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Chapter 1 
General Introduction 

1.1 Psychological Assessment and Normative Data 

Psychological assessment refers to the process of collecting and interpreting 
information that relates to a tested person’s latent characteristics (Coaley 2009). 
A latent characteristic cannot be directly observed but instead has to be inferred 
indirectly from the person’s observable behavior. The observable behavior can 
be elicited using standardized testing procedures, rating scales, questionnaires, 
structured interviews, and so on. For example, a latent characteristic that cannot 
be directly observed is verbal memory. A large number of standardized testing 
procedures to assess verbal memory have been developed, of which Rey’s Verbal 
Learning Test (VLT; Rey 1958) is one of the most commonly used procedures. In the 
VLT, 15 monosyllabic words are presented in 5 subsequent learning trials with a free 
recall procedure immediately following each trial. After a delay of approximately 
20 minutes (and unexpectedly for the tested person), there is an additional free 
recall trial. The final part of the VLT consists of a recognition test, involving yes/no 
recognition of the 15 words intermixed with 15 non-target words. The observable 
behavior in the VLT consists of the words that are recalled or recognized by the 
test participants across the different trials. For example, the VLT Total Recall score 
corresponds to the total number of correctly recalled (non-repeated) words over the 
5 learning trials. This test score is assumed to capture a tested person’s latent overall 
verbal memory and learning abilities (Lezak 1995; Mitrushina et al. 2005; Van der 
Elst et al. 2005). 

The Need for Normative Data 
The majority of psychological testing procedures are norm-referenced (Coaley 
2009; Mitrushina et al. 2005; Strauss et al. 2006; Van der Elst 2006). This means 
that a raw test score (e.g., the VLT Total Recall score) cannot be interpreted 
in a meaningful way by itself. For example, suppose that a patient who has 
memory complaints is referred to a neuropsychologist for cognitive testing. The 
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[b] Distribution of the VLT Total Recall 
score in the normative sample 
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Fig. 1.1 Distributions of the VLT Total Recall scores in the normative population (.N = 5 million; 
see panel (a)) and in the normative sample (.N = 1000; see panel (b)). The vertical dotted line is the 
raw VLT Total Recall score . = 25 that is obtained by a tested patient who has memory complaints 

neuropsychologist administers the VLT to the patient, who obtains a raw VLT Total 
Recall score . = 25. Based on this information alone, it cannot be determined whether 
the patient’s test score is low, average, or high. To make the latter type of claim, a 
reference distribution of the raw VLT Total Recall score is needed such that the 
relative position of the raw test score in the population can be estimated (Capitani 
2019; Coaley 2009; Mitrushina et al. 2005). A reference distribution for the test 
score can be obtained by administering the test at hand in a large normative sample. 
For example, suppose that it is of interest to establish normative data of the VLT 
Total Recall score for Dutch-speaking adults who live in Belgium. To this end, the 
VLT is administered in a large representative normative sample (e.g., .N = 1000) 
of test participants who are randomly drawn from the normative population (here: 
all Dutch-speaking adults who live in Belgium).1 By means of illustration, Fig. 1.1a 
shows a histogram of the distribution of the VLT Total Recall scores in the entire 
normative population (here: .N = 5 million cognitively healthy Dutch-speaking 
adults who live in Belgium).2 Figure 1.1b shows the distribution of the VLT Total 
Recall scores in a randomly drawn normative sample of .N = 1000 test participants. 
The latter distribution provides an empirical frame of reference to determine the 
relative position of a VLT Total Recall score. For example, based on this reference 
distribution, it can be readily observed that the VLT Total Recall score = 25 that

1 Often the normative sample is drawn from a subset of the normative population. For example, 
the normative population for a verbal memory test like the VLT will typically exclude people 
who have severe cognitive disorders (e.g., people who are diagnosed with Alzheimer’s disease or 
frontotemporal dementia). The reason for this is that one is often primarily interested in obtaining 
reference data that reflect the population distribution of the test scores for “typical” test participants 
who have “normal” ability levels in a normative data context. 
2 These are simulated data. The population distribution of the test scores is never known in real-
life normative studies, because it is not feasible to test the entire population. For some tests, a large 
proportion of the normative population can be tested (e.g., for standardized school tests), but even 
then the entire population distribution is not known due to missing data (e.g., children who were 
not tested due to illness). 
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was obtained by the tested patient is low. Indeed, only a small fraction of the 
cognitively healthy test participants in the normative sample obtained a VLT Total 
Recall score that is equal to or below 25 (see the area on the left of the vertical 
dotted line in Fig. 1.1b). Under the assumption that the normative sample is a 
representative sample from the normative population (which is the case here, as 
random sampling was used), it can be inferred that the same holds for the normative 
population. 

The approach of determining the relative position of a raw test score through 
visual exploration of the reference distribution is inherently subjective and impre-
cise. Normative data are essentially used to objectify this endeavor, i.e., they allow 
for estimating the relative position of a raw test score in the normative population 
in a more quantitative and statistically principled way. Several methods have been 
developed to derive normative data, of which the traditional and the regression-
based methods are the most commonly used. 

1.2 The Traditional Normative Method 

Traditional normative data simply consist of the mean and the standard deviation 
(SD) of the raw test scores in the normative sample. Based on these two summary 
statistics, the raw score of a tested person is converted into a standardized test score 
in the following way: 

.̂υ0 = Y0 − μ̂Yi

σ̂Yi

, (1.1) 

where:

• . ̂υ0 is the standardized test score.
• . Y0 is the raw test score that is being standardized.

• .μ̂Yi
= 1

N

N
∑

i=1
Yi is the mean of the raw test scores in the normative sample.

• .̂σYi
=

√

√

√

√

√

N
∑

i=1

(

Yi − μ̂Yi

)2

N − 1
is the SD of the raw test scores in the normative 

sample.
• i is the subscript that refers to the test participants in the normative sample, with 

.i = {1, 2, . . . , N} and .N = the total number of test participants in the normative 
sample. 

Observe that the hat-notation is used in the above expression to distinguish estimated 
from true values. For example, . μY is the true (i.e., population-level) mean test score, 
whereas .μ̂Y is an estimate of the true mean test score that is based on the normative 
sample.
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The standardized test score . ̂υ0 is a metric of relative position that quantifies how 
many SD units the raw test score at hand (. = . Y0) is below the mean in the normative 
sample (see the . ̂σY and .μ̂Y in the denominator and numerator of expression (1.1), 
respectively). For example, in the normative sample of the VLT Total Recall score 
(that is shown in Fig. 1.1b), .μ̂Y = 45.066054 and .̂σY = 10.033027. In the  
traditional normative approach, these summary statistics are used to standardize the 
raw test scores. To illustrate this, consider again the raw VLT Total Recall score 
.Y0 = 25 that was obtained by the tested patient who has memory complaints. The 
standardized test score . ̂υ0 for the tested patient corresponds to (see expression (1.1)): 

. ̂υ0 = Y0 − μ̂Yi

σ̂Yi

= 25 − 45.066054

10.033027
= −2.

As can be seen, .̂υ0 = −2, and thus the raw VLT Total Recall score .Y0 = 25 of 
the tested patient is 2 SD units below the mean of the VLT Total Recall test score 
in the normative sample. To further facilitate the interpretation of the standardized 
test scores, the obtained .̂υ0-values are typically converted into percentile ranks. A  
percentile rank quantifies the percentage of test scores that are equal to or lower 
than the raw test score at hand. Under the assumption that the standardized test 
scores are normally (or Gaussian) distributed, it is straightforward to convert . ̂υ0
into a percentile rank . ̂π0. Indeed, this can be done by computing the Area Under the 
Curve (AUC) between .−∞ and . ̂υ0 of the standard normal distribution (i.e., a normal 
distribution mean . = 0 and .SD = 1). This is illustrated in Fig. 1.2, which shows 
the standard normal distribution (see the solid line) and a number of standardized 
test scores . ̂υ0 with their corresponding AUC values and percentile ranks . ̂π0 (see 
the vertical dashed lines). For example, the figure shows that the standardized VLT 
Total Recall score .̂υ0 = −2 that was obtained by the tested patient corresponds to 
a percentile rank .̂π0 = 2 (see the gray shaded area in the figure). This percentile 
rank is obtained by computing the AUC between .−∞ and .̂υ0 = −2 (which equals 
.0.02; for details, see Chap. 3), and multiply the obtained value by 100 to express it 
as a percentage.3 It can thus be concluded that an estimated .2% of the people in the 
normative population have a standardized test score . ̂υ0 that is equal to or below . −2
(or equivalently, that an estimated .2% of the people in the normative population have 
a raw VLT Total Recall score . Y0 that is equal to or below 25). The raw VLT Total 
Recall score .Y0 = 25 that was obtained by the patient who has memory complaints 
is thus poor, as an estimated .98% of the people in the normative population have a 
raw test score that is higher than 25.

3 In Appendix A.1, a comprehensive table of .̂υ0-scores and their corresponding . ̂π0 is provided. 
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1.3 Issues with the Traditional Normative Method 

As was illustrated in the previous section, the traditional normative approach is 
straightforward and simply consists of computing the mean and the SD of the 
raw test scores in the normative sample. These summary statistics are then used to 
standardize the raw test score . Y0 of interest (see expression (1.1)), and the obtained 
.̂υ0-value is subsequently converted into an easy-to-interpret percentile rank . ̂π0 based 
on the standard normal distribution (see Fig. 1.2 and Appendix A.1). 

In many real-life normative analyses, the raw test score at hand is impacted by 
independent variables such as Age, Gender, Level of Education, Ethnicity, and so on 
(Lezak 1995; Mitrushina et al. 2005; Strauss et al. 2006). For example, the “normal” 
VLT Total Recall score of an 80-year-old male is quite different from the “normal” 
test score of a 25-year-old female. Indeed, being older and being male adversely 
impact the VLT Total Recall scores (Mitrushina et al. 2005; Van der Elst et al. 
2005). To compare apples with apples, the impact of such independent variables on 
the test score at hand should be properly accounted for in the normative data. In the 
traditional normative approach, this is done by splitting the normative sample into 
subgroups (Mitrushina et al. 2005; Van Breukelen & Vlaeyen 2005; Van der Elst 
et al. 2006). Subgroup-specific means and SDs are then used in expression (1.1) to  
standardize the raw test score . Y0. To illustrate this, consider again the normative 
sample of the VLT Total Recall score that was shown earlier in Fig. 1.1b. This 
normative sample included a total of .N = 1000 test participants, of whom . N = 484

0.
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1
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0.
3

0.
4 

μ̂Y − 2σ̂Y μ̂Y − σ̂Y μ̂Y μ̂Y + σ̂Y μ̂Y + 2σ̂YRaw test score Y0 

Standardized test score υ̂0 −2 −1 0 1 2  

Area Under the Curve 0.02 0.16 0.50 0.84 0.98 

Percentile rank π̂0 2 16 50 84 98 

Fig. 1.2 Density of the standard normal distribution, with raw test scores . Y0 and their correspond-
ing standardized test scores . ̂υ0, AUC values, and percentile ranks . ̂π0. The gray shaded area is the 
AUC between .−∞ and .̂υ0 = −2 that corresponds with a percentile rank .̂π0 = 2
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were females and .N = 516 were males. Figure 1.3 shows the Gender-specific 
distributions of the VLT Total Recall scores in the normative sample. It is well-
known that females outperform males on verbal learning tests (Lezak 1995; Schmidt 
1996; Van der Elst et al. 2005), and the same holds in the example VLT Total Recall 
normative sample. Indeed, the mean (SD) VLT Total Recall scores for females and 
males equal .47.247900 (.9.594400) and .43.019400 (.10.269400), respectively. The 
mean VLT Total Recall score of females is thus substantially higher than the mean 
score of males (i.e., .47.247900 versus .43.019400, respectively). To account for 
the impact of Gender on the VLT Total Recall scores, subgroup-specific summary 
statistics are used to conduct the normative conversions in the traditional approach.4 

For example, suppose that the tested patient who obtained a raw VLT Total Recall 
score .Y0 = 25 is a female. Her .̂υ0-score would equal: 

. ̂υ0 = 25 − 47.247900

9.594400
= −2.318842,

with corresponding percentile rank .̂π0 = 1 (see Appendix A.1). On the other hand, 
when the tested patient would have been a male, his .̂υ0-score would equal: 

. ̂υ0 = 25 − 43.019400

10.269400
= −1.754670,

with corresponding .̂π0 = 4 (see Appendix A.1). The same raw VLT Total Recall 
score .Y0 = 25 thus corresponds to a different percentile rank . ̂π0 for females 
and males because a Gender-specific reference distribution is used to estimate the 
relative position of . Y0 in the normative population (see Fig. 1.3). 

As can be seen, the traditional normative approach accounts for the impact of an 
independent variable on the test score at hand in a very straightforward way, i.e., by 
splitting the normative sample into subgroups. Unfortunately, this simple approach 
has some fundamental problems. 

1.3.1 The Boundary Problem 

A first problem with the traditional normative approach is that it cannot properly 
account for quantitative independent variables. A quantitative independent variable 
can take many possible outcome values that have a true numeric interpretation. 
For example, Age is a quantitative independent variable because it can take many 
possible outcome values (e.g., a tested person in the normative sample can be aged

4 In a real-life normative analysis, a formal statistical test is typically conducted to decide 
whether an independent variable (like Gender) should be accounted for in the normative data (see 
subsequent chapters). It is assumed here that Gender has a statistically significant impact on the 
mean VLT Total Recall score. 
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Fig. 1.3 Distributions of the raw VLT Total Recall scores for females (.N = 484; see panel (a)) 
and males (.N = 516; see panel (b)) in the VLT Total Recall normative sample 

.20.00, . 20.01,  . . . ,  .80.00 years) that have a true numeric interpretation (e.g., we 
can say that a tested person who is aged .40.00 years is twice as old as a tested 
person who is aged .20.00 years). As was described above, the traditional normative 
approach accounts for the impact of an independent variable on the test score at hand 
by splitting the normative sample into subgroups. For example, when Gender has to 
be accounted for in the normative data, female and male subgroups are used. Such 
an approach is evidently not possible for quantitative independent variables because 
such variables have a large number of possible outcome values by definition. To 
illustrate this, consider again the example normative sample of the VLT Total 
Recall score that was already shown earlier in Fig. 1.1b. The test participants in 
this normative sample were aged between .20.00 and .80.00 years. Figure 1.4a shows  
a scatterplot of the VLT Total Recall test scores (on the Y -axis) against Age in years 
(on the X-axis) in the normative sample. As can be seen, Age clearly has a strong 
negative impact on the VLT Total Recall score, and thus Age-corrected normative 
data should be provided (it is assumed here that Age has a significant impact on the 
test score, see subsequent chapters). There are however a total of 927 unique Age 
values in the normative sample. It obviously makes no sense to split the normative 
sample for all possible outcome values of Age (as was done for Gender) because 
most of the obtained subgroups would consist of only one test participant. 

In the traditional normative approach, this issue is dealt with by discretizing the 
quantitative independent variable. For example, in the VLT Total Recall normative 
sample, the quantitative independent variable Age could be discretized into 6 
subgroups that each have a span of approximately 10 years, i.e., as .(20.00, 30.00], 
.(30.00, 40.00], . . . and .(70.00, 80.00] years.5 The Age subgroup-specific means and 
SDs are then used in expression (1.1) to perform the normative conversions. There 
are however several problems with this method:

5 In the notation that is used for the Age subgroup intervals, a round bracket (i.e., the “(”-symbol) 
indicates that the specified value is not included in the interval, whereas a square bracket (i.e., the 
“]”-symbol) indicates that the specified value is included in the interval. For example, the Age 
subgroup .(20.00, 30.00] contains test participants who are aged .>20.00 years and .≤30.00 years. 
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• It is implicitly assumed that the Age subgroup-specific means and SDs follow a 
step-function, i.e., that the means and SDs within an Age subgroup are identical. 
This is visually illustrated in Fig. 1.4b, which shows the subgroup-specific means 
for the VLT Total Recall scores (see the horizontal lines) in the different Age 
subgroups (indicated by the vertical dashed lines). Such an assumption is clearly 
unrealistic, i.e., the overall pattern in the normative sample suggests that the 
relation between Age and the (mean) VLT Total Recall score is of a more smooth 
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[a] VLT Total Recall score against Age [b] Mean VLT Total Recall scores for Age subgroups 
(20.00, 30.00], (30.00, 40.00], ... (70.00, 80.00] years 

[c] Mean VLT Total Recall scores for Age subgroups 
(20.00, 21.00], (21.00, 22.00], ... (79.00, 80.00] years 

[d] Mean VLT Total Recall scores as a function 
of Age (non−discretized) 

[e] Mean VLT Total Recall scores as a function 
of Age (non−discretized) and Gender 

Fig. 1.4 Scatterplot of the VLT Total Recall scores against Age (see panel (a)) that is supple-
mented with the mean VLT Total Recall scores for Age subgroups .(20.00, 30.00], .(30.00, 40.00], 
. . . and  .(70.00, 80.00] years (see panel (b)), with the mean VLT Total Recall scores for Age 
subgroups .(20.00, 21.00], .(21.00, 22.00],  . . . and .(79.00, 80.00] years (see panel (c)), with the 
mean VLT Total Recall scores that are modeled as a function of Age (not-discretized in Age 
subgroups; see panel (d)), and with the mean VLT Total Recall scores that are modeled as a 
function of both Age (non-discretized) and Gender (see panel (e))
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and gradual nature (see Fig. 1.4a) – as opposed to a step-function with abrupt 
changes in the means for different Age subgroups.

• When a quantitative independent variable is discretized, the so-called boundary 
problem is encountered (Capitani 2019). To illustrate this phenomenon, consider 
a scenario where a patient who has memory complaints is administered the VLT 
at his or her 70th birthday versus a few days later. Suppose that the patient 
obtained a raw VLT Total Recall score .Y0 = 25. In the first scenario (where 
the patient is aged exactly .70.00 years), the raw test score is standardized using 
the mean and the SD of the VLT Total Recall score in the .(60.00, 70.00] years 
Age subgroup, yielding .̂υ0 = 25−38.225610

5.769952 = −2.292153 with corresponding 
percentile rank .̂π0 = 1 (see Appendix A.1). In the second scenario (where the 
patient is aged .70.01 years at the time of test administration), the mean and SD 
in the .(70.00, 80.00] years Age subgroup are used to perform the normative 
conversion, yielding .̂υ0 = 25−32.242424

6.357396 = −1.139212 with corresponding 
percentile rank .̂π0 = 13. The small difference in the timing of the test 
administration thus has a dramatic impact on the obtained percentile ranks (i.e., 
.̂π0 = 1 versus 13), which is obviously not acceptable (Capitani 2019).

• The number of subgroups and the specific bounds that are used in the dis-
cretization of a quantitative independent variable are determined arbitrarily in 
the traditional normative approach (Parmenter et al. 2010). For example, instead 
of using 6 Age subgroups with intervals .(20.00, 30.00], .(30.00, 40.00],  . . . and  
.(70.00, 80.00] years, we could alternatively have discretized Age into 3 Age 
subgroups with intervals .(20.00, 40.00], .(40.00, 60.00], and . (60.00, 80.00]
years. No proper justification can be given as to which of these discretization 
schemes is “the best,” but the choice for one discretization scheme or the other 
can nonetheless have a major impact on the norms that are obtained in the 
traditional normative method. To illustrate this, consider a .61.00-year-old patient 
who obtained a raw VLT Total Recall score .Y0 = 25. When the first discretization 
scheme of Age is used, the raw test score will be standardized using the mean 
and the SD of the VLT Total Recall score in the .(60.00, 70.00] Age subgroup, 
yielding .̂υ0 = 25−38.225610

5.769952 = −2.292153 with corresponding percentile rank 
.̂π0 = 1. When the second discretization scheme is used, the raw test score would 
be standardized using the mean and the SD of the VLT Total Recall score in 
the .(60.00, 80.00] Age subgroup, yielding . ̂υ0 = 25−35.224924

6.762377 = −1.512031
with corresponding percentile rank .̂π0 = 7. As can be seen, the essentially 
unjustifiable choice for one discretization scheme of Age or the other has again 
a major impact on the norms that are obtained in the traditional normative 
approach. So even though exactly the same normative sample is used in both 
analyses, a substantially different set of norms would be obtained.
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1.3.2 The Splitting Problem 

A potential solution for the boundary problem is to use narrower subgroups in 
the discretization of the quantitative independent variable at hand. For example, 
if we would discretize Age into very narrow subgroups with a span of only 1 
year, the boundary problem would be substantially reduced. Unfortunately, at the 
same time the so-called splitting problem would become more pronounced. The 
splitting problem refers to the phenomenon that dividing the normative sample into 
subgroups reduces the precision by which the subgroup-specific summary statistics 
can be estimated. Indeed, it is well-known that the precision by which summary 
statistics such as the mean and the SD can be estimated is strongly impacted by the 
sample size. To illustrate this, consider the standard errors of the means and SDs, 
respectively:6 

.̂σμY
= σ̂Yi√

N
, (1.2) 

.̂σσY
= σ̂Yi√

2(N − 1)
. (1.3) 

The above expressions immediately show that the use of more narrow subgroups 
in the discretization of a quantitative independent variable (to try to deal with the 
boundary problem) will substantially reduce the precision of the estimated means 
and SDs. Indeed, this will result in smaller subgroup-specific sample sizes N and 
thus in larger standard errors for the summary statistics (because the .

√
N and 

.
√

2(N − 1) components in the denominators of expressions (1.2) and (1.3) will 
decrease). When the means and the SDs of the test scores in the normative sample 
are estimated with a larger standard error (or equivalently, with a lower precision), 
the same will obviously hold for the .̂υ0- and .̂π0-values because the latter metrics of 
relative position are functions of the estimated means and SDs (see Sect. 1.2). 

To illustrate the splitting problem, consider again the VLT Total Recall normative 
sample and suppose that we would discretize Age into narrow subgroups that 
each have a span of approximately 1 year (i.e., as .(20.00, 21.00], .(21.00, 22.00], 
. . . and .(79.00, 80.00] years). As noted above, this would substantially reduce the 
boundary problem – but at the same time the splitting problem would become very 
pronounced. Indeed, the normative sample would now have to be split into 61 Age 
subgroups, which each contain (on average) only approximately 16 test participants 
(i.e., .N = 1000/61 = 16.393440). As a result, the summary statistics would 
be estimated with poor precision (see expressions (1.2) and (1.3)). To illustrate 
this, Fig. 1.4c shows the mean VLT Total Recall scores for the 61 Age subgroups

6 The standard error of an estimated parameter like the mean or the SD reflects the uncertainty in 
the estimated values (i.e., the sample-to-sample variability, see Chap. 3). When the standard error 
increases, the precision of the estimated summary statistic decreases. 
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in the normative sample (see the small horizontal black lines). It can be readily 
observed that the means jump up and down from one Age subgroup to another 
in a rather inconsistent way. For example, the estimated mean VLT Total Recall 
score for 50-year-old test participants equals .42.666667, whereas the estimated 
mean VLT Total Recall score for 55-year-old test participants equals .44.111111. 
It is very unlikely that the true (i.e., population-level) mean VLT Total Recall score 
of 55-year-old people is higher than the true mean score of 50-year-old people, 
because the vast majority of the cognitive ageing studies have shown that there 
is a consistent negative impact of Age on the verbal memory abilities of adults 
(Hedden & Gabrieli 2004; Van der Elst & Jolles 2012). Instead, the inconsistent 
pattern in the sample means of the VLT Total Recall scores across the different 
Age subgroups is attributable to the splitting problem, i.e., the phenomenon that the 
subgroup-specific means and SDs are estimated with poor precision after splitting 
the normative sample into many subgroups. 

Observe that the splitting problem and the boundary problem are inversely related 
to each other. Indeed, the boundary problem can be ameliorated by using narrower 
subgroups in the discretization of a quantitative independent variable – but this 
results in an exacerbation of the splitting problem and vice versa. 

Fine-Grained Norms and Sample Size Requirements 
The splitting problem is not only an issue in the discretization of quantitative 
independent variables, but it also makes it difficult to derive fine-grained normative 
data that account for multiple independent variables. The reason for this is that 
the consideration of each additional independent variable will further reduce the 
sample size per subgroup. For example, suppose that we would like to account for 
the impact of both Gender and Age on the VLT Total Recall score. Even if we 
would totally ignore the boundary problem and it would be acceptable to use, e.g., 
Age subgroups with a span of 5 years, the normative sample would have to be split 
into a total of 26 subgroups (i.e., .2·13 Gender by Age subgroup combinations). This 
would result in subgroup-specific sample sizes of (on average) only approximately 
39 test participants (i.e., .N/26 = 38.461540). It obviously makes no sense to derive 
normative data based on such small samples. 

In fact, recommendations regarding the minimum subgroup-specific sample sizes 
in the traditional normative approach vary substantially and range between . N = 75
and 300 (Bridges & Holler 2007; Charter 1999; Evers et al. 2009; Piovesana & 
Senior 2018). Even in the most optimistic scenario where .N = 75 per subgroup 
would be considered sufficient to achieve the required estimation precision for 
the summary statistics, it can be readily observed that very large sample sizes are 
typically needed in the traditional normative approach. Indeed, in the above example 
where it is of interest to derive normative data for the VLT Total Recall score that 
accounts for both Gender and Age (using Age subgroups with a span of 5 years), the 
total required sample size would be as large as .N = 1950 (. = .2 · 13 · 75). Moreover, 
each additional independent variable that is considered in the norms would increase 
the total sample size even further. For example, suppose that Level of Education 
(with 3 levels: low, average and high) would also have to be accounted for in the
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normative data. The total sample size would now correspond to .N = 5850 test 
participants (. = .2·13·3·75). So even in the most optimistic scenario (i) where . N = 75
per subgroup is considered to be sufficient to achieve a good estimation precision 
for the summary statistics, and (ii) where the boundary problem is ignored, very 
large sample sizes are typically needed in the traditional normative approach when 
multiple independent variables have to be accounted for. Conducting normative 
studies with such large sample sizes is often not feasible from a practical perspective 
because this would be a very time-intensive and costly endeavor. 

1.4 The Regression-Based Normative Approach 

This book focuses on regression-based methods to derive normative data (Zachary 
& Gorsuch 1985). In this approach, regression models that capture the mean and 
the residual structures in the normative dataset are used to derive norms (see later 
chapters). An important advantage of the regression-based normative method is that 
it can handle quantitative independent variables in a straightforward way without 
the need to discretize these. Indeed, in the regression-based normative approach the 
mean test scores are directly modeled as a function of the quantitative independent 
variable at hand. To illustrate this, consider again the example VLT Total Recall 
normative sample that was shown earlier in Fig. 1.4a. Figure 1.4d shows the model-
predicted mean test scores that are obtained in the regression-based approach (see 
the solid black line). As there is no need to discretize the quantitative independent 
variable Age, the issues that were discussed in Sect. 1.3.1 also do not occur:

• In the traditional normative method, the unrealistic assumption had to be made 
that the subgroup-specific means follow a step-function (see the horizontal lines 
in Fig. 1.4b).

• In the traditional normative approach, the boundary problem was encountered. 
For example, it was illustrated that a small difference in the timing of the test 
administration can have a dramatic impact on the obtained percentile ranks. 
Similarly, it was illustrated that the use of a different discretization scheme for the 
quantitative independent variable Age can have a major impact on the obtained 
normative data. 

Moreover, in the regression-based normative approach, all information from the 
entire normative sample is used when the mean and the residual structures are 
modeled. The issues that were detailed in Sect. 1.3.2 thus also do not occur:

• In the traditional normative approach, the normative sample had to be split into 
subgroups to account for the impact of independent variables. This adversely 
affects the precision of the estimated summary statistics. In contrast, the 
regression-based normative approach uses all available information in the 
normative sample to model the mean and the residual variance structures. This 
typically leads to a higher estimation precision (Van Breukelen & Vlaeyen 2005).
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[a] 99% Confidence Intervals of the mean VLT Total Recall scores for 
Age subgroups (20.00, 21.00], (21.00, 22.00], ... (79.00, 80.00] years 

[b] 99% Confidence Intervals of the mean VLT 
Total Recall score as a function of Age 

Fig. 1.5 .99% Confidence intervals of the mean VLT Total Recall scores for the Age subgroups 
.(20.00, 21.00], .(21.00, 22.00],  . . . and .(79.00, 80.00] years (panel (a)), and for the mean VLT 
Total Recall scores that are predicted based on a regression model (panel (b)) 

To illustrate this, Fig. 1.5a shows the .99% Confidence Intervals (CIs) of the mean 
VLT Total Recall scores for the Age subgroups .(20.00, 21.00], .(21.00, 22.00], 
. . . and  .(79.00, 80.00] years that are obtained when the traditional normative 
method is used. Figure 1.5b shows the .99% CIs for the mean VLT Total Recall 
scores that are obtained in the regression-based normative approach. It can be 
readily observed that the .99% CIs are substantially narrower when the regression-
based normative approach is used. The reason for this is that the summary 
statistics in the traditional normative approach are estimated for each subgroup 
separately. It is thus essentially assumed that the summary statistics of the VLT 
Total Recall score in one subgroup (e.g., in the .(20.00, 21.00] Age subgroup) 
tell us nothing about the summary statistics in another subgroup (e.g., in the 
.(21.00, 22.00] Age subgroup), and thus a lot of (potentially) useful information 
is ignored. For example, Fig. 1.1a clearly indicates that there is an approximately 
linear relation between Age and the (mean) VLT Total Recall scores in the 
normative sample. In the regression-based approach, this information is explicitly 
used in the normative analysis to achieve a higher estimation precision (see later 
chapters). 

Notice that even in the simplest normative analysis where one independent 
variable with two possible outcome values (a binary variable such as Gender) 
has to be accounted for, the traditional normative approach is often suboptimal. 
Indeed, in such a scenario the summary statistics are computed for each subgroup 
separately, but this is suboptimal for the SDs when certain assumptions hold (in 
particular, when the so-called homoscedasticity assumption is valid; for details, 
see subsequent chapters).

• The traditional normative approach strongly limits the number of independent 
variables that can be accounted for in the normative data. In contrast, regression-
based normative methods allow for deriving more personalized and fine-grained 
norms where the impact of multiple independent variables can be jointly taken 
into account. For example, suppose that it is of interest to derive normative data 
for the VLT Total Recall score that account for both Age and Gender. In the
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regression-based normative approach, all information in the normative sample is 
again used to model the mean and the residual variance structures as a function of 
Age and Gender in a straightforward way. This is visually illustrated in Fig. 1.4e, 
which shows the predicted mean VLT Total Recall scores as a function of Age 
for females (see the solid black line) and males (see the dashed black line). As 
all information is used in the analysis, more precise estimates of the means 
and the residual variances can be obtained in the regression-based normative 
approach (Van Breukelen & Vlaeyen 2005). This in turn results in lower sample 
size requirements. For example, Oosterhuis et al. (2016) found that regression-
based normative methods require a sample size that is .2.5 to .5.5 times smaller 
than what is the case for traditional normative methods to achieve the same 
levels of precision. This substantially reduces the time investment and cost of 
the normative study. 

As illustrated above, the regression-based normative approach has some substantial 
advantages over the traditional method (in particular when quantitative independent 
variables have to be accounted for, and/or when the normative analysis involves 
multiple independent variables), but at the same time it poses some additional 
challenges. Indeed, the use of the regression-based normative approach is more 
complex than the traditional method, because it involves the fitting of statistical 
models for the mean and the residual variance structures (in contrast to the 
traditional normative approach, which simply consists of computing subgroup-
specific means and SDs). If the models that are used to derive the normative data 
are not appropriate (e.g., a linear association between Age and the mean test score 
is assumed, whereas the true association is non-linear), the obtained normative data 
will be incorrect as well. Moreover, it is important to ensure that the distributional 
assumptions that are made in the regression-based normative method are valid 
because violations of one or more of these assumptions can lead to incorrect 
normative data (see subsequent chapters). 

1.5 Outline of the Book 

The remainder of this book is organized in 7 chapters. Chapter 2 provides a brief 
introduction to the R statistical programming language. R will be used throughout 
this book to illustrate the application of the regression-based normative methods 
in case studies. Readers who are familiar with R can skip this chapter. Chapter 3 
focuses on regression-based normative methods that account for one binary indepen-
dent variable. A binary independent variable has only two possible outcome values, 
such as Gender. Chapter 4 discusses the assumptions that are made in a regression-
based normative data setting and the remedial actions that can be taken when these 
assumptions are violated. Chapter 5 details regression-based normative methods 
that account for a (non-binary) qualitative independent variable. A qualitative 
independent variable has a limited number of possible outcome values that do not
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have a true numeric meaning (such as Level of Education). Chapter 6 focuses on 
regression-based normative methods that account for a quantitative independent 
variable (such as Age). Chapter 7 details regression-based normative methods that 
account for multiple independent variables simultaneously (i.e., any combination of 
binary, non-binary qualitative, and/or quantitative variables). Finally, in Chap. 8, a  
general approach is proposed to quantify the uncertainty in the obtained norms (i.e., 
the estimated percentile ranks) based on a bootstrap procedure. 

1.6 Setting the Scene 

Before delving into the regression-based normative approach in the subsequent 
chapters, it is important to establish some general comments and assumptions. 

Psychometric Properties of Test Scores 
As noted above, psychological assessment refers to the process of collecting 
and interpreting information that relates to a tested person’s latent characteristics 
(Coaley 2009). In psychological assessment, there is never a perfect agreement 
between a raw test score and the latent characteristic that is being assessed. The 
extent to which a raw test score (e.g., the VLT Total Recall score) adequately 
captures the latent characteristic at hand (e.g., the overall verbal memory and 
learning abilities of a person) is referred to as the validity of a test score. A 
necessary condition to have a high level of validity is that the test score should 
have a high level of reliability. Reliability essentially refers to the repeatability of 
a test score (e.g., over time or when using different raters/test administrators). A 
test score can only have high levels of reliability and validity when other peripheral 
conditions are fulfilled. For example, the procedure to administer the test should 
be properly standardized, there should be clear and objective scoring rules, and 
so on. This book focuses on regression-based methods to derive normative data. 
A prerequisite to derive normative data for any test score is that it should have 
sufficiently high levels of reliability and validity (and thus peripheral conditions 
such as the proper standardization of the test administration should be fulfilled as 
well). In the current book, it will be assumed that all raw test scores to be normed 
have good psychometric properties, without actually testing these.7 

Uncertainty in the Normative Data 
Normative data allow for converting a raw test score . Y0 into a metric of relative 
position such as a percentile rank . ̂π0. It is important to keep in mind that the 
obtained percentile ranks are estimates of the true percentile ranks in the normative 
population. Indeed, in a real-life normative analysis there is always uncertainty in

7 A wide range of methods to estimate the reliability and the validity of test scores have been 
developed. These methods are beyond the scope of this book, but the interested reader is referred 
to, e.g., Coaley (2009), Furr (2021), or Van der Elst et al. (2016). 
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the estimated percentile ranks . ̂π0 because the population distribution of the raw test 
scores is never known. This uncertainty is often not explicitly acknowledged in test 
manuals or other publications that provide normative data. For example, normative 
tables typically show the estimated percentile ranks without providing a metric of 
uncertainty (such as a CI or standard error for . ̂π0). The percentile ranks . ̂π0 (that 
are estimated based on a normative sample) are thus treated as if they are the true 
percentile ranks (i.e., as if they are estimated without any error), which is evidently 
not the case. The extent to which an estimated percentile rank corresponds to the 
true (i.e., population-level) percentile rank depends on several factors, such as the 
sample size of the normative study, how the normative sample was collected (e.g., 
whether random sampling was used), and the validity of the assumptions that were 
made in the derivation of the normative data. 

Details are provided in subsequent chapters, but it is good to always keep in mind 
that the percentile ranks (or other metrics of relative position) that are obtained in a 
normative procedure are always estimated with uncertainty. Chapter 8 will cover a 
general method for quantifying the uncertainty in the estimated percentile ranks. 

Item Response Theory 
As mentioned above, the majority of psychological testing procedures are norm-
referenced. This means that a raw test score cannot be interpreted in a meaningful 
way by itself (i.e., without normative data). This is particularly the case for tests 
that are rooted in the so-called Classical Test Theory (CTT). In CTT, the focus of 
the analyses is at the level of the total raw test score (e.g., the VLT Total Recall 
score), and score meaning is determined based on the relative position of the test 
score in a reference distribution (see above). 

In contrast, in Item Response Theory (IRT), the focus of the analyses is on 
the individual items of the test (e.g., the items of a questionnaire or a multiple-
choice test), and score meaning is determined by relating a tested person’s estimated 
ability level to the item properties (Embretson & Reise 2000). In IRT, the difference 
between a tested person’s ability level and the item characteristics has direct 
meaning by itself because both the ability levels and the item characteristics are 
calibrated on a common latent scale. For example, suppose that an IRT analysis is 
conducted on a rating scale for activities of everyday living that are challenging for 
older people (e.g., walking independently, cooking, taking the stairs, and so on). In 
IRT, a tested person’s estimated ability level is meaningful by itself in the sense that 
it can be directly related to the probabilities that this person can still conduct these 
activities (i.e., the probabilities that the tested person can walk independently, cook, 
take the stairs, and so on). Normative data are thus not strictly necessary to interpret 
test performance in a meaningful way in the IRT framework, although they can be 
useful in this setting as well (for an example, see Van der Elst et al. 2013a). 

Regression Models 
This book focuses on regression-based methods to derive normative data. Many 
different types of regression models have been developed. Throughout this book, the 
classical linear regression model that is based on ordinary least squares estimation
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will be used (for details on this model, see subsequent chapters). This model has the 
advantages (i) that most psychologists have at least a basic familiarity with it, (ii) 
that the model is straightforward to fit because closed-form expressions are available 
to estimate the relevant model parameters (in contrast to more complex models 
that use iterative estimation procedures, which may or may not converge in a real-
life normative analysis), (iii) that the underlying assumptions are straightforward 
to check, (iv) that model violations can be relatively easily remedied should they 
occur, (v) that the model parameters have a clear substantive interpretation (in terms 
of, e.g., the predicted mean test scores), and (vi) that the model is implemented in 
all standard statistical software packages (including R, SPSS, JMP, and SAS). 

Many other regression types of models have been developed in the statistical 
literature, such as quantile regression (Koenker 2005), Generalized Additive Models 
for Location, Scale and Shape (GAMLSS; Stasinopoulos & Rigby 2007), linear 
mixed-effects models (Verbeke & Molenberghs 2000), and multivariate regressions 
models (i.e., regression models that consider multiple test scores at the same time; 
Johnson & Wichern 2007). These models are more flexible than the classical 
linear regression model (i.e., they relax some of the assumptions that are made 
by the classical model), but they are also substantially more complex to fit. In the 
current book, the focus is on the classical linear regression model, and these more 
complex models are not considered. The interested reader can find examples of how 
normative data can be derived using quantile regression, GAMLSS, linear mixed-
effects models, and multivariate regression models in Crompvoets et al. (2021), 
Timmerman et al. (2021), Van der Elst et al. (2013b), and Van der Elst et al. (2017), 
respectively. 

Continuous Test Scores 
The classical linear regression model that is used in this book assumes that the 
dependent variable (i.e., the raw test score) is a continuous variable. A continuous 
variable is essentially a special case of a quantitative variable that can take an infinite 
number of real values between the lowest and highest values. In a psychological 
assessment context, the raw test scores are never truly continuous. For example, 
the VLT Total Recall score ranges between 0 and 75 and thus can take only 76 
possible outcome values (instead of an infinite number of outcome values). A time 
score could in principle be a continuous variable (e.g., the time that is needed to 
complete a cognitive test), but in practice this is also not the case because the 
actually measured value is rounded to, e.g., a whole second or to one decimal place. 

The fact that the raw test scores are not truly continuous is not problematic as 
long as (i) the number of possible outcome values for the test score at hand is 
sufficiently high (say, at least 10 possible outcome values), (ii) there is sufficient 
variability in the test scores, and (iii) the relevant assumptions are fulfilled for the 
fitted model (Fox 2016). 

Notation 
Throughout this book, Roman letters will be used to refer to the observed (or 
measured) independent and dependent variables. The letter Y refers to dependent
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variables (e.g., the VLT Total Recall score), and the letter X refers to independent 
variables (e.g., Age or Gender). Greek letters will be used to refer to true population 
parameters, and the hat-notation is used to distinguish true population parameters 
from their sample estimates. For example, .μY is the true mean test score in the 
normative population, and .μ̂Y is the estimated population mean based on the data 
in the normative sample. 

Furthermore, the subscript .i = .{1, 2, . . . N} will be used to index the test 
participants in the normative sample. The index .i = 0 is used to refer to a new 
person (not included into the normative study, e.g., a tested patient who has memory 
complaints). 
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Chapter 2 
The R Programming Language 

2.1 What Is R? 

Chapters 3 to 8 of this book focus on regression-based methods to derive normative 
data. Each of these chapters starts with a theoretical part, which is followed by a 
practical part in which the methodology is exemplified in two case studies. The 
R software will be used to conduct the normative analyses of the case studies. In 
recent years, R has become one of the most popular statistical software tools to 
analyze data. There are several reasons for this: 

• R is open-source software. In contrast to other major statistical software packages 
(such as SAS, JMP, or SPSS), no expensive software licenses are needed. 

• R is platform-independent and runs on all major operating systems, including 
Windows, MacOS, and Linux. 

• R is very capable “out of the box” and allows for conducting a wide range of 
classical statistical analyses (such as t- or  .χ2-tests, ANOVA, linear regression 
analysis, and factor analysis). In addition, the capabilities of R can be extended 
by thousands of freely available add-on packages (or libraries). These packages 
can be downloaded in a straightforward way (see Sect. 2.2), and they allow for 
conducting a wide variety of more specific statistical and graphical analyses. 
For example, the package NormData (that accompanies this book) allows 
for deriving regression-based normative data in a straightforward way (see 
subsequent chapters). 

• R has extensive graphical capabilities and can produce high-resolution plots of 
publication quality. 

• R is compatible with other programming languages, such as C++ and Python. 

The main disadvantage of R is that it has a relatively steep learning curve, 
particularly for people who have no prior programming experience. Indeed, R is 
a command-based software environment that has no point-and-click graphical user 
interface. 
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