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Foreword 

Quantum chemistry has come a very long way from being restricted to small 
molecules and specialist applications to the major research tool it is today. In fact tens 
of thousands of quantum chemists use quantum chemistry every day in academia as 
well as industry in order to solve real-life chemistry problems, to obtain inspiration 
for new experiments, or to interpret their experimental data. While a big part of 
this success is the increasingly accurate numerical predictions offered by contem-
porary quantum chemistry, one should never forget that obtaining accurate numbers 
is not synonymous with understanding the chemical problem. Hence, it is a vital 
and sometimes somewhat neglected part of our profession to turn the results of 
quantum chemical calculations into chemical context and chemical language. This is 
the purpose of this monograph. Quantum chemistry and Chemical Graph Theory are 
two well-developed but disparate branches of theoretical chemistry. This monograph 
is an enlightening first step for their union taking Richard F. W. Bader’s Quantum 
Theory of Atoms in Molecules (QTAIM) as the bridge between them. The authors 
provide a concise summary of their contributions to this field over the past decade and 
have included—especially in the later chapters—several new methods and unpub-
lished results of considerable interest. The examples used in the exposition cover a 
large range of timely problems with practical solutions where the results of electronic 
structure calculations are summarized into the electron Localization and Delocaliza-
tion Matrices (LDMs) which are then analyzed and compared by a whole battery of 
methods. The predictive power of such LDM analysis is promising. I commend the
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prominent scientists in their respective lines of research, for pooling their efforts to 
bring to the light this important monograph. 

Prof. Dr. Frank Neese 
Director 

Department for Molecular Theory and Spectroscopy 
Max-Planck-Institut für Kohlenforschung 
(Max Planck Institute for Coal Research) 

Mülheim an der Ruhr, Germany



Preface 

“The molecular descriptor is the final result of a logic and mathematical procedure which 
transforms chemical information encoded within a symbolic representation of a molecule into 
a useful number or the result of some standardized experiment [Todeschini and Consonni, 
2000]. 

Attention is paid to the term “useful” with its double meaning: it means that the number 
can give more insight into the interpretation of the molecular properties and/or is able to 
take part in a model for the prediction of some interesting property of other molecules. 

Why must we also accept “or”? 

It should not be thought that molecular descriptors are good only if they show an evident 
link to some information about molecular structure, that is, they are easily interpretable from 
a structural/ chemical point of view. 

It often happens that interpretation of molecular descriptors could be weak, provisional, 
or completely lacking, but their predictive ability or usefulness in application to actual 
problems should be a strong motive for their use. On the other hand, descriptors with poor 
predictive ability may be usefully retained in models when they are theoretically well founded 
and interpretable due to their ability to encode structural chemical information.” 

Roberto Todeschini and Viviana Consonni, Molecular Descriptors for Chemoinformatics, 

Wiley-VCH, Weinheim (2009) 

This monograph introduces a new method that converts computational chemistry 
results into a set of tools to predict the activities and/or properties of a series of 
compounds. It uses Richard F. W. Bader’s Quantum Theory of Atoms in Molecules 
(QTAIM) starting from a topographical and topological analysis of the molecular 
electron density to provide a bookkeeping of electrons localized in, and delocalized 
between, atoms in a molecule, a complex, or a crystal. The method outlined in this 
monograph extracts molecular descriptors from the QTAIM numerical integration 
results which are then used to solve concrete experimental chemistry problems. 

A principal theme in this book is the use of “molecular descriptors” in “Quan-
titative Structure-Activity/Property Relationship (QSAR/QSPR)” modeling. The 
method introduced here uses computational quantum chemistry to obtain molecular 
electronic wavefunctions and electron densities which are then analyzed to obtain 
the QTAIM localization and delocalization indices (LIs and DIs) which, in turn,
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are organized to construct the corresponding electron Localization-Delocalization 
Matrices (LDMs). LDMs are then either compared directly or manipulated to extract 
matrix invariants as is done in Chemical Graph Theory (CGT) or using statistical 
methods such as Principal Component Analysis (PCA) to predict molecular activities/ 
properties. The approach outlined in this book can be considered as a bridge between 
two branches of theoretical chemistry, that is, Chemical Graph Theory (CGT) on one 
hand and quantum chemistry, in particular QTAIM, on the other. We will term the 
overall approach presented in this work as LDM Analysis. 

The applications of LDM Analysis are not bound to any specific field. As will 
be apparent, these applications span physical organic chemistry, corrosion inhibitors 
research, insect control, enzymology, physicochemical properties, and quantitative 
molecular comparisons, to name just a few examples. It is hoped that this approach 
will be of value to those interested in research in such domains as materials science, 
physical organic chemistry, and drug design, where in silico predictions can guide 
and/or shed light on experiments. 

The level of exposition should be accessible to upper-level undergraduate students, 
graduate students, and researchers in physical chemistry, biophysics, molecular 
modeling, bioinformatics, and related fields of specialization. 

In closing, this book is a monograph in the sense that it is a topical review that 
focuses primarily on the contributions and interests of the authors. It is not at all 
meant to be a comprehensive all-encompassing review of the literature on molecular 
descriptors, QSAR/QSPR, or computational quantum chemistry. The exposition is 
far from complete or comprehensive and can be taken as a “teaser” since the field is 
young and wide open. 

Halifax, NS, Canada 
Hamilton, ON, Canada 
Denver, CO, USA 

Chérif F. Matta 
Paul W. Ayers 
Ronald Cook
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Chapter 1 
An Introduction to Electron 
Localization-Delocalization Matrices 

Give us insight not numbers [1] (see also [2]). 

Charles A. Coulson (1910–1974)—(1959) 

Give us insight and numbers [1]. 

Frank Neese, Mihail Atanasov, Giovanni Bistoni, Dimitrios Maganas, 
and Shengfa Ye—(2019) 

This book has been written with the practicing chemist in sight. It is not a book on 
theoretical chemistry but rather one that is primarily focused on making practical 
predictions starting from theoretical chemistry calculations. It is true that predicting 
and explaining is not “the same thing”, as argued along the length of a book that 
René Thom1 titles: “Prédire n’est pas expliquer” (Predicting is Not Explaining) 
[3]. However, as it is hoped it will become apparent in the following pages that, 
in making numerical predictions, one can, in fact, gain insight. In other words, by 
exploiting the panoply of existing tools from quantum chemistry, to graph theory, 
and ending up with modern statistics one can, in many cases, go beyond Coulson’s 
wish and indeed get “insight and numbers” out of electronic structure calculations 
as the modern revision of this wish formulated six decades later by Neese, Atanasov, 
Bistoni, Maganas, and Ye in 2019 [1]. 

What will be explored in detail in this book is a new method to extract, summa-
rize, and use the information obtained from quantum chemical (electronic structure) 
calculations for a series of molecules to uncover trends in sought-for properties for 
the purpose of making useful predictions. Sometimes such predictions can also give 
us mechanistic insights into the chemistry of the problem. The core of the method

1 René Thom (1923–2002) was an eminent French mathematician and 1958 Fields Medalist credited 
for several noted contributions to topology including being the principal developer of Catastrophe 
Theory (along with British Mathematician Prof. Sir E. Christopher Zeeman (1925–2016)) who 
widely popularized the theory). 
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that will be expanded on the pages of this book is the abstract linear algebraic repre-
sentation of a molecular electronic structure in terms of an electron Localization-
Delocalization Matrix, or LDM—which is the subject of analysis as a powerful 
molecular descriptor. 

In performing such an LDM analysis, one starts from electronic structure calcu-
lations, typically of the Density Functional Theory type [4–6] (with a moderate-to-
relatively-large basis set as much as the compromise of speed and accuracy allows). 
The resulting electronic structure is then summarized at an atomic/atomic pair level of 
“coarseness” [7] using Bader’s Quantum Theory of Atoms in Molecules (QTAIM) 
[8, 9] by extracting the so-called localization and delocalization indices (LIs and 
DIs, respectively) [10]. These indices describe the electronic structure in terms of the 
number of electrons that are, on average, localized within atomic basins and those that 
are shared (delocalized) between every atomic pair in the molecule whether chem-
ically bonded or not. The sharing is naturally more significant when there exists 
a bonding interaction linking the two atoms but it is not zero otherwise. One can 
describe the bond path (lines of maximal electron density that link bonded atoms in 
real space) as “privileged exchange channels” [11] since electron sharing is mediated 
by the exchange symmetry of the wavefunction. 

These LIs and DIs can clearly be arranged in matrix format not dissimilar to the 
charge and bond order matrix, an archaic name to what is now more commonly 
known as the density matrix, listing the bond orders as its off-diagonal elements 
leaving the diagonal ones for atomic populations [12–15]. The arrangement of the 
LIs and DIs of a given molecule in matrix format yields what we term the elec-
tron Localization-Delocalization Matrix (LDM). LDMs are rich in coded chemical 
information since they capture and summarize elegantly the electron distribution 
reflecting, at once, aspects of both the molecular electron density (e.g., atomic elec-
tron populations, atomic charges, atomic contributions to higher molecular multi-
poles) and of the electron pair density distributions (e.g., the delocalization/sharing of 
electrons between atoms through the mechanism of exchange) at an atomic-diatomic 
resolution. 

Chemical Graph Theory has a long tradition of summarizing molecular topology 
into topological (connectivity) matrices [16–29]. Meanwhile, any matrix repre-
senting a set of connected objects—is numbering/labeling dependent since there 
exist n! way to arrange n distinguishable objects (except when symmetry reduces this 
number). Chemical graph theorists extract matrix invariants from these matrices as a 
means to uniquely describe molecules [16–29]. Instead of re-inventing the wheel, we 
follow the chemical graph theorists’ footsteps to extract invariants from the LDMs, 
albeit by introducing new ways to do so such as the Frobenius distance between 
matrices or using statistical methods such as Principal Component Analysis. 

Balasubramanian, in a far-sighted article [23], proposed three decades ago the 
“[i]ntegration of graph theory and quantum chemistry" and underscored the corre-
spondence of graph-theoretical graphs whether within Chemical Graph Theory or as 
the complete set bond paths defined within QTAIM [8, 30]. This book is an attempt 
to fulfill Balasubramanian’s vision by extending and expanding the now decade-old
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proposal to achieve such a merger [31]. The antecedents of this book have appeared 
in the following key references: [31–39]. 

The book starts with a review of the physical description of electron localization 
and delocalization in molecular quantum mechanics (Chapter 2). The exposition 
then moves to review, in Chapter 3, the basic tenets of Bader’s QTAIM, especially 
with regard to how it defines LIs and DIs in terms of the six-dimensional integrals 
of the Fermi hole density. The chapter emphasizes the strong connection between 
these 2-electron mathematical indices and several experimentally measured quanti-
ties. This connection reinforces the idea that these indices condense much chemical 
information. Chapter 4 defines the LDMs and related matrices and explores methods 
to define molecular similarity or proximity in this context. The chapter then discusses 
briefly some of the challenges to this kind of representation of molecular structure 
and proposes some possible solutions. The chapter shows how solutions to these 
challenges can lead to the modeling of molecular behavior in terms of the LDMs by 
predicting properties such as boiling points, pKa’s of weak acids, and λmax of substi-
tuted benzoic acids. Chapter 5, discusses the approach to molecular fingerprinting 
using LDMs and several technical and programming details to automate the imple-
mentation of this type of analysis by introducing the programme AIMDELOC with 
examples of application. In anticipation of the following application-centered chap-
ters, Chapter 6 reviews the basics of Principal Component Analysis (PCA) since this 
analysis is applied in subsequent chapters to extract invariant descriptors from the 
LDMs. A general protocol for how to apply PCA to LDMs in property modeling is 
introduced in this chapter. The following chapters (Chapters 7–9) are all about the use 
of PCA to extract invariant molecular descriptors from the LDMs. Chapter 7 outlines 
a PCA of the LDMs of corrosion inhibitors. The analysis results in robust predictive 
modeling of corrosion inhibitors’ efficiency and, further, provides valuable insight 
into the mechanism of some of the studied corrosion inhibitors pinpointing what 
may have been overlooked in the literature as the active species of (at least) three 
stress corrosion cracking inhibitors containing sulfhydryl groups (R−SH). Chapter 8 
applies this analysis to mosquito repellency showing how it can be used to classify 
odorants and in shedding light into the modes of action of the repellents. Chapter 9 
demonstrates the usefulness of the LDM-PC analysis in predicting enzyme–substrate 
interaction, for example, the action of acetylcholine esterase inhibitors as Alzheimer’s 
Disease retarding drugs. LDM-PC analysis is also shown of value in the predictive 
modeling of the bioremediation approach to clean organophosphorous environmental 
toxicants and chemical warfare agents. Chapter 10 explores the extension of LDM 
Analysis to very large molecules via the two fragmentation approaches aiming at 
increasing the speed of the calculation by recombining the LDMs of small fragments 
to approximate the LDM of the large molecule. Chapter 11 concludes this book by 
summarizing the main points to be retained and possible future developments. 

In closing, it is stressed that the topic of this book is a work in progress. The field is 
still young but certainly appears promising in providing “insight and numbers”. The 
LDMs, in themselves, are elegant mathematical summaries of complex molecular 
electronic structures.
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21. Randić M (1990) Design of molecules with desired properties: a molecular similarity approach 
to property optimization. Concepts and applications of molecular similarity, Wiley, New York 

22. Bonchev D, Rouvray DH (1991) Chemical graph theory: Introduction and fundamentals. OPA, 
Amsterdam 

23. Balasubramanian K (1994) Integration of graph theory and quantum chemistry for structure-
activity relationship. SAR & QSAR Eviron Res 2:59–77 

24. Diudea MD, Gutman I, Lorentz J (1999) Molecular topology. Nova Science Publishers Inc., 
Hauppauge, NY 

25. Bonchev D, Rouvray DH (2003) Complexity in chemistry: introductions and fundamentals. 
Taylor and Francis, London



References 5
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