. We can hence consider 
the following integer. 

Definition 2.8 For any finitely generated pro-p-group G, we let .d(G) be the 
dimension of .G/Ф(G) as .Fp-vector space: 

. d(G) := dimFp
G/Ф(G) .

According to [8, Proposition 3.7], this integer is also equal to the minimal cardinality 
of a (topological) generating set for G. We will see later that, in good cases, . d(G)

is also equal to the dimension of G as a p-adic analytic group, provided that such a 
structure exists on G. 

2.3 The (Uniform) Power of Pro-p-groups 

Following [8, Definition 2.1], we introduce now the following notion of powerful-
ness for (pro-)p-groups. 

Definition 2.9 We say that a p-group G is powerful when one of the following 
holds:

• Either p is odd, and .G/Gp is an abelian group 
or

• .p = 2, and .G/G4 is an abelian group. 

We say that a pro-p-group G is powerful when the analogous alternative, with . Gp

and . G4, replaced, respectively by their closure .Gp or . G4 in G, holds. 

According to [8, Corollary 3.3], powerful pro-p-groups can equivalently be defined 
as inverse limits of powerful p-groups in which all transition maps are surjective. 

We are now ready to follow [8, Definition 4.1] and define our first key notion.
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Definition 2.10 A uniformly powerful pro-p-group G (or uniform pro-p-
group) is a powerful, finitely generated pro-p-group G such that: . ∀ i ≥
1, [Pi(G) : Pi+1(G)] = [G : P2(G)]. 

The assumptions in Definition 2.10 ensure in particular that . P2(G) = Ф(G)

is open in G. Another exciting feature of uniform pro-p-groups is that they 
are automatically endowed with a structure of p-adic analytic group. The reader 
interested in the general framework of p-adic analytic groups should refer to 
Lazard’s seminal paper [19], which remains to our knowledge the best reference 
so far on this topic. For now, we only need the following existence result (see [8, 
Theorem 8.32]). 

Theorem 2.11 A topological group has a structure of p-adic analytic group if, and 
only if, it contains an open subgroup which is a uniform pro-p-group. 

In particular, this theorem ensures that uniform pro-p-groups are always endowed 
with a structure of p-adic analytic group. According to [8, Theorem 8.36], their 
dimension as analytic groups is then equal to the integer .d(G) introduced in 
Definition 2.8. 

2.4 A Key Example: Principal Congruence Subgroups that are 
Uniform Pro-p-groups 

The goal of this subsection is to prove the following result [8, Theorem 5.2], where 
the principal congruence subgroups .𝚪n,k are those we defined at the end of Sect. 1. 

Theorem 2.12 Let .n ≥ 2 be an integer. 

(1) If p is odd, then the first principal congruence subgroup .𝚪n,1 ⊂ SLn(Zp) is a 
uniform pro-p-group of dimension .n2 − 1. 

(2) If .p = 2, then the second principal congruence subgroup .𝚪n,2 ⊂ SLn(Z2) is a 
uniform pro-p-group of dimension .n2 − 1. 

Looking, for instance, at the case .n = 2, we obtain that:

• For any odd prime p, .𝚪1 := ker
(
SL2(Zp) ↠ SL2(Fp)

)
is a uniform pro-p-

group of dimension 3.
• For .p = 2, .𝚪2 := ker (SL2(Z2) ↠ SL2(Z/4Z)) is a uniform pro-2-group of 

dimension 3. 

Let us point out that for .n = 1, .𝚪1,m is the trivial group for any integer .m ≥ 1 and 
any prime p. This explains why we assume .n ≥ 2 in Theorem 2.12. 

Though the proof of this result is essentially given in [8, Theorem 5.2], we collect 
here the relevant facts and definitions it is based on to ease later reference. For 
convenience, once n is fixed, we write .𝚪m instead of .𝚪n,m to avoid this cumbersome 
notation as often as possible. Said differently, we now fix an integer .n ≥ 2 as well 
as a prime p and we set:
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. ∀ m ≥ 1, 𝚪m := ker(SLn(Zp) → SLn(Z/pmZ)) .

Lemma 2.13 For every .m ≥ 1, the group .𝚪m is a pro-p-group. More precisely, we 
have 

. 𝚪m
∼= lim←−

r≥1

𝚪m/𝚪m+r ,

with each .𝚪m/𝚪m+r being a finite p-group. Moreover, .𝚪m/𝚪m+1 is isomorphic to 
the additive group .sln(Fp) of matrices in .Mn(Fp) with trace 0. 

Proof Let m be a positive integer. The obvious projection map . 𝚪m →
lim←−
r≥1

𝚪m/𝚪m+r is injective since we have .

⋂

r≥1

𝚪m+r = {In}. Conversely, any 

compatible sequence in .lim←−
r≥1

𝚪m/𝚪m+r provides an element of .Mn(Zp) that is 

congruent to . In modulo . pm. The continuity of the determinant map ensures that 
such an element must be of determinant 1; hence, we have the desired isomorphism. 

We now show that each .𝚪m/𝚪m+r is a (finite) p-group. By induction on r , it  
suffices to prove that .𝚪m/𝚪m+1 is a (finite) p-group. To do this, we consider the 
map .ϕm : 𝚪m → Mn(Zp) defined by .ϕm(x) := p−m (x − In). One directly checks 
that .ϕm(𝚪m+1) is contained in .Mn(pZp), and thus we get a well-defined function 
.ϕm : 𝚪m/𝚪m+1 −→ Mn(Zp)/Mn(pZp) ≃ Mn(Fp). We claim that . ϕm is a group 
homomorphism for the usual additive group structure on .Mn(Fp). Indeed, let . In +
pma and .In + pmb be elements of . 𝚪m. As . (In + pma)(In + pmb) = In + pm(a +
b) + p2mab, we have  

. ϕm

(
(In + pma)(In + pmb)

) = ϕm(In + pm(a + b) + p2mab) = a + b + pmab .

Since .a + b + pmab ≡ a + b mod p, we obtain as expected that 

. ϕm

(
(In + pma)(In + pmb)

) = a + b mod p = ϕm

(
In + pma

)+ϕm

(
In + pmb

)
.

Now assume that .[In + pma] ∈ 𝚪m/𝚪m+1 lies in .ker ϕm. This means that a is in 
.Mn(pZp), hence that .In + pma belongs to .𝚪m+1, i.e., that . [In + pma] ∈ 𝚪m/𝚪m+1
is trivial. All this proves that . ϕm is injective. Since .Mn(Fp) is a finite-dimensional 
.Fp-vector space, we obtain that .𝚪m/𝚪m+1 ≃ Im ϕm is a finite p-group. 

To conclude, we are left to check that the image of . ϕm is isomorphic to .sln(Fp). 

Given an element .In + pma of . 𝚪m, let .fa(X) =
n∑

k=0

αkX
k ∈ Zp[X] be the 

characteristic polynomial of a. Then the characteristic polynomial of .−pma is 

equal to .f−pma(X) =
n∑

k=0

αk(−pm)kXk . By evaluating it at 1, we get that .1 =
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det(In + pm a) = f−pma(1) = 
n∑

k=0 

αk(−pm )k . Reducing this equality mod . pm

shows that .α0 − 1 ∈ pmZp, hence subtracting 1 from it and dividing the result by 
.pm give that 

. − α1 +
n∑

k=2

αk(−pm)k−1 = 0 .

This implies in particular that .−α1= tr(a) is in .pmZp, hence that .tr(a) ≡ 0 mod p, 
which proves that .ϕm (In + pma) lies in .sln(Fp), as required. Conversely, let us 
check that the image of . ϕm is equal to .sln(Fp). First recall that, since . ϕm is injective, 
it is also a homomorphism of .Fp-vector spaces. We are hence left to prove that a 
basis of .sln(Fp) is contained in . Im ϕm. For .1 ≤ i, j ≤ n, let . eij be the matrix whose 
.(i, j)-th entry is 1, and all other entries are 0. For .1 ≤ i ≤ n− 1, set .di := eii − enn. 
Then an .Fp-basis for .sln(Fp) is given by 

. 
{
eij : 1 ≤ i /= j ≤ n

} ⨆ {di : 1 ≤ i ≤ n − 1} .

As .ϕm(In + pmeij ) = eij for all .1 ≤ i /= j ≤ n while .ϕm(In + pmdi) = di for all 
.1 ≤ i ≤ n − 1, we obtain that .ϕm(𝚪m/𝚪m+1) = sln(Fp), as claimed. ⨅⨆

Until the end of this section, we essentially follow [8, Section 5.1], making the 
changes required to pass from .GLn to .SLn and filling in some missing details. First 
note that, for all .x ∈ 𝚪m with . m ≥ 1, we have .xp ∈ 𝚪m+1. Indeed, write . x =
In + pma for some .a ∈ Mn(Zp). Since a and . In commute, we have 

. xp = (In + pma)p = In +
p∑

k=1

(
p

k

)
pmkak .

As p divides .
(
p
k

)
for all .1 ≤ k ≤ p − 1, we obtain that .xp ≡ In mod pm+1, as  

claimed. 
Following [8, Lemma 5.1], we will now see that, unless .(p,m) = (2, 1), the  p-th 

power map induces a surjection .𝚪m → 𝚪m+1. 

Lemma 2.14 Let p be a prime and m be a positive integer. Assume that p is odd 
or that .m ≥ 2. Then every element of .𝚪m+1 is the p-th power of an element of . 𝚪m. 

Proof Let .a ∈ Mn(Zp) be such that .det(In +pm+1a) = 1. The goal is to find some 
.b ∈ Mn(Zp) such that .det(In +pmb) = 1 and .(In +pmb)p = In +pm+1a. We will 
find it by successive approximations, which means that we will produce a sequence 
.(xk)k≥1 of elements of .Mn(Zp) such that 

.∀ k ≥ 1, det(In + pmxk) ≡ 1 mod pm+1+k and
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(In + pm xk)
p ≡ In + pm a mod pm+1+k . 

Then .b := lim
k→∞ xk will be as expected. First, assume that 

.In + pm+1a ≡ (In + pmxr)
p mod pm+r+1. Since we have .det(In + pm+1a) = 1, 

we already obtain that .det(In + pmxr)
p ≡ 1 mod pm+r+1. Now, as we know that 

.det(In+pma) ∈ 1+pmZp, it actually follows that .det(In+pmxr) ≡ 1 mod pm+r+1. 
This shows that we do not need to check at each step whether the determinant 
congruence holds when constructing the sequence .(xk)k≥1 as it will automatically 
be true. 

Let us first construct . x1. Note that, as long as m is in the supposed range, we have 

. (In + pma)p = In + pm+1a +
p∑

k=2

(
p

k

)
(pma)k ,

which is congruent to .In + pm+1a mod pm+2, so we can set .x1 := a. 
Now suppose that there exists some integer .r ≥ 1 for which we built some 

.xr ∈ Mn(Zp) satisfying .In + pm+1a ≡ (In + pmxr)
p mod pm+r+1. Then there 

exists some .c ∈ Mn(Zp) such that 

. (In + pmxr)
p = In + pm+1a + pm+r+1c .

Note that expanding the left-hand side of this equality provides a .Z-linear combina-
tion of powers of . xr , which shows that both a and c can be expressed as a .Qp-linear 
combination of powers of . xr . In particular, this implies that any two among .a, c, and 
. xr commute. Let us thus set 

. z := (In + pmxr)
−(p−1)c and xr+1 := xr − prz .

Then .xr+1 satisfies the desired congruence. Indeed, we have 

.(In + pmxr+1)
p = ((In + pmxr) − pm+r z)p

=
p∑

k=0

(
p

k

)
(In + pmxr)

p−k(−pm+r z)k

= (In + pmxr)
p +

p∑

k=1

(−1)k
(

p

k

)
(In + pmxr)

p−kp(m+r)kzk

= In + pm+1a + pm+r+1c

+
p∑

k=1

(−1)k
(

p

k

)
(In + pmxr)

p−kp(m+r)kzk ,
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which implies that 

. (In + pmxr+1)
p ≡ In + pm+1a + pm+r+1c − p(In + pmxr)

p−1pm+rz

mod pm+r+2,

i.e., (In + pmxr+1)
p ≡ In + pm+1a mod pm+r+2.

By construction, we have .xr+1 −xr = −prz, and thus .b := lim
r→∞ xr is well defined, 

which ends the proof. ⨅⨆
The next two results come from [8, Theorem 5.2]. 

Corollary 2.15 Let p be a prime integer.

• If p is odd, then .Pi(𝚪1) = 𝚪i for all .i ≥ 1.
• If .p = 2, then .Pi(𝚪2) = 𝚪i+1 for all .i ≥ 1. 

Proof Set .ε = 0 if p is odd and .ε = 1 if .p = 2. We show by induction on . i ≥ 1
that .Pi(𝚪1+ε) = 𝚪i+ε. When .i = 1, this follows from the definition of . P1, so we  
can suppose that .Pi(𝚪1+ε) = 𝚪i+ε for some .i ≥ 1. Then Lemma 2.14 ensures that 
.Pi(𝚪1+ε)

p = 𝚪
p
i+ε = 𝚪i+1+ε. 

We now claim that .[Pi(𝚪1+ε), 𝚪1+ε] = [𝚪i+ε, 𝚪1+ε] ⊆ 𝚪i+1+ε. Indeed, let 
.In + pi+εa ∈ 𝚪i+ε and .In + p1+εb ∈ 𝚪1+ε. First, we have  

. (In + pi+εa)−1 = In +
∞∑

k=1

(−1)kp(i+ε)kak ,

which is congruent to .In − pi+εa mod pi+1+ε. This directly implies that 

. [In + pi+εa, In + pi+εb] ≡ In mod pi+1+ε

and hence that .[Pi(𝚪1+ε), 𝚪1+ε] ⊆ 𝚪i+1+ε. Thus we have 
.Pi(𝚪1+ε)

p[Pi(𝚪1+ε), 𝚪1+ε] ⊆ 𝚪i+1+ε = Pi(𝚪1+ε)
p, so the first inclusion must be 

an equality. As .𝚪i+1+ε is open (hence closed) in .𝚪1+ε, it follows that we actually 
have .Pi+1(𝚪1+ε) = 𝚪i+1+ε, as expected. By induction on .i ≥ 1, this ends the 
proof. ⨅⨆
Theorem 2.16 Let p be a prime integer.

• If p is odd, then . 𝚪1 is a uniform pro-p-group of dimension .n2 − 1.
• If .p = 2, then . 𝚪2 is a uniform pro-2-group of dimension .n2 − 1. 

Proof As in the proof of Corollary 2.15, we give a uniform proof by setting . ε = 0
if p is odd and .ε = 1 if .p = 2. According to Lemma 2.13, .𝚪1+ε is a pro-p-group; 
hence, Propositions 2.5 and 2.7 ensure that .𝚪1+ε is finitely generated if, and only if, 
.P2(𝚪1+ε) is open in .𝚪1+ε. But we know from Corollary 2.15 that .P2(𝚪1+ε) = 𝚪2+ε, 
which is open in .𝚪1+ε, so the finite type condition is satisfied.



12 R. Abdellatif et al.

Now, recall that Lemma 2.14 gives .𝚪p

1+ε = 𝚪2+ε, while Lemma 2.13 shows that 
.𝚪1+ε/𝚪2+ε

∼= sln(Fp) is abelian: thus .𝚪1+ε is powerful. Similarly, Corollary 2.15 
gives that .Pi(𝚪1+ε) = 𝚪i+ε, while Lemma 2.13 shows that .𝚪i/𝚪i+1 ∼= sln(Fp); 
hence, the index condition from Definition 2.10 is satisfied by .Pi(𝚪1+ε) for any 
.i ≥ 1. All this shows that .𝚪1+ε is uniform. 

Finally, we compute the dimension using Lemma 2.13, Corollary 2.15 and 
Definition 2.10 as follows. From these statements, we have that . 𝚪1+ε/Ф(𝚪1+ε) =
𝚪1+ε/P2(𝚪1+ε) = 𝚪1+ε/𝚪2+ε

∼= sln(Fp). Since .dimFp
sln(Fp) = n2 − 1, we are  

done. ⨅⨆
We end this section with a well-known result that will be used in Sect. 4. Its proof 

is as outlined in [20, Page 1271]. Let G be a finitely generated pro-p-group. For any 
. i ≥ 1, set .Hi(G) := Hi(G,Fp), and let .dp(G) := dimFp

H 1(G) be the p-rank of 
G. Note that in this setting, we have .d(G) = dp(G). 

Theorem 2.17 Any uniform group of dimension 1 or 2 has a quotient isomorphic 
to . Zp. 

Proving this theorem requires the following result of Lazard [19, V, Proposition 
(2.5.7.1)]. 

Theorem 2.18 Let G be a uniform group of positive dimension d. Then, for all 
.i ≥ 1, we have 

. Hi(G) ∼=
i∧

(H 1(G)) ,

where the exterior product is induced by the cup product. 

Proof of Theorem 2.17 Let G be a uniform pro-p-group of dimension .d ∈ {1, 2}. 
If .d = 1, then G is isomorphic to . Zp so we are done. 
If .d = 2, then Theorem 2.18 implies that . dimFp

H 2(G) = dimFp

∧2
H 1(G) =

1, which means that .H 2(G) is actually isomorphic to . Fp. Now recall that . H 1(G) =
H 1(Gab), where .Gab is a finitely generated .Zp-module; hence, it can be written as 

.Gab ≃ Zr
p ×

n∏

s=1

Z/pisZ (2.1) 

for some nonnegative integers .r, n, i1, . . . , in. Also recall that the short exact 
sequence 

. 1 −→ Fp −→ Qp/Zp
×p−→ Qp/Zp −→ 1

leads to the following long exact sequence of cohomology: 

.0 −→ H 1(Gab,Fp) −→ H 1(Gab,Qp/Zp)
×p−→ H 1(Gab,Qp/Zp)

−→ H 2(Gab,Fp) −→ . . .
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If we let K and C denote, respectively, the kernel and the cokernel of . ×p, and 
.dp(K) and .dp(C) denote their respective dimensions as .Fp-vector spaces, then what 
we said above directly shows that 

. dp(C) ≤ dimFp
(H 2(G)) and dp(K) ≥ dp(G) .

This implies that .dp(K)−dp(C) ≥ dp(G)−dimFp
(H 2(G)) = 1. But  (2.1) ensures 

that we also have .dp(K)−dp(C) = r = rkZp
Gab; thus, we obtain that . rkZp

(Gab) ≥
1, and .Gab surjects onto . Zp. ⨅⨆

3 Boston’s Proof of a Special Case of Fontaine–Mazur 
Conjecture 

In this section, we study the proof of Theorem 1.5 as given by Boston in [5, 6]. It 
heavily relies on Lazard’s extensive study of p-adic analytic Lie groups, as given 
in [19]. Recall in particular that Lazard defined the notion of p-saturated groups 
[19, IV.3.3.1] and used it to give an algebraic characterisation of p-adic analytic 
groups as topological groups containing a (topologically) finitely generated, open, 
p-saturated pro-p-group with an integer-valued filtration [19, III.3.2.2]. In [8], 
the notion of uniform pro-p-groups is used to transfer Lazard’s work in a group-
theoretic manner and to obtain an analogue characterisation of p-adic analytic 
groups for odd p, where uniform pro-p-groups play the same role as p-saturated 
pro-p-groups with integer-valued filtration do in Lazard’s statement [8, Page 81]. 
Note that in [5], Boston used Lazard’s terminology (p-saturated with integer values, 
as defined in [19, II.1.2.10 and III.3.3.1]) instead of the uniform group one. We will 
stick to the uniform group formulation in the sequel, but let us recall here the main 
statement of [5] (namely Theorem 1), as originally stated. 

Theorem 3.1 (Boston) Let K be a normal extension of prime degree .𝓁 /= p of a 
number field F such that .p ⍿ h(F ), the class number of F . Then there is no infinite 
everywhere unramified Galois pro-p-extension L of K such that L is Galois over F 
and .Gal(L/K) is p-saturated with integer values. 

This result gives some evidence for Conjecture 1.3 in a special case. Using the 
strength of fixed-point-free automorphisms, Boston generalised this result to the 
case of cyclic extensions .L/K , where .[L : K] is not necessarily a prime, see [6, 
Theorem 1]. To do this, he introduced the class of self-similar groups (as defined 
below), which contains the class of uniform groups, and he showed that, under some 
condition .H(G, n) related to fixed-point-free automorphisms (which is conjectured 
to always hold), Theorem 3.1 carries over for finite cyclic extensions of degree co-
prime to p, with ‘uniform’ replaced by ‘self-similar’. Let us define the new notions 
aforementioned.
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Definition 3.2 A pro-p-group G is self-similar when there exists a filtration by 
open, characteristic subgroups .G = G1 ⊇ G2 ⊇ · · · such that .Gi/Gi+1 is abelian 
for all .i ≥ 1 and .

⋂
Gi = {1}, together with a family of group isomorphisms 

. φi : Gi/Gi+1 → Gi+1/Gi+2

which commute with every continuous automorphism of G. 

Note that the commutativity of all quotients .Gi/Gi+1 ensures that the second 
condition must only be checked for outer automorphisms of G. Also note that 
Definition 3.2 implies that a non-trivial self-similar group is always infinite, since 
. lim
i→∞ |G/Gi | = lim

i→∞ |G/G2|i−1 = ∞. 

The next proposition justifies the relevance of this notion in Boston’s work. 

Proposition 3.3 Any uniform group is a self-similar group. 

Proof Let G be a uniform pro-p-group. For any . i ≥ 1, set .Gi := Pi , where . Pi is 
as in Definition 2.6. Then .(Gi)i≥1 is a filtration as in Definition 3.2 and the map 
.[x →׀ xp] induces group isomorphisms .ϕi : Gi−1/Gi → Gi/Gi+1 that commute 
with any continuous automorphism of G; hence, G is indeed a self-similar group. 

⨅⨆
We now make explicit the aforementioned condition .H(G, n) defined by Boston 

in [6, Definition 2]. 

Definition 3.4 Let G be a pro-p-group and n be a positive integer. We say that 
.H(G, n) holds when there is a function of n that is an upper bound for the derived 
length of every finite quotient of G that admits a fixed-point-free automorphism of 
order n. 

We already mentioned above that .H(G, n) is conjectured to hold for any pro-p-
group G and any integer .n ≥ 1. It is known for uniform groups thanks to [8, p. 52]  
and [26], as well as in few other cases (see Shalev’s work [26] for a description of 
such cases). This means in particular that for a uniform group G, there is a (uniform) 
bound on the derived length of the quotients .G/Pi for .i ≥ 1. 

We can now state the generalisation of Theorem 3.1 as proven in [6, Theorem 1]. 

Theorem 3.5 (Boston) Let F be a number field such that p does not divide the 
class number of F . Let K be a cyclic extension of F of degree .n ≥ 2 co-prime to 
p. Then there is no infinite, everywhere unramified, Galois pro-p-extension L of K 
such that L is Galois over F and .Gal(L/K) is self-similar and satisfies the property 
.H(Gal(L/K), n) as stated in Definition 3.4. 

Before proving this theorem, we recall a classical result of Schur and Zassenhaus 
[23, Chapter 4]. 

Theorem 3.6 (Schur–Zassenhaus) Let .1 → 𝚪 → G → G/𝚪 → 1 be a short 
exact sequence of profinite groups, with . 𝚪 a finitely generated pro-p-group and 
.G/𝚪 of finite order co-prime to p. Then . G contains a subgroup .Δ0 isomorphic to
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the quotient .Δ := G/𝚪, and .Δ0 is unique up to conjugation in . G. In particular, . G
is isomorphic to a semi-direct product of . Δ and . 𝚪: .G = 𝚪 ⋊ Δ0 ∼= 𝚪 ⋊ Δ. 

Proof of Theorem 3.5 To make things more comfortable to the reader, we address 
here the case of uniform groups: let us mention that the general case of self-similar 
groups can be proven along the same lines, as done in [6]. Suppose by contradiction 
that there exists an infinite, everywhere unramified, Galois pro-p-extension L of K 
such that .L/F is Galois and .G := Gal(L/K) is uniform and satisfies condition 
.H(G, n), where .n := [K : F ]. By the Schur–Zassenhaus theorem, the following 
extension splits: 

. 1 −→ G → Gal(L/F) −→ Gal(K/F) −→ 1 .

Let us pick an element . σ of .Gal(L/F) that lifts a generator of the cyclic group 
.Gal(K/F) under the splitting above. As G is a normal subgroup of .Gal(L/F), . σ
induces an action by conjugation on G. Now, since G is a uniform group, we can 
consider its filtration by the characteristic subgroups . Pi given in Definition 2.6. Each 
. Pi is preserved under the action of . σ (as it is a characteristic subgroup of G); hence, 
we get an action by conjugation of . σ on each quotient .G/Pi . 

Suppose that, for all .i ≥ 1, . σ has no non-trivial fixed point in . G/Pi . As  G 
satisfies .H(G, n), there is a uniform bound on the derived length of each of the 
quotients .G/Pi as i goes to . ∞. Such a bound cannot exist since a repeated use of 
the finiteness of class number shows that the maximal unramified pro-p-extension 
of any fixed derived length must be a finite extension. 

This shows that there exists a positive integer i such that the action of . σ on . G/Pi

has a non-trivial fixed point. Assume that i is minimal for this property and let . τ be 
a non-trivial fixed point of . σ in .G/Pi . By minimality of i, . τ must map to the identity 
element in .G/Pi−1, i.e., lives in .Pi−1/Pi , since the action of . σ is compatible with 
.Pi−1 ⊇ Pi and .G/Pi ↠ G/Pi−1. Now recall that Proposition 3.3 ensures that the 
isomorphism .φi−1 : Pi−2/Pi−1 → Pi−1/Pi is .σ -equivariant; hence, .φ−1

i−1(τ ) should 
define a non-trivial fixed point for . σ in .Pi−2/Pi−1, which contradicts the minimality 
of i if .i ≥ 3. 

If .i = 2, then our assumption is that the action by conjugation of . σ on . G/P2
has a non-trivial fixed point. By definition, we have .P2 = Gp[G,G]; hence, . G/P2
is naturally an .Fp-vector space. Said differently, it defines a representation over 
a field of characteristic p of the group .〈σ 〉 generated by . σ . As this group is, by 
definition of . σ , of cardinality n, which is co-prime to p, we can apply Maschke’s 
theorem to decompose .G/P2 as a direct sum of irreducible representations of . 〈σ 〉
over . Fp. As . τ is fixed under the action of . σ , this decomposition can be written as 
.G/P2 = Fpτ ⊕ W for some representation W of .〈σ 〉 over . Fp. 

The direct sum decomposition ensures that W also defines a subgroup and 
a quotient of .G/P2. Hence, we can define an extension M of K such that 
.Gal(M/K) = 〈τ 〉: we just let M be the fixed field (in L) of  W over K . The field 
extension .M/K is then an abelian extension of prime degree p, and we have a tower 
of fields of the form .F ⊂ K ⊂ M .
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We claim that there exists a cyclic extension of degree p over F that is contained 
in M . Indeed, .Gal(K/F) ≃ 〈σ 〉 acts on .Gal(M/K) by conjugation. Since . K/F

is assumed to be a normal extension, .Gal(M/K) must be a normal subgroup of 
.Gal(M/F). We can hence apply the Schur–Zassenhaus theorem to write . Gal(M/F)

as a semi-direct product of the following form: 

.Gal(M/F) ≃ Gal(M/K) ⋊ Gal(K/F) . (3.1) 

Since . τ is fixed under . σ , the action of . σ on .Gal(M/K) = 〈τ 〉 is trivial; hence, 
.Gal(K/F) is also normal in .Gal(M/F), which turns (3.1) into a direct product of 
the two groups appearing on the right-hand side. As .Gal(M/K) is of order p while 
.Gal(K/F) is of order n, with n and p being co-prime, we can conclude that there 
exists a Galois extension N of F of degree p (hence cyclic) in M . 

F 

K N 

M 

n p 

As .M/K is unramified, so is .N/F , which contradicts the fact that p is co-prime 
to .h(F ). In all cases (.i ≥ 3 or .i = 2), we have a contradiction: this proves that there 
exists no pro-p-extension .L/K that is everywhere unramified and has for Galois 
group a uniform group. ⨅⨆

4 Some Results on the Tame Fontaine–Mazur Conjecture 
and Its Uniform Version 

For this section, we will mostly refer to [13, 14, 22]. The goal here is to present some 
results attached to the Tame Fontaine–Mazur Conjecture (TFMC for short) and its 
Uniform version (TFMC-U for short), as well as related questions on which some 
of the authors are currently working. 

4.1 Motivation and Background 

We start by recalling some statements at the core of this section, namely the two 
versions of the Fontaine–Mazur Conjecture mentioned above, which will be proven 
to be equivalent to each other (see Sect. 4.3 below).
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As explained in Sect. 1, TFMC is an analogue of Conjecture 1.3 for finitely and 
tamely ramified p-adic representations. Since tame representations are automati-
cally potentially semi-stable (thanks to a theorem of Grothendieck [25, Appendix]), 
the Fontaine–Mazur Conjecture must imply (under some standard conjectures in 
algebraic geometry, see [18] for further details) that the following statement holds 
[10, Conjecture 5a]. 

Conjecture 4.1 (Tame Fontaine–Mazur Conjecture) Let p be a prime integer and 
K be a number field. Let S be a finite set of places of K that are all co-prime to 
p and let .KS be the maximal pro-p-extension of K that is unramified outside S. 
Set .GS := Gal(KS/K). Then, for any positive integer n, any continuous Galois 
representation .ρ : GS → GLn(Qp) has finite image. 

In Sect. 4.2, we will see that TFMC for .n = 1 comes from class field theory. When 
.n > 1, this conjecture appears so far completely out of reach in general, though 
some preliminary evidence exists, as those given in [6, 13, 28]. When .K = Q and 
.n = 2, we already pointed out in Sect. 1 that the main contributions for now are due 
to Kisin [17] and Emerton [9], both using different methods from those developed 
in this chapter. 

Recall that Theorem 2.11 claims that any finitely generated p-adic analytic 
group contains a uniform open subgroup. Moreover, Theorem 2.17 asserts that any 
uniform group of dimension 1 or 2 admits a quotient isomorphic to . Zp. We can 
hence rephrase TFMC as follows. 

Conjecture 4.2 (Tame Fontaine–Mazur Conjecture—uniform version for .(K, d)) 
Let K be a number field and . 𝚪 be a uniform pro-p-group of dimension . d > 2
(hence infinite). Then there is no finitely and tamely ramified Galois extension of K 
whose Galois group is isomorphic to . 𝚪. 

In the light of Conjectures 1.6 and 1.7 for .n = 2, we would like to highlight the 
major contribution of Hajir and Maire in [14] before we go further. Among several 
key results, they proved an analogue of Theorem 1.5 for odd p, using purely group-
theoretic and arithmetic methods such as the effect of a semi-simple cyclic action 
with fixed points on the group structure, the rigidity of uniform groups, the existence 
of Minkowski units, some arithmetic properties of Galois groups, etc. 

To precise this, we need to introduce some notation and definitions, following 
[14, 1.2]. We keep the notations of Conjecture 4.1 and we let T be an auxiliary 
finite set of places of K such that .T ∩ S = ∅. Define .KT

S as the maximal pro-
p-extension of K that is unramified outside S and in which any place in T splits 
completely, and let .GT

S := Gal(KT
S /K) be the corresponding Galois group. Note 

that .KT
S is a subfield of .KS while .GT

S is a quotient of .GS and that .K∅
S = KS . 

We can now state one of the main results of Hajir–Maire [14, Section 1.2, 
Theorem], which is also a special case of more general statements proven in [14, 
Section 2]. 

Theorem 4.3 (Hajir-Maire) Let .K/k be a quadratic extension with Galois group 
. 〈σ 〉. Assume that the odd prime p does not divide the class number of k. Suppose
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that for any finite set . Σ of places of k all co-prime to p, there is no continuous 
Galois representation .GΣ(k) ↠ 𝚪2,1. Then there exist infinitely many disjoint finite 
sets S and T of primes of K such that any place of S is prime to p, . |S| is arbitrarily 
large and 

(1) .GT
S is infinite. 

(2) .GT
S /Ф(GT

S ) has . |S| independent fixed points under the action of . σ . 

(3) There is no continuous Galois representation .ρ : GT
S ↠ 𝚪2,1 with . 

(
KT

S

)ker ρ

Galois over k. 

Note that the last assertion is actually a strengthened notion of uniformness (called 
.σ -uniformness) that gives further conditions on the action of . σ on . GT

S , see [14, 
Definition 1.1]. Let us also mention that, although it is not obvious at first sight, this 
result is actually tightly connected to the Fontaine-Mazur Conjecture for uniform 
groups of constant type for order 2 automorphisms. The reader interested in more 
details on this topic should read [14, Corollary 2.6]. 

4.2 Class Field Theory Implies Tame Fontaine-Mazur 
Conjecture for n = 1 

The goal of this section is to prove the tame Fontaine-Mazur Conjecture (Conjec-
ture 1.6) for .n = 1. This is certainly known to experts in the field, but beginners will 
find it useful to have a reference where this claim is fully proven; hence, we now give 
a detailed proof of the following statement. Note that it holds when .Qp is replaced 
by any p-adic field L, but we chose to stick to the case of p-adic representations to 
stay in the framework we used so far. 

Theorem 4.4 (TFMC for .n = 1) Let K be a number field and p be a rational 
prime. Let S be a finite set of places of K in which no place has residue 
characteristic p. Let . KS denote the maximal pro-p-extension of K that is unramified 
outside S and let .GS := Gal(KS/K) be its Galois group. Then every continuous 
group homomorphism 

. χ : GS → GL1(Qp) = Q×
p

has finite image. 

Proof Since .GS is a compact group (as it is a pro-p-group), its image under the 
continuous map . χ must be a compact subgroup of . Q×

p ; hence, it lands into . Z×
p . Also  

note that, since .Q×
p is an abelian group, . χ must factor through the abelianisation . Gab

S

of . GS , which motivates the connection with class field theory. The latter provides 
indeed a canonical group homomorphism with dense image (called Artin reciprocity 
law)
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. ρ : A×
K/K× → Gal(K/K)ab ,

which becomes an isomorphism when .A×
K/K× is replaced by its profinite com-

pletion. We are hence reduced to show that the composite group homomorphism 
.χ̃ := χ ◦ ρ : A×

K/K× → Z×
p has finite image. 

Saying that . χ is unramified outside S means that . χ is trivial on inertia groups for 
places outside S; hence, it also holds for . χ̃ . Now let  v be a place in S. We need to 
distinguish between the finite and Archimedean cases as follows. 

If v is a finite place, then the inertia group at v corresponds to the subgroup of 
.A×

K that is trivial at all places outside of v and equal to the subgroup .O×
Kv

of . K×
v

at v. As all places in S are co-prime to p, the group of 1-units in .O×
Kv

is a pro-.𝓁-
group for some rational prime .𝓁 /= p. But the 1-units of .Z×

p form a pro-p-group, 
and any continuous group homomorphism from a pro-.𝓁-group into a pro-p-group is 
necessarily trivial: the image by . χ̃ of .O×

Kv
must hence be finite. Letting .S∞ denote 

the subset of finite places in S, we have proven that .χ̃

(
∏

v∈S∞
O×

Kv

)

is finite. 

Let us now study what happens on .
∏

v∈S∞
𝜛Z

v , where .𝜛v denotes a uniformising 

element of . Ov . First note that the product is actually a restricted product, which 
means only finitely many places are such that .𝜛v has a non-trivial image in . Z×

p . 

Also recall that any element .x = (𝜛
ev
v )v∈S∞ of .

∏

v∈S∞
𝜛Z

v defines a fractional ideal 

.ax =
∏

v

pev
v of K , where . pv denotes the prime ideal of .OK that corresponds to v. 

(This is well defined as only finitely many . ev can be non-zero.) Let h denote the 
class number of K: then . ah

x is a non-zero principal ideal of .OK (by the definition of 
h), So .x mod K× must have finite order dividing h. This shows that the quotient 
of .

∏

v∈S∞
𝜛Z

v by the diagonal copy of .K× (in .A×
K/K×) has finite exponent dividing 

h; hence, its image by . χ̃ must satisfy the same condition in . Q×
p . As .Q×

p contains 
finitely many elements of order dividing h, we can conclude that this image by . χ̃ is 
finite. 

Finally, assume that v is an Archimedean place in S. Since .Z×
p is a totally 

disconnected space, the identity component of .K×
v (which is either .R>0 if v is real, 

or .C× is v is complex) has trivial image under the continuous group homomorphism 
. χ̃ . Letting .S∞ denote the set of Archimedean places in S, we are left to see that 
.

∏

v∈S∞ real

R×/R>0 has finite image under . χ̃ , which is straightforward as S and 

.R×/R>0 ≃ Z/2Z are finite sets, so the proof is complete. ⨅⨆


