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Ratko Magjarević, Faculty of Electrical Engineering and Computing, ZESOI,
University of Zagreb, Zagreb, Croatia

Associate Editors
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Preface

The 12th IFMBE Asian Pacific Conference on Medical and Biological Engineering
(APCMBE2023) was held in Suzhou, China, from 18 to 21 May 2023. The conference
was organized by the Chinese Society of Biomedical Engineering (CSBME) and was
endorsed by International Federation for Medical and Biological Engineering (IFMBE).

Aimed to gather talents in the fields of medicine, enterprise, research, and educa-
tion, APCMBE2023 focused on key fields and key technologies of biomedical engineer-
ing and promoted the integration of multiple disciplines. Special attention was paid to
the frontiers of biomedical engineering, including medical artificial intelligence, neural
engineering, medical imaging, computer-aided surgery, biosensors, rehabilitation engi-
neering, medical informatics, biomechanics, and other hot topics and key issues. The
progress of biomedical engineering has provided strong support for the realization of
translational medicine and personalizedmedicine based on interdisciplinary cooperation
and information sharing. Improving medical standards and ensuring people’s health are
a long journey and a highly challenging undertaking.We need to maintain an open, inno-
vative, and cooperative spirit, jointly address the challenges, and promote the continuous
progress and transformation of technology in biomedical engineering.

In total, we received 363 contributions, of which 181 contributions were full-length
scientific papers, and the rest were short abstract submissions. In total, 100 papers met
the standards for publication in the Proceedings of APCMBE2023.

We, the local organizers, would like to thank IFMBE for its support in organizing
APCMBE2023. Our thanks go to the members of the International Organizing Commit-
tee for their contribution. We extend our thanks to the organizers of topical sessions and
the reviewers. They made the creation of these Proceedings possible by devoting their
time and expertise to reviewing the receivedmanuscripts and thus allowed us tomaintain
a high standard in selecting the papers for the Proceedings. And last, but certainly not
least, we would like to thank Springer Nature publishing company for the support and
assistance in publishing these Proceedings.

Xuetao Cao
President, APCMBE2023
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Computer-Aided Surgery



Inside-Out Accurate Head Tracking
with Head-Mounted Augmented Reality Device

Haowei Li1, Wenqing Yan2, Yuxing Yang1, Zhe Zhao3,4, Hui Ding1,
and Guangzhi Wang1(B)

1 Department of Biomedical Engineering, Tsinghua University, Beijing, China
wgz-dea@tsinghua.edu.cn

2 School of Medicine, Tsinghua University, Beijing, China
3 Department of Orthopaedics, Beijing Tsinghua Changgung Hospital, Beijing, China

4 School of Clinical Medicine, Tsinghua University, Beijing, China

Abstract. Objective: External Ventricular Drainage (EVD) is a widely used pro-
cedure in neurosurgery that is restricted in accuracy and reproducibility due to
free-hand operation. Augmented reality (AR) improves punctuation success rate
by superimposing virtual paths on the operation area. However, the effective-
ness of surgical guidance is affected by tracking accuracy. This paper aims to
achieve accurate and stable head tracking during EVD surgery. Methods: We pro-
pose a dynamic inside-out tracking method combining retro-reflective markers
and point clouds. First, built-in infrared depth sensor of HoloLens 2 is used to
identify markers pasted on patient’s head for coarse registration of preoperative
images and intraoperative patient. Real-time 3D point clouds and point-to-plane
ICP registration are then used to further improve tracking accuracy and stabil-
ity. Meanwhile, we calibrate and correct the depth distortion of the HoloLens 2
depth sensor on different materials, improving the accuracy of point cloud-based
tracking methods. Results: The root mean square error (RMSE) of preoperative
registration is less than 1.6mm; average RMSE of intraoperative head tracking
is less than 1.28mm. Meanwhile, average angular tracking jitter is reduced by
more than 40% when integrating point clouds. The proposed method can achieve
37.7fps tracking. Conclusion: The retro-reflective marker and point cloud hybrid
tracking method in this paper can achieve high-precision real-time head tracking,
providing the potential for accurate visual guidance in EVD surgery.

Keywords: Augmented Reality · Head Tracking · Point Cloud · Surface
Reconstruction

1 Introduction

EVD surgery is a neurosurgery widely used in acute hydrocephalus, intraventricular
hemorrhage and intracranial hypertension [1, 2]. The accuracy of drainage tube insertion
affects the probability of brain injury and complications, thus determining the success
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of the operation. Traditional freehand puncture process uses surface feature points as a
reference and strongly relies on the surgeon’s experience [3], leading to low accuracy and
reproducibility, higher complication probability and higher operative risk. Image-guided
operation uses infrared tools for tracking of patients and surgical tool and provides visual
guidance on 2Dmonitors. However, this would lead to complex system setup, distraction
of surgeons’ attention and hand-eye incoordination [4].

Augmented reality enhances neurosurgery operation accuracy by providing visual
guidance as superimposed virtual images [5]. A core problem during this procedure is
to track patient accurately with AR device. Liebmann et al. used a pointer with AprilTag
for spine surface digitalization [6], and then used point cloud registration method for
spine tracking. However, the tracking accuracy is restricted by the marker size and point
cloud sparsity. Kunz et al. used infrared depth sensor of HoloLens for retro-reflective
marker tracking [7], reaching submillimeter translation error, which is then proven to
behave relatively poorly on angular error [8]. Point cloud registration has been used for
marker-less tracking, which can potentially provide more stable results. However, Gu
et al. proved that a systematic depth error exists on the infrared depth sensor integrated
on commercial AR devices [9], leading to large tracking errors.

To provide accurate and stable tracking results in EVD, this work proposes a method
integrating retro-reflective marker tracking and point cloud registration for real-time
accurate head tracking. A calibration and correction procedure is first finished for
HoloLens 2 depth sensor on different materials. A surface reconstruction procedure
is then proposed for accurate preoperative marker-patient registration. Finally, marker
tracking and point cloud registration are used in sequence to provide real-time stable
tracking.

2 Methods

This paper proposes a method that only uses built-in depth sensor in HoloLens 2 to
enable accurate and stable head tracking by combining infrared retro-reflective markers
and point clouds (Fig. 1). To provide a larger field of view and higher resolution, the
Articulated Hand Tracking (AHAT) mode of HoloLens 2 depth sensor [10] is used to
acquire data for both markers and point clouds. To take advantage of both methods,
retro-reflective markers are pasted on the patient’s head and registered with preopera-
tive images. Intraoperatively, markers are used to provide coarse tracking results; point
clouds are then used for pose enhancement. This section details the framework of the
method, including tool definition and detection, depth camera undistortion, preoperative
registration and dynamic head tracking. To prove the capability of our method, we con-
ducted a series of experiments on preoperative registration, intraoperative tracking and
efficiency.

2.1 Retro-reflective Tool Definition and Detection

Retro-reflective tapes are cut into circles and pasted on the patients’ heads (n ≥ 3) to
provide coarse tracking results. A procedure including marker detection, tool defini-
tion and tool detection is then used for coarse tracking. During marker detection, 2D
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Fig. 1. Proposed EVD intraoperative head tracking framework.

marker centers are first recognized from the imagewith threshold criterion and connected
component detection. Providing camera intrinsic parameters and depth values, marker
positions in camera space C can be calculated as Xi = di

(
xi, yi, 1

)T
/
∣∣∣∣(xi, yi, 1

)∣∣∣∣
2.

Given a specific tool shape A, the difference between it and a marker frame can be evalu-
ated with rigid body fitting error. The geometric mean of this error on multiple frames is
then used as the target for tool shape optimization. Finally, distance information between
different markers in a frame and the tool definition is used to recognize the tool from
sensor data and is then used to calculate the tool pose TC

A .

2.2 Camera Depth Undistortion

In the work of Gu et al. [9], a systematic depth error is proved to exist in AHAT cam-
era, which would bring large error to point cloud based tracking method. Meanwhile,
due to different textures, colors and other surface characteristics, different materials
may present different errors. In order to achieve higher tracking accuracy, a calibration
and undistortion procedure is completed on four materials including nylon, photopoly-
mer, PC-ABS and PLA. As retro-reflective tracking method is proved to present a low
systematic error, it is regarded as reference material during calibration.

As shown in Fig. 2a, a structure was designed to keep all materials on one plane. The
structure was fixed at different depths and angles. Each time, 250 frames of sensor data
were collected. The standard errors of the depth over 250 frames were used to describe
the depth stability. Point clouds from the reference material were used to fit a reference
plane, and depth error δ of a certain point was calculated as the distance from the point
to the reference plane along the depth direction. First, a single point cloud showed that
different materials behaved differently in both error and stability (Fig. 2b). In the depth
stability test, depth values on retro-reflective material were proved to be more stable
than those on other materials (p < 0.5). In terms of depth error, a significant difference
was revealed between any two different materials at all depths and angles (p < 0.5),
while single material was also proved to present differently at different depths or angles
(p < 0.5). To undistort the depth value, the average depth error at 15 different depths
from 382 mm to 655 mm was used to represent the systematic depth error of a certain
material. As a result, nylon, PLA, photopolymer and PC-ABS respectively presented a
depth error of 11.04mm, 25.79 mm, 23.91 mm and −6.63 mm.

2.3 Preoperative Registration

During preoperative registration, multiple frames of sensor data are used to register
retro-reflective markers and medical images. The tool shape A is first optimized, which
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Fig. 2. a Structure for AHAT depth calibration. b Single frame point cloud of the calibration
structure at different views. c Instability of the depth value at different depths. d, e Depth value
error of different materials at different angles and depths.

is then used to calculate the relative pose between markers and AHAT camera in each
frame. Depth values from the sensor are then corrected according to the target material as
d ′
i = di − δ. Then, GPU-based TSDF [11] reconstruction is processed for head surface.
By registering this surface and extracted surface from images with point-to-plane ICP
algorithm, the spatial transformation from preoperative image to the retro-reflective
markers can be calculated as TA

I .

2.4 Dynamic Head Tracking

Retro-reflectivemarker tracking stability is limited by depth data quality and is relatively
unstable in rotation. To utilize both the speed of marker tracking and stability of point
cloud registration, markers are used for coarse tracking result as TC

I ,coarse = TC
A TA

I first.
Point-to-plane point cloud registration is further used to refine the pose and get final
tracking result as TC

I ,fine.

3 Experiments and Results

3.1 Preoperative Registration

In order to test the precision of preoperative registration, a head phantomwas 3D printed
with nylon. In each group, 3, 4, 5 or 6 markers were sticked on the phantom and 1200
frames of sensor data were recorded for surface reconstruction and registration. As
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shown in Fig. 3a, b, reconstructed surface provided more details and was smoother.
RMSE of preoperative registration was smaller and the inlier point rate was higher
when depth distortion was considered (Fig. 3f, g). When three markers were used, an
RMSE less than 1.6mm was presented. Meanwhile, registration error tended to decrease
when marker number increased, which may due to more stable tool poses provided by
increased markers. Moreover, another experiment was conducted to reconstruct more
complete phantom surface with the guiding of 9 markers (Fig. 3e). The result showed
that the reconstructed surface fit the real model surface better when we considered depth
distortion, and a large systematic error would exist in point cloud-based tracking method
when this distortionwas neglected due to the large gap between the reconstructed surface
and ground-truth (GT).

3.2 Tracking Stability

To evaluate the effect brought by adding point cloud registration, another 1200 frames
were collected when HoloLens 2 and phantom kept static. Tracking results were cal-
culated from both retro-reflective marker tracking and the proposed method. Tracking
RMSEs and angular differences between frames were then calculated for evaluation.
As shown in Fig. 3h, i, proposed method presented more stable than retro-reflective
markers in angular tracking under all conditions. The mean angular jitter was 0.61 mm
when 3 markers were used for tracking. A decrease of more than 40% was found on
mean angular tracking jitter intensity on all marker numbers. However, proposedmethod
presented higher mean tracking RMSEs (1.28mm at max), which may be due to higher
depth instability on nylon material compared to retro-reflective tapes.

3.3 System Performance

The performance of the proposed method was further tested on Intel 13900K CPU and
RTX 4090 GPU.

Preoperative reconstruction and dynamic tracking respectively reached 217.4fps and
37.7fps. Therefore, a potential of real-time tracking is proven.

4 Discussions

This paper proposes a method for inside-out accurate and stable head tracking during
EVD surgery using infrared depth sensor. According to our experiments, retro-reflective
materials presented more stable than other materials, which may ensure a relatively
accurate pose when marker number was limited. Meanwhile, different materials were
found to have different systematic depth errors compared to retro-reflective materials.
The mean error under 15 different depths were used to correct the depth images. The
reconstruction test showed that depth information after depth correction fit GT better
(Fig. 3e). Preoperative registration showed an error less than 1.6mm and an inlier point
rate higher than 99.8%, demonstrating a high accordance between reconstructed surface
and GT. Amean RMSE less than 1.5mm was found during dynamic tracking. It was also
proved that the proposed method could decrease angular jitter by more than 40%, thus
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Fig. 3. aAframe of point cloud fromAHATcamera.bReconstructed head surface. c Preoperative
registration result of reconstructed head surface and image. d Intraoperative registration result of
single frame point cloud and image. eComparison of reconstructed surface with andwithout depth
undistortion. f, g Registration RMSE and inlier point ratio of reconstructed surface and surface
from CT image. h, i Angular tracking jitter and RMSE of two different tracking methods under
different retro-reflective marker quantities.

could potentially provide more accurate tracking result during EVD surgery. Finally, the
performance test showed that the method could run at more than 37fps during dynamic
tracking.

Comparatively, our method mainly contributes in:

1. Undistort depth error for AR built-in sensor, increasing tracking accuracy of point
cloud-based tracking method.

2. Propose a method for high resolution smooth surface reconstruction with built-in AR
sensor.

3. Integrate infrared markers and point clouds for more accurate and stable tracking.

Despite promising tracking stability and accuracy presented by proposedmethod, certain
limitations exist. Mean depth error on 15 different depths was used to correct depth
images.However, itwas proved that different depth errors existedwhendepths and angles
were different, which led to local distortion during reconstruction (Fig. 3e). Meanwhile,
different materials have different depth errors, and complex scenarios where surfaces of
multiple materials need to be reconstructed simultaneously may be difficult. Therefore,
more studies are needed to better calibrate and correct the depth error before it can
provide more accurate information.

5 Conclusions

This paper proposes an inside-out head tracking method that uses built-in depth sensor
in head-mounted mixed reality device, integrating retro-reflective marker detection and
point cloud registration. The method enables stable and real-time head tracking without
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additional electronics, fixed rigid tracking tools or prior tool shape information. The
proposed method showed a registration error of RMSE < 1.6mm during preoperative
procedure. It is also proved that the method can decrease the intraoperative angular
tracking jitter by over 40%. Therefore, the proposed tracking method can potentially
provide stable and accurate real-time tracking information for visual guidance in EVD
surgery.
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Abstract. Objective: Ultrasound (US) probe calibration is critical for the local-
ized ultrasound system. Key points and surfaces are often used for calibration,
whose accuracy is restricted by the ultrasound volume effect. The aim of this
paper is to accurately calibrate the US probe under volume effect. Method: We
present a model-guided ultrasound probe calibration method, to provide accurate
calibration results under volume effect. First, we design a rotationally symmetric
calibration phantom unit to provide image areas weekly affected by volume effect
during continuous scanning. Second, US images from the uncalibrated probe are
used to reconstruct the 3D image volume. Finally, we use image registration and
point registration for super-resolution unification of US images, the model and
the tracking device. Results: In multiple probe calibration experiments at differ-
ent probe depths, the average calibration precision was 0.163 mm; in the needle
tip tracking experiment, the average detection accuracy was 0.335 mm. Conclu-
sion: Guided by the specially designed model, our method can realize precise and
accurate ultrasound probe calibration under volume effect.

Keywords: Ultrasound probe calibration · Volume effect · Model-guided · 3D
reconstruction

1 Introduction

Localized ultrasound systems combine ultrasound probe with tracking devices (e.g.,
optical tracker, magnetic tracker, end of a robot arm), to provide spatial information. This
combination endows temporally advantaged ultrasound spatial information and extends
the application scenarios. In previous studies, localized ultrasound systems have been
used to provide quantitative spatial information for ultrasound-guided punctuations [1,
2] and 3D reconstructions [3–5].

Accurate US probe calibration is critical for correct positions of US images. Existing
calibration methods often use positions of key points and lines in tracking space and
image space.However,US images represent the accumulation of reflection signalswithin
an area, leading to the volume effect which would generate artifacts near the key features
and reduce the calibration accuracy.

Prager et al. [6] used a mechanical device to keep US probe perpendicular to the
calibration plane, in order to ensure the correct position it presents in US images. This
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method requires a complex setup. Chen et al. [7] calculated the thickness of the acoustic
beam based on the artifact distribution and used it to eliminate further the error caused by
volume effects. However, this method is time-consuming and prone to human mistakes.
N-line phantom is widely used in US probe calibration. Researchers [8, 9] have used
various image-processing algorithms to automatically extract the intersection positions
of the phantom and US image planes from images including volume artifacts. Wang
et al. [10] integrated spatial position from line phantoms and geometric features from
the model’s surface for higher calibration accuracy. However, this method is still proven
to be influenced strongly by the volume effect.

To realize accurate US probe calibration under volume effect, we propose a model-
guided calibration method that can take advantage of the artifact’s shape. First, a model
structure is designed to obtain image areas weakly affected by the volume effect during
continuous scanning. US 3D reconstruction is then used for model reconstruction with
an uncalibrated US probe. After that, the 3D image is registered with the model surface
for super-resolution locations of key features. Finally, the model is used to connect the
phantom and US image to realize accurate calibration.

2 Methods

2.1 Calibration Model Design and General Ideas

The ultrasound volume effect expands the key features of the target which are not perpen-
dicular to the image plane and blurs the image. This phenomenon affects the precision
of the extraction of key features, thus reducing US probe calibration accuracy. Mean-
while, surfaces with different slopes have different volume artifact areas. Therefore, we
propose a rotationally symmetrical calibration unit with continuously varying slopes. A
rotationally specific calibration structure is then designed with multiple calibration units
(Fig. 1a).

As shown in Fig. 1b, during the continuous US scanning of the calibration unit, the
area of the artifact caused by the volume effect changes with the angle between the
US image and phantom surface. Generally, the artifact width in the normal direction of
the edge increases when the probe moves from the center of the calibration unit to the
margin. The artifact caused by the volume effect is minimal when the US plane passes
through the center line of the calibration unit.

Based on these features, we register the artifact-free model surface to 3D recon-
structed US image to realize super-resolution US feature extraction. The complete work-
ing flow is shown in Fig. 2. The model is respectively registered with the reconstructed
US image and the phantom, and is used as the bridge between the ultrasound image and
the phantom for accurate calibration.

2.2 3D Reconstruction Based on an Uncalibrated Probe

A 6 degree of freedom tracking targetM is rigidly fixed on the US probe and an external
tracking device W is used to track the probe and give the pose of the target as TW

M =
(RW

M , tWM ). The US reconstruction is then finished by calculating the position of every
pixel in the space W in each frame.
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Fig. 1. a Calibration phantom containing 3 * 3 basic units. b The areas influenced by volume
effect in a cross-section. c Image acquired at the centerline of the calibration unit. d Image acquired
at other locations.

Fig. 2. Systemworking flow: aCalibrationmodel.bReconstructed 3Dultrasound image. c Points
picked from the phantom. d Registration results of the points and the phantom. e The surface
extracted from the model. f Registration result of the model surface and US image.

Giving the pixel spacing (sx, sy) of US image, the position of pixel (ui, vi) in US

probe coordinate system U can be calculated as Xi = (
uisx, visy, 0

)T . Therefore, the
position of the ith pixel and the jth frame in space W can be represented as:

tWi,j = RW
M ,j

(
RM
U Xi,j + tMU

)
+ tWM ,j (1)

where (RM
U , tMU ) is the spatial transformation between the US probe and the tracking

target. Moreover, RM
U can be directly determined by the assembly structure.
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For an uncalibrated US probe, we designed a value f Wi,j , which has a similar form

compared to tWi,j :

f Wi,j = RW
M ,j

(
RM
U Xi,j

)
+ tWM ,j (2)

Using the properties of rigid spatial transformations, the difference between tWi,j and

f Wi,j can be calculated:

tWi,j − f Wi,j = RW
M ,j t

M
U (3)

For a scanning process where the rotation of the US probe RW
M ,j has not changed, the

displacement of any pixel between the real 3D position and that calculated with f Wi,j
remains constant. Thus, we define a space W ′ based on f Wi,j , which only differs from

spaceW on translation: tWW ′ = RW
M tMU . By converting pixels in every frame to spaceW ′,

we can reconstruct US image without probe calibration.
To acquire US images where rotation is fixed, the probe is fixed on a robot arm

for translational movement. After acquiring a series of US 2D images Ij, 3D spatial
positions of these points are calculated using Eq. (2) to form point clouds {Pj} with
intensity information. After that, voxel down sampling and Gaussian filtering are used
to generate the 3D reconstructed US image I3D (Fig. 2b).

2.3 Image Registration

To provide super-resolution information for probe calibration, this section registers the
model space I to US reconstruction space W ′ under volume effect using reconstructed
image I3D and the outer surface from the designed model.

In the cross-sectional direction (Fig. 1b), during the scanning procedure where the
probe rotation is fixed, thewidth of the artifact caused by the volume effect is the smallest
when the US image crosses the centerline of the calibration unit, and increases when the
probe moves to the margin. Meanwhile, the intensity of US images near the true surface
is higher and decreases on both sides (Fig. 1d). The intensity outside the artifact area
can be regarded as 0.

Based on such volume artifact features, we first extract the outer surface of the
model with morphological processing (Fig. 2e) and rigidly register the surface to the
reconstructed image I3D based on Mattes mutual information [11, 12]. When the model
surface is not completely aligned with the real surface in the US image, some areas of the
model surface would be in the low-intensity artifact region or outside the artifact region
of the US image, thus the error of similarity measurement would increase. When they
are perfectly aligned, the error of similarity measurement would reach the minimum.
Therefore, the relationship TW ′

I between the model space I and the space W ′ can be
obtainedbyoptimizing theMattesmutual informationvalues through stepwise iterations.
At the same time, the size of the volume artifact varies at different depths of the probe,
so the 3D rigid registration can take advantage of the global volume artifact properties
to improve the registration accuracy.
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For practical implementation, we use the model surface with a certain thickness
for registration to address the effects of voxelization of the model surface, US image
resolution and the multiple noises in real US.

2.4 Probe Calibration

To finally calibrate the US probe, this section first registers the model space I to tracking
device W . A tracking probe is first used for the coordinates localization of the conical
tips, with which a coarse registration result TW

I ,coarse can be calculated. After that, the

tracking probe is further used to fetch surface points on the model. Using TW
I ,coarse for

initiation and the geometric mean of the minimum Euclidean distances from the fetched
points to the model for evaluation, an iterative optimization method is used to obtain the
transformation from the model to the tracking device TW

I (Fig. 2d).
Finally, the transform between tracking device W and the space W ′ can be calcu-

lated as TW
W ′ = TW

I

(
TW

′
I

)−1
, and the US probe calibration result tMU can therefore be

calculated:

tMU =
(
RW
M

)−1
tWW ′ (4)

3 Experiments and Results

To verify the performance of the ultrasound probe calibration method proposed in this
paper, we fabricated the designed calibration phantom using the stereolithography 3D
printing method with resin. The model was placed in a water tank which was kept at 37
◦C constantly to simulate sound speed in the human body [9]. The localized ultrasound
systems included a 2Dultrasound system (MindrayDC8with probe L12-3E), amagnetic
tracking device (Northern Digital Incorporated Aurora®), and a graphics computing
server (Intel® Core™ i9-10900X CPU @ 3.70GHz × 20, Ubuntu 20.04.5 LTS). The
ultrasound image is acquired in the graphics server via a video capture card. To resolve
the time asynchrony between the ultrasound image and the tracking information from
different devices, we use a plane imaging and periodic motion based method [9] for time
calibration. The time delay was tested to be approximately 106 ms.

In this section, the precision of the calibration results was first verified. Four sets of
calibration experiments were conducted at probe depths of 30 mm, 35 mm, and 40 mm
respectively, and the root mean square error (RMSE) of calibration results on translation
was calculated on each axis to evaluate the calibration precision. The results are shown
in Table 1, where the precision ranges from 0.14 mm to 0.19 mm.

After the calibration procedure, feature point picking-up errors were used to evaluate
the accuracy of calibration results. A wooden needle tip was used as the test target. A
magnetic tracking probe was used to pick the tip position 10 times, whose mean value
was used as the experiment’s ground truth (GT). The positions of the needle tips were
extracted from the US images at each probe depth, and the 3D spatial positions were then
calculated based on the calibration results. The standard deviation of the picked points


