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Preface 

Nonlinear functional analysis includes the essential and comprehensive field of fixed-
point theory, which is used as a method to solve numerous nonlinear problems in the 
science and engineering. Since a couple of years ago, experts in fixed-point theory 
have been focusing on how to apply their theories to a variety of physical-related 
engineering challenges. 

Fixed-point theory has entered a new phase that is inextricably linked to measure-
ments, abstract language, space analysis, and the mining of empirical studies in 
engineering. By incorporating the metric fixed-point theory into a plethora of litera-
ture from the fields of computational engineering, quantum dynamics, and medical 
research, this was frequently maintained. In the analysis of metric spaces, fixed-
point theory has briefly been mentioned as independent literature while referencing 
numerous other mathematical groups. The definition and generalization of the various 
metric spaces and the concept of contractions are common applications of metric 
fixed-point theory. The expected outcome of these extensions is also a deeper under-
standing of the geometric characteristics of generalized metric spaces, set theory, 
and inexpensive mappings. 

This book is intended for scholars, doctoral scholars, and educators intrigued by 
fixed-point theory. The book will also benefit the mathematical community, profes-
sionals, and scientists. Learners of this book will need at least a basic understanding 
of functional analysis and topology. This book contains chapters written by several 
notable modern academics in fixed-point theory from around the world. Readers will 
discover various valuable tools and approaches to help them advance their knowl-
edge and abilities in modern fixed-point theory. The book includes adequate theory 
and applications of fixed points in various fields. The book provides an overview 
of existing knowledge and recent cutting-edge advancement by offering fresh novel 
contributions by world-renowned experts of fixed-point theory. 

Following are salient features of the book:

• Provides a comprehensive and up-to-date assessment of the most recent research 
in fixed-point theory, including major breakthroughs and applications within the 
environment of various types of generalized metric spaces

v
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• Offers a unique combination of fixed-point theorems and real-world applica-
tions that benefits students and researchers interested in developing an integrated 
research methodology

• Emphasizes the mathematical modeling of nonlinear situation, utilizing the 
advantages of technology as appropriate

• Takes a fresh look at fixed-point theory, highlighting linkages and applications to 
fields as diverse as optimization, graph theory, and differential equations

• Stresses on the practical applications of fixed-point theory in diverse fields of 
research and engineering, making it ideal for scientists researching in engineering 
sciences

• Offers thorough descriptions of numerical methods and algorithms for addressing 
fixed-point problems, making it a useful resource for scholars and practitioners

• Offers a variety of examples meant to assist readers deepen their comprehension 
of the content and apply it to new challenges

• Emphasizes recent advances in fixed-point theory and identifies significant open 
problems, making it a valuable resource for academics wishing to contribute to 
this dynamic area of research 

Chapter Organization 

This book is organized into 17 chapters. Chapter “A Careful Retrospection of Metric 
Spaces and Contraction Mappings with Computer Simulation” gives a comprehen-
sive outlook of the famous results based on metric fixed-point theory. Illustrative 
non-trivial examples, along with graphical representation, are enunciated to under-
stand the nature of inequalities of the historical results in the context of metric 
spaces. 

Chapter “Fixed Point Theory for Multi-valued Feng–Liu Operators in Vector– 
Valued Metric Spaces ” extends Feng and Liu’s fixed-point result for the case of a set 
X equipped with a vector-valued metric in the sense of Perov. The results describe 
the existence, localization, data dependency, and stability features of a fixed-point 
inclusion with a generalized multi-valued Feng–Liu operator. An extension of the 
Feng–Liu–Subrahmanyan type of multi-valued contractions is also examined. 

In Chapter “Algorithms and Applications for Split Equality Problem with Related 
Problems ”, the authors propose a novel study on “Algorithms and applications for 
split equality problem with related problems.” The chapter’s goal is to offer a variety 
of novel and well-known numerical strategies for addressing the split feasibility 
problem, the split equality problem, and other related problems, such as projection, 
inertial techniques, relaxed techniques, and so on. The algorithms’ weak (strong) 
convergence is presented, and the linear convergence of the methods is emphasized. 
An algorithm is enunciated as an application to tackle signal processing and picture 
recovery problems. 

Chapter “Some Fixed Point Theorems of Generalized Contractions with Appli-
cation to Boundary Value Problem” investigates the development of an exclusive
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rational type generalized contraction involving three self-maps. Furthermore, several 
fixed-point findings matching the requirements of a(η,π ,θ )-generalized rational 
contraction are proposed within the setting of complete metric spaces with a partial 
order. These findings not only generalize but expand numerous well-known findings 
from previous research. 

Chapter “Fixed Points of Coset and Orbit Space Actions: An Application of Semi-
hypergroup Theory” is devoted to presenting certain families of left/right coset, 
double coset, and orbit spaces that arise from the category of locally compact groups. 
The study is concerned with looking at their behavior on compact subsets of generic 
locally convex spaces and specific Banach spaces. Utilizing recent discoveries in 
abstract harmonic analysis and the theory of semihypergroups, in particular, an 
overview of possible characterizations for the existence of common fixed points 
of such actions in terms of the amenability of the underlying spaces is presented. 

A counterpart of Meir–Keeler’s fixed-point result in suprametric space is proved in 
Chapter “Strange Chaotic Attractors and Existence Results via Nonlinear Fractional 
Order Systems and Fixed Points”, and an application to strange attractors in the 
context of the Atangana–Baleanu derivative is examined. 

The existence findings for the n-product of fractional nonlinear equations in Orlicz 
spaces are studied in Chapter “On Lφ-Solutions for n-Product of Fractional Inte-
gral Operators”. A wide range of boundedness and continuity assumptions of the 
researched operators in Orlicz space are explored by using different growth condi-
tions. Also, distinct existence theorems on the product of different n-Orlicz spaces 
related to the generating N-functions are investigated. The main tools for achieving 
the results are the fixed-point hypothesis and the measure of noncompactness. 

In the context of complete b-metric spaces, Chapter “New Fixed Point Results 
of Multivalued Contraction Mappings in b-Metric Spaces” examines recent find-
ings for generalized contractive type multi-valued mappings. The results add to and 
enhance certain recent breakthroughs announced by numerous others with fewer 
assumptions. 

In the framework of controlled type metric spaces, Chapter “Analysis of Fixed 
Points in Controlled Metric Type Spaces with Application” explores the presence 
and uniqueness of fixed points using the Ciric-type and Reich-type contractions. 
The work intends to offer a more thorough knowledge of fixed-point findings by 
including graph theory in these contraction mappings, a contemporary technique in 
the current state of the art. The outcomes provided in this chapter demonstrate the 
versatility of contraction mappings in nonlinear differential equations and their value 
in mathematics. 

New classes of (G,α,φ,)-contractions are suggested in Chapter “A Study of Fixed 
Point Results in G-Metric Space via New Contractions with Applications”, and 
appropriate FP theorems are demonstrated. The uniqueness of these new contrac-
tions resides in the fact that, depending on the selection of parameters, they may 
be specialized in a variety of ways. In-depth comparative examples are produced to 
verify the presumptions behind the conclusions. In addition, the existence conditions 
for solving a boundary value issue utilizing one of the findings are investigated.
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Chapter “A Note on the Existence of Fixed Points for Rational Type Contraction 
Map on Orthogonal Metric Spaces” focuses on instigating the existence of fixed 
points for rational type contraction maps on orthogonal metric space, a more general 
metric space in modern literature. Some examples from this research substantiate the 
presented outcomes. 

Chapter “Fixed Point Results in Graphical Convex Extended b-metric Spaces” 
provides a historical overview of F-contractions. The chapter presents a historical 
overview of the new fixed-point approaches for single and multi-valued mappings in 
various spaces. Furthermore, certain enhancements, notably the additional conditions 
applied to the function F of the contractive condition, are investigated. Researchers 
who are interested in F-contractions will find this chapter informative. 

Chapter “Existence and Computational Approximation of Fixed Points of Gener-
alized Multivalued Mappings in Banach Space” aims to define graphical convex 
extended b-metric space and examine certain vital aspects of the convex structure. 
Iterative sequences G-contraction, T-Mann, and T-Agrawal have been addressed in 
the context of the instigated space. These iterative methods are used to investigate 
the existence of strong fixed-point theorems. Combining the convex structure of 
metric spaces with graphs makes the article innovative and appealing to academics 
interested in locating fixed points inside the graph structure. 

Chapter “Common Fixed Point Results in Soft b-Metric Spaces with Application” 
focuses on the presence and computational approximation of fixed points of general-
ized multi-valued mappings in Banach spaces. This chapter introduces multi-valued 
generalized-nonexpansive mappings and associated results for fixed-point existence 
and approximation. Furthermore, the Picard–Thakur hybrid iterative scheme conver-
gence findings are reviewed and contrasted. It is demonstrated mathematically and 
visually that the Picard–Thakur hybrid iterative strategy converges to the fixed-point 
quicker than other schemes presented in the literature. The final part provides an 
application to integral equations to validate the offered conclusions. 

Chapter “Revisiting Darbo’s Fixed Point Theory with Application to a Class 
of Fractional Integral Equations” discusses the novel fixed-point findings in soft b-
metric spaces and an application to Volterra integral inclusions. The results of the 
study can be expanded to other areas in the future, and new results can be drawn 
from them. 

In Chapter “New Topologies on Partial Metric Spaces and M-Metric Spaces”, 
new definitions for partial metric spaces and M-metric spaces are presented. Various 
topological features of the aforementioned metric spaces are addressed. For partial 
metric spaces and M-metric spaces, the new topology is demonstrated to be weaker 
than the previously established topology. 

Chapter “Some Recent Fixed Point Results in Sb−Metric Spaces and Applica-
tions” defines a generalized proportional (k,ρ)-fractional integral operator with a 
nonsingular kernel. It is a more generalized version of previously known fractional 
integral operators such as the Riemann–Liouville fractional integral operator, the 
Hadamard fractional integral operator, the Katugampola fractional integral operator, 
etc. Using Darbo’s fixed-point theorem, it is proved that there is a solution to the 
generalized proportional (k,ρ)-fractional integral equation.



Preface ix

Finally, a relevant example is built to validate the acquired findings. 
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1 An Introduction 

Fixed-point theory is the fascinating emerging field of the twenty-first century charac-
terized by a remarkable mixture of nonlinear functional analysis, nonlinear operator 
theory, topology, mathematical modeling, and applications. It is one of the major 
research areas in nonlinear analysis. Because of the fact that in many real-world 
problems, the fixed-point theory is the fundamental mathematical tool employed 
to ascertain the existence of solutions to problems that arise naturally in appli-
cations. As a consequence, the fixed-point theory is an essential area of study in 
pure and applied mathematics, and it is a blooming area of research. Its scope of 
inquiries not only encompasses the geometric theory of infinite dimensional func-
tion spaces and operator-theoretic real-world problems but also widens the range of 
interdisciplinary fields ranging from engineering to space science, hydromechanics 
to astrophysics, chemistry to biology, theoretical mechanics to biomechanics, and 
economics to stochastic game theory. The deep-rooted concepts and techniques pro-
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vide the tools for developing more realistic and accurate models for a variety of 
phenomena encountered in various applied fields. 

Fixed-point theory sheds light on the methodologies for finding a solution to 
nonlinear equations of the type .J x = x , where .J is a self-mapping defined on a 
subset of a metric space, a normed linear space, a topological vector space, or some 
suitable space. 

In the subsequent part, .N, R
+, R denote the set of natural numbers, the set of 

all non-negative real numbers and the set of real numbers, respectively. 

Definition 1 (Fixed Point) Suppose . J is a mapping that takes a set . Y into itself. A 
fixed point of . J is just a point .x ∈ Y with .J (x) = x . 

A map  .J can have many fixed points (example: the identity map on a set with 
many elements) or no fixed points (example: the mapping of “translation-by-one” 
.x → x + 1 on the real line). The fixed points of a function, mapping a real interval 
into itself, can be visualized as the .x-coordinates of the points at which function’s 
graph intersects the line.y = x . We enunciate this idea by plotting the graph for some 
nontrivial functions .Ji , i = 1, 2 : R → R: 

. (i) J1(x) =
/
log(sin x

1
4 + ex+6) + sin( 12 + x)

. (i i) J2(x) = e
2x+3
1+x2

log(x3+2)

We determine the fixed points of functions .J1(x) and .J2(x) by visualizing them on 
graph as follows (Figs. 1 and 2): 

Definition 2 (Common Fixed Point) Let  . f and . g be two self-mappings on a space 
. Y . We say that .x ∈ Y is a point of coincidence of . f and . g if . f x = gx, and say that 
it is a common fixed point of . f and . g if . f x = gx = x .

Fig. 1 Fixed point of.J1(x) =
/
log(sin x

1
4 + ex+6) + sin( 12 + x)
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Fig. 2 Fixed point of. J2(x) = e
2x+3
1+x2

log(x3+2)

Fig. 3 Common fixed point of mappings f (x) and  g(x) 

Example 1 Let . f (x) = esin(x−5) − 1.22 and .g(x) = cosh(x−0.58)
eln(x−0.58) − 1.9 for all . x ∈

[0,∞). Then.x = 0.95518 is the common fixed point of mappings . f and. g (Fig. 3). 

Some very important examples of fixed points, we generally go through in our study, 
are as follows: 

Example 2 (Initial-Value Problems) From a continuous function .g : R
2 → R and 

a point .(x0, y0) ∈ R
2, we can generate an initial-value problem 

.y' = g(x, y), y(x0) = y0. (1) 

Geometrically, initial-value problem (1) demands a differentiable function . y whose 
graph is a smooth “solution curve” in the plane possessing the following properties:
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(i) At each of its points .(x, y) the curve has slope .g(x, y), 
(ii) The curve encompasses the point .(x0, y0). 
As a first attempt to solve the differential equation .y' = g(x, y), we might try inte-
grating both sides with respect to . x . This results in the following integral equation: 

.y(x) = y0 +
{ x

x0

g(t, y(t))dt, (2) 

which is implied by initial-value problem (1) in the sense that each function y sat-
isfying (1) for some interval of . x 's containing . x0, also satisfies integral Eq. (2) for  
that same interval. To make a concern with fixed points, let .C(R) denote the vector 
space of continuous, real-valued functions on. R, and consider the integral transform 
.J : C(R) → C(R) defined by 

. (J y)(x) = y0 +
{ x

t=x0

g(t, y(t))dt, x ∈ R.

Equation (2) can thus be rewritten as.J y = y, so to say.y ∈ C(R) satisfying (1) turns 
out to be the same as saying: . y is a fixed point of the mapping . J . 

Example 3 (Newton’s Method) Let us suppose that . J is a differentiable function 
.R → R, with continuous and never vanishing derivative .J ' on. R. Consider for . J its 
“Newton” function . N , defined by 

. x − J (x)

J '(x)
= N (x), x ∈ R.

One can think of .N (x) as the horizontal coordinate of the point at which the line 
tangent to the graph of . J at the point .(x, J (x)) intersects the horizontal axis. Since 
.J ' doesn’t vanish, .N is a continuous mapping taking .R into itself. Fixed points of 
.N are explicitly the roots of . J (those .x ∈ R such that .J (x) = 0). Newton’s method 
is concerned with the iteration of the Newton function in anticipation of generating 
approximations to the roots of . J . One starts with an initial guess . x0, sets  . x1 =
N (x0), x2 = N (x1), . . ., and hopes that the resulting sequence of “Newton iterates” 
converges to a fixed point of . N . Geometrically it appears evident that if the Newton 
iterate sequence converges then it must converge to a root of . J . 

Example 4 (The PageRank algorithm) Google’s prosperity as a web crawler comes 
from its calculation: the PageRank calculation algorithm. In this calculation, one 
processes a fixed point of a linear map on .Rn , which is itself a contraction, and this 
fixed point (which is, in fact, a vector) yields the requesting of the pages. Further 
amalgamation and illustrative insights about “the PageRank calculation algorithm” 
can be found in the vignette on How Google works?.



A Careful Retrospection of Metric Spaces … 5

2 Contraction Mappings: History and Development 

A natural question arises that under what conditions on the set. Y and the self mapping 
. J , a fixed point exists?. Theorems which establish the existence and uniqueness of 
such points are called Fixed-Point Theorems. 

There are three major branches of fixed-point theory in functional analysis and 
each branch has its celebrated theorems. 

– Metric Fixed-Point Theory, 
– Topological Fixed-Point Theory, 
– Discrete Fixed-Point Theory. 

Historically, the above approaches were initiated by the discovery of three major 
theorems: 

– Banach’s contraction principle [ 19], 
– Brouwer’s fixed-point theorem [ 33], 
– Tarski’s fixed-point theorem [177]. 

Historically, the study of fixed-point theory began in 1912 with a theorem given by 
famous Dutch mathematician Brouwer [ 33]. This is the most famous and important 
theorem on the topological fixed-point property. It can be formulated as: 

.* The closed unit ball .Bn ∈ R
n has the topological fixed-point property. 

He also proved the fixed-point theorems for a square, a sphere and their.n-dimensional 
counterparts which was further extended by Kakutani [ 90]. Brouwer’s theorem has 
many applications in analysis, differential equation and generally in proving all kinds 
of so-called existence theorems for many types of equations. 

An important generalization of Brouwer’s theorem was discovered in 1930 by 
Schauder [157] it may be stated as follows: 

Theorem 1 Let . Y be a Banach Space and . B is a compact, convex subset of . Y . If  
the self map .J : B → B is a continuous, then . J admits a fixed point. 

The Schauder fixed-point hypothesis has various applications in scientific theory, 
approximation theory, and different scientific areas like the improvement theory, 
social science, and engineering. The compactness condition on.B is a solid one, and 
most of the analysis results don’t possess a compact setting. It’s natural to prove 
the results by relaxing the condition of compactness. Schauder demonstrated the 
subsequent theorem: 

Theorem 2 Let . Y be a Banach space and . B be its closed and bounded convex 
subset. If .J (B) is compact, where .J : B → B is a continuous map, then . J admits 
a fixed point.
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Meanwhile, the Banach principle came into existence, considered to be one of the 
elementary principles in nonlinear analysis. In 1922, Banach [ 19] proved that a 
contraction mapping in the context of a complete metric space admits a unique fixed 
point. 

In the subsequent part, we focus mainly on the first area, that is, metric fixed-point 
theory based on Banach’s contraction. 

The term metric fixed-point theory refers to those fixed point theoretical results 
in which geometric conditions on the underlying spaces and/or mappings play a 
crucial role. The first-ever fixed-point theorem in metric space appeared in explicit 
form in Banach’s thesis [ 19], known as the “Banach’s Contraction Principle”, used 
to establish the existence of a solution to an integral equation. Before presenting this 
remarkable result, formal definition of the distance introduced in 1905 by Frèchet 
[ 60] is worth mentioning. 

Definition 3 Let .Y be a nonempty set, and let .d : Y × Y → [0,∞) be a given  
mapping. We say that. d is a metric on. Y , if for all.x, y, z ∈ Y , the following conditions 
are fulfilled: 

.(d1) .d(x, y) = 0 if and only if .x = y; 

.(d2) .d(x, y) = d(y, x); 

.(d3) .d(x, y) ≤ d(x, z) + d(z, y). 
The pair .(Y, d) is called a metric space. 

Banach [ 19] published his fixed-point theorem, also known as “Banach’s Contraction 
Principle” which uses the concept of Lipschitz mappings. 

Definition 4 Let .(Y, d) be a metric space. The self mapping .J : Y → Y is said to 
be Lipschitzian if there exists a constant .λ > 0 (called Lipschitz constant) such that 

.d(J x, J y) ≤ λ d(x, y), for all x, y ∈ Y. (3) 

A Lipschitzian mapping with a Lipschitz constant .λ < 1 is called contraction. 

Theorem 3 (Banach’s Contraction Principle) Let .(Y, d) be a complete metric space 
and.J : Y → Y be a contraction mapping with Lipschitz constant .λ < 1. Then. J has 
a unique fixed point .x∗ ∈ Y and . lim

n→+∞ J n x = x∗ for all .x ∈ Y . 

We verify Banach’s contraction principle with an illustrative example along with 
its graphical representation, where the surface representing the right-hand side of 
the contraction mapping dominates the surface constituting the left-hand side of the 
contraction mapping. 

Example 5 Let .Y = [0, 10] be a set. Define a function .d : Y × Y → [0, 10] by 
.d(x, y) = |x − y|, then clearly .(Y, d) is a complete metric space. Let . J be a self-
map on . Y defined as 

.J (x) = log(2 + ex+x2
)

2 + ex + sin x
.
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Fig. 4 Visual verification of Banach’s contraction principle with fixed point 

The following figure shows that surface representing the right-hand side is domi-

nating the surface constituting the left-hand side of (3) with .J (x) = log(2+ex+x2 )

2+ex +sin x and 
.λ = 11

12 . 
This demonstrates the validity of Banach’s contraction principle, and so, .J has a 
unique fixed point .x = 0.152003 shown by Fig.  4. 

After the establishment of this significant result, it was generalized and extended in 
different ways by several authors (see, .e.g., [ 2, 4, 38, 53, 63, 64, 77, 92, 95, 96, 
114, 127, 178]). Authors obtained numerous fixed-point theorems on the following 
two approaches. 

1. Extending the contraction condition (3) to more general contraction conditions, 
and 

2. Replacing the complete metric space.(Y, d) by specific generalized metric spaces. 

In the first-mentioned direction, the results due to Edelstein [ 54, 55] and Rakotch 
[141] created a new milestone in the literature of fixed-point theory. Rakotch [141] 
generalized Banach contraction principle in the following way. 

Theorem 4 ([141]) Let . Y be a complete metric space and suppose .J : Y → Y sat-
isfies 

. d(J (x), J (y)) ≤ α(d(x, y))d(x, y), for all x, y ∈ Y,

where.α : R
+ → [0, 1) is monotonically decreasing. Then. J has a unique fixed point 

. x∗ and .{J n(x)} converges to . x∗ for each .x ∈ Y .
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Fig. 5 Visual verification of Rakotch’s theorem and the corresponding fixed point 

Example 6 Let .Y = [0,∞) be a set. Define a function .d : Y × Y → [0,∞) by 
.d(x, y) = |x − y| then clearly .(Y, d) is a complete metric space. Let .T be a self-
map on Y defined as .T (x) = sin(1 + x2

5 ) with .α(x) = 1
(x2+5)2 . 

The following figure demonstrates that on invoking function . T (x) = sin(1 + x2

5 )

on (4), the surface representing the right-hand side is superimposing the surface 
representing the left-hand side. This demonstrates the validity of Rakotch’s theorem 
and so . x has a unique fixed point .x = 0.920548 shown by adjacent figure (Fig. 5). 

In 1968, Kannan [ 91] generalized Banach’s contraction principle in some different 
way, where the map involved does not need to be continuous. This theorem gained 
quite more attention in the field of metric fixed-point theory. 

Theorem 5 ([ 91]) Let .(Y, d) be a complete metric space and . J be a self-map on . Y
such that, for all .x, y ∈ Y , the following condition is satisfied 

.d(J x, J y) ≤ K [d(x, J x) + d(y, J y)], (4) 

where .K ∈ [0, 1
2 ). Then . J has a unique fixed point .x∗ ∈ Y . 

The following example is worked out to verify Kannan’s theorem along with its 
visualization. 

Example 7 Let .Y =] − ∞, 0] be a set. A function .d : Y × Y → [0,∞) is defined 
as.d(x, y) = |x − y|, then clearly.(Y, d) is a complete metric space. Let . J : Y → Y
be defined by the following 

.J (x) = 1

2
log(2 cos x + 1).
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Fig. 6 Pictorial verification of Kannan’s theorem and related fixed point of. J

Figure 6 authenticates the domination of the right-hand side of the inequality (4) over 
its left-hand side by invoking the function .J (x) = 1

2 log(2 cos x + 1) with .K = 2
5 . 

Hence, all the conditions of Kannan’s result are contended and. J has a unique fixed 
point .x = 0.23456 shown by Fig. 6. 

Kannan’s theorem is also fundamental because Subrahmanyam [176] proved that 
Kannan’s theory characterizes the metric completeness, that is, a metric space. (Y, d)

is complete if and only if every Kannan mapping on . Y has a fixed point. However, 
contractions (in the sense of Banach) do not have this property. 

The following examples compare Banach’s and Kannan’s contraction conditions. 

Example 8 Let.Y = R be a usual metric space and.J : Y → Y be a mapping defined 
by 

. J (x) =
{
0, if x ∈ ] − ∞, 2],
1
2 , if x ∈ ]2,+∞[.

In this example,. J is not continuous on. R; therefore, Banach’s contraction condition 
is not satisfied but it satisfies Kannan’s contraction with .K = 1

5 . 

Example 9 Let.Y = [0, 1] and. J be the self mapping of non-empty set. Y such that, 
.J (x) = x

3 for . x ∈ [0, 1].
In this example, Banach’s contraction condition is satisfied but, for .x = 1

3 and 
.K = 0, it does not satisfy Kannan’s contractive condition. 

Later, in 1971, Reich [143] established more general and innovate extension of 
Banach’s principle for single-valued as well as multi-valued mappings. Since then 
Reich-type mappings have been the center of intensive research for many authors.
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Theorem 6 ([143]) Let .(Y, d) be a complete metric space and . J be a self-map on  
. Y . There exist some real constants .α, β, γ ∈ R

+ with .α + β + γ < 1, such that 

.d(J x, J y) ≤ α d(x, y) + β d(x, J x) + γ d(y, J y), (5) 

for all .x, y ∈ Y . Then . J has a unique fixed point .x∗ ∈ Y . 

The following example validates Reich’s fixed-point theorem. 

Example 10 Let .Y = [0, 1] be a set. A function .d : Y × Y → [0,∞) is defined 
by .d(x, y) = |x − y|, then obviously .(Y, d) is a complete metric space. Let . J be a 
self-map on . Y defined by the following 

. J (x) = e2x2−1 + √
x + 2

7 + log(x + 50)
.

Calculating the right-hand side and the left-hand side of the inequality (5), it follows 
that the inequality (5) of Reich’s theorem is satisfied for . α = 0.39, β = 0.29, γ =
0.27 by invoking the function . J (x) = e2x2−1+√

x+2
7+log(x+50) .

Figure 7 authenticates the validity of inequality (5), where the surface correspond-
ing to the right-hand side is overlaying the surface corresponding to the left-hand 
side, and .x = 0.217634 is the corresponding unique fixed point. 

After that, several authors have introduced a variety of contraction-type conditions 
and established fixed-point theorems in the framework of complete metric spaces. 
Bianchini [ 29], Chatterjea [ 37], Geraghty [ 65] and Hardy–Roger [ 68] also extended 
Banach’s result in their manner. 

Fig. 7 Visual verification of Reich’s with fixed point
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In 1973, Hardy–Roger [ 68] gave an innovative extension of Banach’s principle 
as follows: 

Theorem 7 ([ 68]) Let .(Y, d) be a complete metric space and . J be a self-map on  
Y. There exist some real constants .α, β, γ, δ, ξ ∈ R

+ with .α + β + γ + δ + ξ , such  
that 

.d(J x, J y) ≤ αd(x, J x) + βd(y, J y) + γ d(x, J y) + δd(y, J x) + ξd(x, y), (6) 

for all .x, y ∈ Y . Then . J has a unique fixed point .x∗ ∈ J . 

The following example validates Hardy–Rogers’s theorem. 

Example 11 Let .Y = [0, 2] be a set. A function.d : Y × Y → [0,∞[ is defined by 
.d(x, y) = |x − y| then clearly.(Y, d) is a complete metric space. Let. J be a self-map 
on . Y defined as .J (x) = ex−1

1+log(1+x)
. 

Subsequent figure makes evident that on employing function .J (x) = ex−1

1+log(1+x)
on 

(6) with .α = 0.15, β = 0.15, γ = 0.2, δ = 0.1, ξ = 0.3, the surface corresponding 
to the right-hand side is overlaying the surface corresponding to the left-hand side. 
This substantiates Hardy–Rogers’s theorem and so .J x has a unique fixed point . x =
0.52594 expressed by Fig. 8. 

Later, in 1974, Ćirić [  40] presented a new version of Banach’s contraction in a quite 
different way. Ćirić [  40] involved all distances . d(J x, J y), d(x, y), d(x, J x), d(y,

f J y), .d(x, J y), d(y, J x) in his contraction in a linear way, while Banach [ 19] used  
only the first two distances. More precisely, the renowned Ćirić [  40] for a single-
valued map is the following: 

Fig. 8 Visual verification of Hardy–Rogers’s result and the corresponding fixed point
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Theorem 8 ([ 40]) Let .(Y, d) be a complete metric space and . J be a self-map on . Y . 
There exists a constant .λ ∈ [0, 1), such that 

.d(J x, J y) ≤ λ M (x, y), (7) 

for all .x, y ∈ Y , where, 

. M (x, y) = max{d(x, J x), d(y, J y), d(x, J y), d(y, J x), d(x, y)}.

Then . J admits a unique fixed point .x∗ ∈ J . 

The validation of Ćirić’s result is endorsed by the subsequent example. 

Example 12 Let .Y = [0, 1
2 ] be a set. A function .d : Y × Y → [0,∞) is defined 

by .d(x, y) = |x − y|. Then .(Y, d) is a complete metric space. Now, define a self 
mapping .J : Y → Y by the following 

. J (x) = e2x2−1

√
1 + sin(1 + x)

.

The following figure shows that on applying the value of function. J (x) = e2x2−1√
1+sin(1+x)

in (7) with.λ = 0.91, the surface corresponding to the right-hand side dominates the 
surface corresponding to the left-hand side. This substantiates Ćirić’s theorem with 
unique fixed point .x = 0.322937 expressed by Fig. 9. 

In 1969, Boyd and Wong [ 30] obtained a more general result. In this result, the 
authors assumed that .φ : R

+ → R
+ is upper semi-continuous from the right that is 

.rn ↓ r > 0 ⇒ lim
n→∞ sup φ(rn) ≤ φ(r). In the same paper, author showed that, if the 

space. Y is metrically convex, then the upper semi-continuity assumption on. φ can be 

Fig. 9 Computer simulation of Ćirić’s result with fixed point
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dropped. On the other hand, Matkowski in [110] extended the above result claiming 
that, if . φ is assumed to be continuous at . 0, then there exists a sequence .tn ↓ 0 for 
which .φ(tn) < tn . 

Some other generalized results were collected and compared in the well-known 
article of Rhoades [145], and later one of Collaço and Silva [ 43]. Further escalations 
in the level of complexity can be found in a noteworthy paper by van An et al. [181]. 
In 2003, Berinde [ 24] introduced the notion of weak contraction (also known as 
almost contraction) and generalized Banach’s result. He enhanced that Banach’s and 
Kannan’s mappings are weak contractions. The merit of weak contractions is that 
they unify large classes of contractive-type operators including quasi-contractions 
whose fixed points can be obtained employing the Picard iteration and for which 
both a priori and posteriori estimates are also available. 

Berinde [ 24] adorned the concept of nonlinear-type weak contraction operating a 
comparison function in a metric space as follows: 

Theorem 9 ([ 24]) Let .(Y, d) be a complete metric space and .J : Y → Y be a self  
mapping such that there exist .λ ∈ [0, 1) and some .L ≥ 0 such that 

.d(J x, J y) ≤ λ d(x, y) + L d(y, J x), (8) 

for all .x, y ∈ Y . Then . J has one and only one fixed point .x∗ ∈ Y . 

Due to symmetry of the distance, the weak contraction condition (8) implicitly 
includes the following dual condition: 

. d(J x, J y) ≤ λ d(x, y) + L d(x, J y).

The following example substantiates the validity of Theorem 9 due to Berinde. 

Example 13 Let .Y = [0, 1
2 ] be a set. Define a function .d : Y × Y → [0,∞) by 

.d(x, y) = {max(x, y)}2. Then.(Y, d) is a complete metric space. Let. J be a self map 
defined on . Y as follows: 

. J (x) = x

3
+ x log(1 + x

1
3 ).

Without loss of generality, we take .x > y. The subsequent figure presents that on 
utilizing the value of operator .J (x) = x

3 + x log(1 + x
1
3 ) on the inequality (8) with 

.λ = 0.8 and.L = 2, the surface corresponding to the right-hand side is superimposing 
the surface corresponding to the left-hand side. This validates Berinde’s theorem and 
so . J has a unique fixed point .x = 0 shown by Fig.  10. 

In recent investigations, Wardowski [182] considered a new type of contraction, 
namely, .F-contraction, and proved some fixed-point results in a very general and 
natural setting.
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Fig. 10 Pictorial verification of Berinde’s result with the fixed point 

Definition 5 ([182]) Let .(Y, d) be a metric space. A self-mapping .J : Y → Y is 
said to be an .F-contraction, if there exists .τ > 0 such that for every . x, y ∈ Y

.d(J x, J y) > 0 ⇒ τ + F(d(J x, J y)) ≤ F(d(x, y)), (9) 

where the function .F : R
+ → R satisfies the following assertions: 

.(F1) . F is strictly increasing, i.e., for all.a, b ∈ R
+ such that. a < b, F(a) < F(b);

.(F2) for all sequence .αn ⊆ R
+, . lim

n→∞ αn = 0 if and only if . lim
n→∞ F(αn) = −∞; 

.(F3) there exists .0 < k < 1 such that . lim
α→0+

αk F(α) = 0.

By considering various types of mappings .F in (9), one can obtain a variety of 
contractions, some of them are of a type known in the literature. Wardowski [182] 
described the class of all functions .F satisfying .F1, .F2 and .F3 by . F .

Theorem 10 Let .(Y, d) be a complete metric space and .J : Y → Y be .F-
contraction. Then . J has precisely one fixed point. 

We verify Wardowski’s theorem by the following non-trivial example. 

Example 14 Let .Y = [0, 2] be a set. Define a function .d : Y × Y → [0,∞) by 
.d(x, y) = |x − y|. Then.(Y, d) is a complete metric space. Let .J : Y → Y be a self  
map defined on . Y as follows 

. J x = sin

(
x + 1

ex+1

)
.

Taking .F(a) = log a and .τ = 0.2, one can easily see that the left-hand side of the 
inequality (9) is dominated by its right-hand side as shown in Fig. 11 along with the 
corresponding fixed point .x∗ = 0.841525.
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Fig. 11 Verification of inequality.τ + F(d(J x, J y)) ≤ F(d(x, y)) and corresponding fixed point 

Later, Secelean et al. [160] and Piri and Kumam [136] extended and refined Definition 
(5) by establishing some equivalent conditions over the mapping . F . 

Secelean et al. [160], utilized an equivalent but a more simple condition . (F2')
instead of condition .(F2) as follows: 
.(F2') . inf F = −∞
or 
.(F2') there exists a sequence .αn be a sequence of positive real numbers such that 
. lim
n→∞ F(αn) = −∞. 

Piri et al. [136] replaced the condition .(F3) by .(F3') in the Definition (5) as  
follows: 
.(F3') .F is continuous on .(0, 1). 

Detailed description on .F-contraction can be also seen in the articles [ 75, 78, 
136, 160, 185, 188, 189] and the related references therein. 

In order to prove that a fixed-point theorem is a proper generalization of the Banach 
contraction principle, the authors usually show the Banach contraction principle to 
be a direct consequence of their result and construct a map.J : Y → Y to which the 
Banach contraction principle is not applicable, while the new one is. For more details 
on these counter-examples, see the proofs of [145, Theorem 1], and [ 43, Sect. 3]. 

Moreover, there is an enormous number of works that generalized the contraction 
on single-valued as well as multi-valued mappings or in terms of space extension. One 
of these generalizations was carried out recently by considering on partial contractive-
type mappings in metric spaces endowed with an arbitrary binary relation, a partial 
order, and also with a graph. 

In 2003, Kirk [105] introduced the notion of cyclic representation which are 
cyclic relation and cyclic contraction in metric spaces and investigated the existence 
and uniqueness of the fixed point for cyclical condition. Many papers considered 
cyclic condition for different contractions and some works introduced new class of 
cyclic contraction mappings and further in other spaces such as Neammanee [128] 
extended the concept of cyclic for single-valued to set-valued mappings, Shatanawi
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[165] utilized the cyclic mapping for .y-distance in .G-metric spaces, Nashine et al. 
[124] presented the new formula of cyclic contractive condition for implicit relation 
and proved the existence and uniqueness of the fixed point for the mappings, while in 
2014, Nashine [122] got some fixed-point results for cyclic contraction endowed with 
implicit relation. In addition, Popa [137] provided cyclic for set-valued mapping, 
which is more generalized than [122]. Moreover, Kumari and Panthi [107] also  
considered the cyclic contraction for proving fixed-point theorem in the generating 
spaces. Moreover, there are many works introduced the new condition of implicit 
function that we shall see in [ 25, 26, 123]. 

Furthermore, the notion of the pair.(F , h) is an upper class which was introduced 
by Ansari and Shukla [ 11]. They involved this pair in a contraction condition and 
proved a fixed-point theorem which generalized many existing results. On the other 
hand, Samet et al. [156] introduced the notions of.α-.ψ-contractive and.α-admissible 
mappings and proved fixed-point theorems which also unify several existing fixed 
point results in the setting of complete metric spaces. Many authors were inspired 
by the work of Samet et al. [156] and generalized many other results by using the 
notion of .α-admissible mappings. Very recently, Karapinar et al. [ 93] gave a new  
type of rational contraction condition for set-valued mappings. 

The existence of fixed-point theorems for monotone single-valued mappings in a 
metric space endowed with a partial ordering has been a relatively new development 
in metric fixed-point theory and it was initially considered by Ran and Reurings 
while investigating some applications of matrix equations in [142] (see also [180]). 
They proved the following result: 

Theorem 11 Let .(Y,<) be a partially ordered set such that every pair .x, y ∈ Y has 
an upper and lower bound and . d be a metric on . Y such that .(Y, d) is a complete 
metric space. Let . f : Y → Y be a continuous monotone (either order-preserving or 
order-reversing) mapping. Suppose that the following conditions hold: 

1. There exists a .k ∈ (0, 1) with 

. d( f x, f y) ≤ kd(x, y) f or all x > y.

2. There exists an .x0 ∈ Y with .x0 < f x0 or . x0 > f x0.

Then . f is a Picard Operator(PO), that is . f has a unique fixed point .x∗ ∈ Y and for 
each .x ∈ Y , . limn→∞ f n(x) = x∗.

Subsequently, Nieto [129, 131] and others [ 28, 135] modified and improved Ran 
and Reurings results. There have been so many exciting developments in the field 
of the existence of fixed points in partially ordered metric spaces. For more details, 
we can see in the papers by Turinici [179], Nieto and López [130], Agarwal et al. 
[ 3], Ćirić et al.  [  42], Harjani and Sadarangani [ 70], Jachymski [ 83] Bhaskar and 
Lakshmikantham [ 28], Samet et al. [154, 155], and the references therein. 

In 2012, Samet and Turinici [156] extended the concepts of metric spaces and 
partial ordering to define and construct fixed point theorems in metric spaces with


