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This coloring book is for my late father Yuri Soifer,
a great painter, who introduced colors into my life.



To Paint a Bird

First paint a cage
With wide open door,
Then paint something
Beautiful and simple,
Something very pleasant
And much needed
For the bird;
Then lean the canvas on a tree
In a garden or an orchard or a forest –
And hide behind the tree,
Do not talk
Do not move. . .
Sometimes the bird comes quickly
But sometimes she needs years to decide
Do not give up,
Wait,
Wait, if need be, for years,
The length of waiting –
Be it short or long –
Does not carry any significance
For the success of your painting
When the bird comes –
If only she ever comes –
Keep deep silence,
Wait,
So that the bird flies in the cage,
And when she is in the cage,
Quietly lock the door with the brush,
And without touching a single feather
Carefully wipe out the cage.
Then paint a tree,
And choose the best branch for the bird
Paint green leaves



Freshness of the wind and dust of the sun,
Paint the noise of animals in the grass
In the heat of summer
And wait for the bird to sing
If the bird does not sing –
This is a bad omen
It means that your picture is of no use,
But if she sings –
This is a good sign,
A symbol that you can be
Proud of and sign,
So you very gently
Pull out one of the feathers of the bird
And you write your name
In a corner of the picture.

by Jacques Prévert1

1 [Pre]. Translation by Alexander Soifer and Maurice Stark.



Foreword

This is a unique type of book; at least, I have never encountered a book of this kind.
The best description of it I can give is that it is a mystery novel, developing on
three levels, and imbued with both educational and philosophical/moral issues. If
this summary description does not help understanding the particular character and
allure of the book, possibly a more detailed explanation will be found useful.

One of the primary goals of the author is to interest readers—in particular, young
mathematicians or possibly pre-mathematicians—in the fascinating world of elegant
and easily understandable problems, for which no particular mathematical knowl-
edge is necessary, but which are very far from being easily solved. In fact, the
prototype of such problems is the following: If each point of the plane is to be
given a color, how many colors do we need if every two points at unit distance
are to receive distinct colors? More than half a century ago it was established that
the least number of colors needed for such a coloring is either 4, or 5, or 6 or 7.
Well, which is it? Despite efforts by a legion of very bright people—many of whom
developed whole branches of mathematics and solved problems that seemed much
harder—not a single advance towards the answer has been made. This mystery, and
scores of other similarly simple questions, form one level of mysteries explored. In
doing this, the author presents a whole lot of attractive results in an engaging way,
and with increasing level of depth.

The quest for precision in the statement of the problems and the results and their
proofs leads the author to challenge much of the prevailing historical “knowledge.”
Going to the original publications, and drawing in many cases on witnesses and
on archival and otherwise unpublished sources, Soifer uncovers many mysteries. In
most cases, dogged perseverance enables him to discover the truth. All this is pre-
sented as following in a natural development from the mathematics to the history of
the problem or result, and from there to the interest in the people who produced the
mathematics. For many of the persons involved this results in information not avail-
able from any other source; in lots of the cases, the available publications present an
inaccurate (or at least incomplete) data. The author is very careful in documenting
his claims by specific references, by citing correspondence between the principals
involved, and by accounts by witnesses.

One of these developments leads Soifer to examine in great detail the life and
actions of one of the great mathematicians of the twentieth century, Bartel Leendert
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x Foreword

van der Waerden. Although Dutch, van der Waerden spent the years from 1931 to
1945 in the Nazi Germany. This, and some of van der Waerden’s activities during
that time, became very controversial after Word War II, and led Soifer to exam-
ine the moral and ethical questions relevant to the life of a scientist in a criminal
dictatorship.

The diligence with which Soifer pursues his quests for information is way beyond
exemplary. He reports exchanges with I am sure hundreds of people, via mail,
phone, email, visits – all dated and documented. The educational aspects that begin
with matters any middle-school student can understand, develop gradually into areas
of most recent research, involving not only combinatorics but also algebra, topology,
questions of foundations of mathematics, and more.

I found it hard to stop reading before I finished (in two days) the whole text.
Soifer engages the reader’s attention not only mathematically, but emotionally and
esthetically. May you enjoy the book as much as I did!

University of Washington Branko Grünbaum



Foreword

Alexander Soifer’s latest book is a fully fledged adult specimen of a new species,
a work of literature in which fascinating elementary problems and developments
concerning colorings in arithmetic or geometric settings are fluently presented and
interwoven with a detailed and scholarly history of these problems and develop-
ments.

This history, mostly from the twentieth century, is part memoir, for Professor
Soifer was personally acquainted with some of the principals of the story (the great
Paul Erdős, for instance), became acquainted with others over the 18 year inter-
val during which the book was written (Dima Raiskii, for instance, whose story is
particularly poignant), and created himself some of the mathematics of which he
writes.

Anecdotes, personal communications, and biography make for a good read, and
the readability in “Mathematical Coloring Book” is not confined to the accounts
of events that transpired during the author’s lifetime. The most important and fas-
cinating parts of the book, in my humble opinion, are Parts IV, VI, and VII, in
which is illuminated the progress along the intellectual strand that originated with
the Four-Color Conjecture and runs through Ramsey’s Theorem via Schur, Baudet,
and Van der Waerden right to the present day, via Erdős and numbers of others,
including Soifer. Not only is this account fascinating, it is indispensable: it can be
found nowhere else.

The reportage is skillful and the scholarship is impressive – this is what Seymour
Hersh might have written, had he been a very good mathematician curious to the
point of obsession with the history of these coloring problems.

The unusual combination of abilities and interests of the author make the species
of which this book is the sole member automatically endangered. But in the worlds
of literature, mathematics and literature about mathematics, unicorns can have off-
spring, even if the offspring are not exactly unicorns. I think of earlier books of
the same family as “Mathematical Coloring Book” – G. H. Hardy’s “A Mathemati-
cian’s Apology”, James R. Newman’s “The World of Mathematics”, Courant and
Robbins’ “What Is Mathematics?”, Paul Halmos’ “I Want to Be a Mathematician:
an Automathography”, or the books on Erdős that appeared soon after his death – all
of them related at least distantly to “Mathematical Coloring Book” by virtue of the
attempt to blend (whether successfully or not is open to debate) mathematics with
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xii Foreword

history or personal memoir, and it seems to me that, whatever the merits of those
works, they have all affected how mathematics is viewed and written about. And this
will be a large part of the legacy of “Mathematical Coloring Book” – besides pro-
viding inspiration and plenty of mathematics to work on to young mathematicians,
a priceless source to historians, and entertainment to those who are curious about
the activities of mathematicians, “Mathematical Coloring Book” will (we can hope)
have a great and salutary influence on all writing on mathematics in the future.

Auburn University Peter D. Johnson



Foreword

What is the minimum number of colors required to color the points of the Euclidean
plane in such a way that no two points that are one unit apart receive the same color?
Mathematical Coloring Book describes the odyssey of Alexander Soifer and fellow
mathematicians as they have attempted to answer this question and others involving
the idea of partitioning (coloring) sets.

Among other things, the book provides an up-to-date summary of our knowledge
of the most significant of these problems. But it does much more than that. It gives
a compelling and often highly personal account of discoveries that have shaped that
knowledge.

Soifer’s writing brings the mathematical players into full view, and he paints their
lives and achievements vividly and in detail, often against the backdrop of world
events at the time. His treatment of the intellectual history of coloring problems is
captivating.

Memphis State University Cecil Rousseau
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Greetings to the Reader

I bring here all: what have I lived thru,
And that what keeps my soul alive,
My rectitude and aspirations,
And what have seen my own eyes.

– Boris Pasternak, The Waves, 19312

When the form is realized, it is here to live its own
life.

– Pablo Picasso

Pasternak’s epigraph describes precisely my work on this book—I gave it all of
myself, without reservation. August Renoir believed that just as many people read
one book all their lives (the Bible, the Koran, etc.), so can he paint all his life one
painting. Likewise I could write one book all my life—in fact, I almost have, for I
have been working on this book for 18 years.

It is unfair, however, to keep the book all to myself—many colleagues have been
waiting for the birth of this book. In fact, it has been cited and even reviewed many
years ago. The first mention of it appears already in 1991 on page 336 of the book
by Victor Klee and Stan Wagon [KW], where the authors recommend the book for
“survey of later developments of the chromatic number of the plane problem.” On
page 150 of their 1995 book [JT], Tommy R. Jensen and Bjarne Toft announced that
“a comprehensive survey [of the chromatic number of the plane problem]. . .will be
given by Soifer [to appear].” Once in the 1990s my son Mark told me that he saw
my Mathematical Coloring Book available for $30 for special order at the Borders
bookstore. I offered to buy a copy!

I started writing this book when copies of my How Does One Cut a Triangle?
[Soi1] arrived from the printer, in early 1990. I told my father Yuri Soifer then

2 [Pas], Translated for this book by Ilya Hoffman. The original Russian text is:
Здесь будет все: пережитое,
И то, чем я еще живу,
Мои стремленья и устои,
И виденное наяву .

xxvi
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that this book would be dedicated to him, and so it is. This coloring book is for
my late father, a great painter and man. Yuri lived with his sketchpad and drawing
utensils in his pocket, constantly and intensely looking at people and making sharp
momentary sketches. He was a great artist and my lifelong example of searching for
and discovering life around him, and creating art that challenged “real” life herself.
Yuri never taught me his trade, but during our numerous joint tours of art in muse-
ums and exhibitions, he pointed out beauties that only true artists could notice: a
dream of harvest in Van Gogh’s “Sower,” Rodin’s distortions in a search of greater
expressiveness. These timeless lessons allowed me to become a student of beauty,
and discover subtleties in paintings, sculptures, and movies throughout my life.

This book includes not just mathematics, but also the process of investigation,
trains of mathematical thought, and where possible, psychology of mathematical
invention. The book does not just include history and prehistory of Ramsey The-
ory and related fields, but also conveys the process of historical investigation—the
kitchen of historical research if you will. It has captivated me, and made me feel
like a Sherlock Holmes—I hope my reader will enjoy this sense of suspense and
discovery as much as I have.

The epigraph for my book is an English translation of Jacques Prévert’s genius
and concise portrayal of creative process—I know of no better. I translated it with
the help of my friend Maurice Starck from Nouvelle Caledonie, the island in the
Pacific Ocean to which no planes fly from America, but to paraphrase Rudyard
Kipling, I’d like to roll to Nouvelle Caledonie some day before I’m old!

This book is dedicated to problems involving colored objects, and results about
the existence of certain exciting and unexpected properties that occur regardless
of how these objects (points in the plane, space, integers, real numbers, subsets,
etc.) are colored. In mathematics, these results comprise Ramsey Theory, a flour-
ishing area of mathematics, with a motto that can be formulated as follows: any
coloring of a large enough system contains a monochromatic subsystem of given in
advance structure, or simply put, absolute chaos is absolutely impossible. Ramsey
Theory thus touches on many fields of mathematics, such as combinatorics, geom-
etry, number theory, and addresses new problems, often on the frontier of two or
more traditional mathematical fields. The book will also include some problems that
can be solved by inventing coloring, and results that prove the existence of certain
colorings, most famous of the latter being, of course, The Four-Color Theorem.

Most books in the field present mathematics as a flower, dried out between pages
of an old dusty volume, so dry that the colors are faded and only theorem–proof
narrative survives. Along with my previous books, Mathematical Coloring Book
will strive to become an account of a live mathematics. I hope the book will present
mathematics as a human endeavor: the reader should expect to find in it not only
results, but also portraits of their creators; not only mathematical facts, but also
open problems; not only new mathematical research, but also new historical inves-
tigations; not only mathematical aspirations, but also moral dilemmas of the times
between and during the two horrific World Wars of the twentieth century. In my
view, mathematics is done by human beings, and knowing their lives and cultures
enriches our understanding of mathematics as a product of human activity, rather
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than an abstraction which exists separately from us and comes to us exclusively as a
catalog of theorems and formulas. Indeed, new facts and artifacts will be presented
that are related to the history of the Chromatic Number of the Plane problem,
the early history of Ramsey Theory, the lives of Issai Schur, Pierre Joseph Henry
Baudet, and Bartel Leendert van der Waerden.

I hope you will join me on a journey you will never forget, a journey full of
passion, where mathematics and history are researched in the process of solving
mysteries more exciting than fiction, precisely because those are mysteries of real
affairs of human history. Can mathematics be received by all senses, like a vibrant
flower, indeed, like life itself? One way to find out is to experience this book.

While much of the book is dedicated to results of Ramsey Theory, I did not wish
to call my book “Introduction to Ramsey Theory,” for such a title would immediately
lose young talented readers’ interest. Somehow, the playfulness of Mathematical
Coloring Book appealed to me from the start, even though I was asked on occasion
whether 5-year olds would be able to color in my book between its lines. To be a
bit more serious, and on advice of Vickie Kern of the Princeton University Press,
I created a subtitle Mathematics of Coloring and the Colorful Life of Its Creators.
This book is not a “dullster” of traditional theorem–proof–theorem–proof kind. It
explores the birth of ideas and searches for its creators. I discovered very quickly
that in conveying “colorful lives of creators,” I could not always rely on encyclo-
pedias and biographical articles, but had to conduct historical investigations on my
own. It was a hard work to research some of the lives, especially that of B. L. van
der Waerden, which alone took 12 years of archival research and thinking over the
assembled evidence. Fortunately this produced a satisfying result: we have in this
book some definitive biographies, of Bartel L. van der Waerden, Pierre Joseph Henry
Baudet, Issai Schur, autobiography of Hillel Furstenberg, and others.

I always attempt to understand who made a discovery and how it was made.
Accordingly, this book tries to explore biographies of the discoverers and the psy-
chology of their creative processes. Every stone has been turned: my information
comes from numerous archives in Germany, the Netherlands, Switzerland, Ireland,
England, South Africa, the United States; invaluable and irreplaceable now inter-
views conducted with eyewitnesses; discussions held with creators. Cited bibliog-
raphy alone includes over 800 items—I have read thousands of publications in the
process of writing this book. I was inspired by people I have known personally, such
as Paul Erdős, James W. Fernandez, Harold W. Kuhn, and many others, as well as
people I have not personally met, such as Boris Pasternak, Pablo Picasso, Herbert
Read—to name a few of the many influences—or D. A. Smith, who in the discussion
after Alfred Brauer’s talk [Bra2, p. 36], wrote:

Mathematical history is a sadly neglected subject. Most of this history belongs to the
twentieth century, and a good deal of it in the memories of mathematicians still living.
The younger generation of mathematicians has been trained to consider the product,
mathematics, as the most important thing, and to think of the people who produced
it only as names attached to theorems. This frequently makes for a rather dry subject
matter.
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Milan Kundera, in his The Curtain: An Essay in Seven Parts [Kun], said about a
novel what is true about mathematics as well:

A novelist talking about the art of the novel is not a professor giving a discourse from
his podium. Imagine him rather as a painter welcoming you into his studio, where you
are surrounded by his canvases staring at you from where they lean against the walls.
He will talk about himself, but even more about other people, about novels of theirs
that he loves and that have a secret presence in his own work. According to his criteria
of values, he will again trace out for you the whole past of the novel’s history, and in
so doing will give you some sense of his own poetics of the novel.

I was also inspired by the early readers of the book, and their feedback. Stanisław
P. Radziszowski, after reviewing Chapter 27, e-mailed me on May 2, 2007:

I am very anxious to read the whole book! You are doing great service to the commu-
nity by taking care of the past, so the things are better understood in the future.

In his unpublished letter, Ernest Hemingway in a sense defended my writing of
this book for a very long time:3

When I make country, or a city, or a river in a novel it is slow work because you have
to always make it, then it is alive. But nobody makes anything quickly nor easily if it
is any good.

Branko Grünbaum, upon reading the entire manuscript, wrote in the February 28,
2008 e-mail:

Somehow it seems that 18 years would be too short a time to dig up all this information!

This book will not strike the reader by completeness or most general results.
Instead, it would give young active high school and college mathematicians an
accessible introduction to the beautiful ideas of mathematics of coloring. Mathe-
matics professionals, who may believe they know everything, would be pleasantly
surprised by the unpublished or unnoticed mathematical gems. I hope young and not
so young mathematicians alike will welcome an opportunity to try their hand—or
mind—on numerous open problems, all easily understood and not at all easy to
solve.

If the interest of my colleagues and friends at Princeton-Math is any indica-
tion, every intelligent reader would welcome an engagement in solving histori-
cal mysteries, especially those from the times of the Third Reich, World War II,
and de-Nazification of Europe. Historians of mathematics would find a lot of new
information and old errors corrected for the first time. And everyone will experience
seeing, for the first time, faces they have not seen before in print: rare photographs
of the creators of mathematics presented herein, from Francis Guthrie to Issai Schur
as a young man, from young Edward Nelson to Paul O’Donnell, from Pierre Joseph
Henry Baudet to Bartel L. van der Waerden and his family, and documents, such as

3 From the unpublished 1937 letter. Quoted from New York Times, February 10, 2008, p. AR 8.
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the one where Adolph Hitler commits a “micromanagement” of firing the Jew, Issai
Schur, from his job of professor at the University of Berlin.

This is a freely flowing book, free from a straight jacket of a typical textbook, yet
useable as a text for a host of various courses, two of which I have given to college
seniors and graduate students at the University of Colorado: What is Mathematics?,
and Mathematical Coloring Course, both presenting a “laboratory of a mathemati-
cian,” a place where students learn mathematics and its history by researching them,
and in the process realizing what mathematics is and what mathematicians do.

In writing this book, I tried to live up to the high standard, set by one of my
heroes, the great Danish film director Carl Theodore Dreyer [Dre]:

There is a certain resemblance between a work of art and a person. Just as one can talk
about a person’s soul, one can also talk about the work or art’s soul, its personality.
The soul is shown through the style, which is the artist’s way of giving expression of
his perception of the material. The style is important in attaching inspiration to artistic
form. Through the style, the artist molds the many details that make it whole. Through
style, he gets others to see the material through his eyes. . . Through the style he infuses
the work with a soul – and that is what makes it art.

Mathematics is an art. It is a poor man’s art: Nothing is needed to conceive it,
and only paper and pencil to convey.

This long work has given me so very much, in Aleksandr Pushkin’s words, “the
heavenly, and inspiration, and life, and tears, and love.”4 I have been raising this
book for 18 years, and over the past couple of years, I felt as if the book herself was
dictating her composition and content to me, while I merely served as an obedient
scribe. At 18, my book is now an adult, and deserves to separate from me to live
her own life. As Picasso put it, “When the form is realized, it is here to live its own
life.” Farewell, my child, let the world love you as I have and always will!

4 In the original Russian it sounds much better:
“И божество, и вдохновенье, 
  И  жизнь, и слезы, и любовь ”.
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1
A Story of Colored Polygons and Arithmetic
Progressions

‘Have you guessed the riddle yet?’ the Hatter said,
turning to Alice again.
‘No, I give it up,’ Alice replied. ‘What’s the answer?’
‘I haven’t the slightest idea,’ said the Hatter.
‘Nor I,’ said the March Hare.

– Lewis Carroll, A Mad Tea-Party
Alice’s Adventures in Wonderland

1.1 The Story of Creation

I recall April of 1970. The thirty judges of the Fourth Soviet Union National Math-
ematical Olympiad, of whom I was one, stayed at a fabulous white castle, half way
between the cities of Simferopol and Alushta, nestled in the sunny hills of Crimea,
surrounded by the Black Sea. This castle should be familiar to movie buffs: in 1934
the Russian classic film Vesyolye Rebyata (Jolly Fellows) was photographed here by
Sergei Eisenstein’s long-term assistant, director Grigori Aleksandrov. The problems
had been selected and sent to printers. The Olympiad was to take place a day later,
when something shocking occurred.

A mistake was found in the only solution the judges had of the problem created
by Nikolai (Kolya) B. Vasiliev, the Vice-Chair of this Olympiad and a fine problem
creator, head of the problems section of the journal Kvant from its inception in 1970
to the day of his untimely passing. What should we do? This question virtually
monopolized our lives.

We could just cross this problem out on each of the six hundred printed problem
sheets. In addition, we could select a replacement problem, but we would have to
write it in chalk by hand in every examination room, since there would be no time to
print it. Both options were rather embarrassing, desperate resolutions of the incident
for the Jury of the National Olympiad, chaired by the great mathematician Andrej
N. Kolmogorov, who was to arrive the following day. The best resolution, surely,
would have been to solve the problem, especially because its statement was quite
beautiful, and we had no counter example to it either.
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