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Preface 

By combinatorial semigroups, we mean a general term of concepts, facts and meth-
ods which are produced in investigating of algebraic and combinatorial properties, 
constructions, classifications and interrelations of formal languages and automata, 
codes, finite and infinite words by using semigroup theory (including congruences, 
homomorphisms, quotients and structural theory, etc.) and combinatorial analysis 
(including word sequence analysis, formal power series, operations of words and 
languages, etc.). As the main research objects in this field are the elements and 
subsets of the free semigroups and monoids and many combinatorial properties of 
these objects are closely related to algebraic theory of semigroups via certain kinds 
of transformations and congruences (such as syntactic congruences) as the medium, 
the field is named combinatorial semigroups in some literatures. 

The research contents of combinatorial semigroups belong to the cross-field of 
algebra and theoretical computer science, and the idea coincides with the natural 
languages of human beings and the machine languages of computer systems. This 
is the fundamental reason why the theory of semigroups can become the theoretical 
basis of many branches of theoretical computer science such as automata and formal 
languages, theory of codes, combinatorics of words, symbolic dynamics, and of 
contemporary artificial intelligence, modern communication technology, big data 
science and technology and so on. 

The systematic study of formal languages began at the beginning of the last 
century. In the 1940s and 1950s, under the impetus of the newly emerging 
computer science, it was developed rapidly. The most commonly used tools for 
studying languages are automata and grammars, both of which are effective tools 
for expressing languages. The simplest automata are finite automata, and the 
languages recognized by them are called regular languages. This type of languages 
is at the bottom of the Chomsky hierarchy of languages, and is one of the most 
important research objects of formal languages. The semigroup theory of languages 
started from the classification of regular languages. We know that every language 
determines a syntactic monoid. A language is a regular language if and only if its 
syntactic monoid is finite. 

v 
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With the development of the theory of formal languages and algebraic theory of 
semigroups, since the early 1970s, some scholars began to use syntactic monoids 
(or syntactic congruences) to define and study non-regular languages. Among them, 
the class of disjunctive languages put forward by Professor H. J. Shyr and others is a 
typical representative [113]. If the syntactic congruence of a language is the equality 
relation (that is, each congruence class is a singleton set), then the language is called 
a disjunctive language. For the systematic introduction to the theory of disjunctive 
languages and its generalizations, it is recommended to refer to Shyr ’s book [117]. 

Over any alphabet, the class of disjunctive languages is disjoint from the class 
of regular languages. Moreover, it has a certain antithesis to the class of regular 
languages in terms of definitions and properties. From the perspective of syntactic 
descriptions, it goes to the other “extreme” as opposed to the class of regular 
languages. Interestingly, when the alphabet contains only one letter, a language is 
either regular or disjunctive. When the alphabet contains at least two letters, the 
two extreme boundaries of disjunctive languages and regular languages will no 
longer coincide, resulting the occurrences of languages that are neither disjunctive 
nor regular (called midst-languages in [124]). In order to classify a large number 
of “midst-languages”, many scholars, starting from disjunctive languages and 
expanding language classes hierarchically, proposed “f-disjunctive languages” with 
each syntactic congruence class being a finite set, “i-disjunctive language” with each 
syntactic congruence class being an infix code, and “t-disjunctive language” (also 
called “nd-disjunctive language”) with each syntactic congruence class being a thin 
(i.e. non-dense) language and “relatively disjunctive language” with a “dense cross-
section”, and so on. 

The organization of the book is as follows: Chap. 1 is a preliminary chapter, 
in which some basic concepts and notations used throughout the book, including 
semigroups and monoids, free semigroups (monoids), finite and infinite words, 
languages, disjunctive (regular) and dense subsets in semigroups, primitive words, 
are introduced. 

The theory of codes takes its origin in the theory of information devised by 
Shannon in 1950s, which is a branch of theoretical computer science. The algebraic 
theory of codes, which mainly studies the construction, counting, classification 
and relations of codes satisfying certain algebraic and combinatorial properties, is 
closed related to the theory of formal languages, automata and semigroups. This 
area is not the main subject of the book. However, since many contents involving 
the constructions of (generalized) disjunctive languages and regular languages are 
closely related to the algebraic theory of codes, some selected topics are introduced 
in Chap. 2, including the method of defining codes by using dependence systems, 
the maximality and completeness of codes, and the detailed discussion of some 
special kinds of codes such as convex codes, semaphore codes and solid codes. For 
more information on the theory of codes, the readers are recommended to refer to 
the book [4] by J. Berstel, D. Perrin and C. Reutenauer, and some parts of the book 
[51, 57, 117]. 

The main topics of the book are regular languages and disjunctive languages 
and their various kinds of generalizations, which covers the contents from Chap. 3 



Preface vii 

to the last chapter. Regular languages and some generalizations are discussed in 
Chaps. 3, 6, and 8, and disjunctive languages and some generalizations are discussed 
in Chaps. 4–7. 

Chapter 3 discusses some selected topics of regular languages. The contents of 
the chapter can be divided into two parts. In Sects. 3.1–3.3, a brief introduction to 
the theory of regular languages, including the automata theory of regular languages 
and the equivalence of the three concepts of languages: regularity, recognizability 
and rationality, are given. This part is classical and elementary and can be found 
in many books on the theory of formal languages and automata. The second part 
(Sects. 3.4 and 3.5) introduces some special topics of regular languages such as 
some decompositions of regular languages and restricted Burnside problem of 
semigroups (which is related to regular languages). 

Chapter 4 mainly involves the disjunctive decompositions of languages. A 
language is said to be disjunctive decomposable if it can be decomposed into a 
disjoint union of several disjunctive languages. In 1970–1980s, when the study of 
disjunctive languages was becoming more popular, many scholars developed in-
depth researches on the disjunctive decompositions of languages. In this chapter, 
we first give a brief introduction to the theory of disjunctive languages, and then, 
give in detail some kinds of finite and infinite disjunctive decompositions of dense 
languages. 

Chapter 5 is devoted to the theory of f-disjunctive languages. This class of 
languages is a kind of generalized disjunctive languages which is located in the 
bottom of the hierarchy of generalized disjunctive languages. In this chapter, 
systematic characterizations of f-disjunctive languages are given. In particular, 
f-disjunctive domains and syntactic semigroups of f-disjunctive languages are 
discussed in detail. 

Generalizations of regular languages and disjunctive languages meet in Chap. 6. 
Relatively regular languages and relatively disjunctive languages are natural gener-
alizations of regular languages and disjunctive languages respectively. Systematic 
discussions of these two classes of languages are given in the chapter. As mentioned 
above, when the alphabet contains only one letter, all languages are divided into two 
disjoint classes: the class of regular languages and the class of disjunctive languages. 
When the alphabet contains at least two letters, the two extreme boundaries will no 
longer coincide. One of the main results of the chapter is that “In any finite alphabet, 
all languages are divided into two disjoint classes: relatively regular languages and 
relatively disjunctive languages”. This is a natural generalization of the classification 
of languages on one-letter alphabets, and in some sense give a corresponding 
classification of languages on finite alphabets. 

Chapter 7 presents a general theory of generalized disjunctive languages. By 
using universal algebra, a uniform characterization of syntactic semigroups of 
various kinds of generalized disjunctive languages is given. Moreover, two kinds 
of generalized disjunctive languages (i.e. q-disjunctive languages and qf-disjunctive 
languages) and a hierarchy of generalized disjunctive languages are described in 
detail. 
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In the last chapter, by using “permissible subsets”, we obtain a kind of gen-
eralized principal congruences determined by languages. Applying this kind of 
generalized principal congruences, we introduce and investigate a class of gener-
alized regular languages, namely, .PS-regular languages. By using the properties of 
this class of languages, some new characterizations of regular languages are given. 
Furthermore, the relationship among the class of .PS-regular languages, context-
free languages and context-sensitive languages, is also given in this chapter. 

Lanzhou, China Yuqi Guo 
Yuxi, China Yun Liu 
Kunming, China Shoufeng Wang 
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Chapter 1 
Basic Concepts and Notations 

In this preliminary chapter, we give a short account of some basic concepts 
and notations which will be used throughout the book. Section 1.1 contains the 
background knowledge in the general semigroup theory. Section 1.2 covers a short 
introduction to the theory of languages. In Sect. 1.3, we discuss dense subsets 
(languages) in semigroups. Dense subsets (languages) will play an important role 
throughout the book. In Sect. 1.4, we deal with a special but important class of 
words called primitive words which will be often used in the book. Some elementary 
properties of infinite words are involved in the last section. 

Howie’s books [36] and [38] are good references in elementary semigroup theory. 
The systemic introductions of language theory can be found in [17, 35, 37, 57, 117]. 
Items not defined in this book can also be found in these books. 

1.1 Semigroups (Monoids) 

A couple .(S, ·) is called a semigroup if S is a nonempty set and “. ·” is a binary 
operation satisfying associative law on S. This binary operation is usually called 
the multiplication on S. We often simply denote the above semigroup by S and also 
denote the multiplicative product .a ·b by ab for any .a, b ∈ S if no ambiguity arises. 

Let S be a semigroup. An element 1 (0) of S is called an identity (zero) of  S if 

. (∀s ∈ S) 1s = s1 = s

. ((∀s ∈ S) 0s = s0 = 0).

One can easily show that any semigroup contains at most one identity (zero). A 
semigroup containing an identity (zero) is called a monoid (semigroup with zero). 
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2 1 Basic Concepts and Notations

For instance, the set . N (. N0) of all positive (nonnegative) integers forms a 
semigroup (monoid) under the usual integer addition. But, . N (. N0) is a monoid 
(semigroup with zero) under the usual multiplication. 

Let .S
d= (S, ·) be a semigroup. We can extend S to .S1 d= (S1, ∗) and . S0 d= (S0, ◦)

as follows. 

. S1 =
{

S if S has an identity,
S ∪ {1} otherwise,

where .1 /∈ S, and for any .a, b ∈ S, 

. a ∗ b = a · b, 1 ∗ a = a ∗ 1 = a, 1 ∗ 1 = 1;

and 

. S0 =
{

S if S has a zero,
S ∪ {0} otherwise,

where .0 /∈ S, and for any .a, b ∈ S, 

. a ◦ b = a · b, 0 ◦ a = a ◦ 0 = 0, 0 ◦ 0 = 0.

If A and B are subsets of semigroup S, then we call 

. AB = {ab|a ∈ A, b ∈ B}

the product of A and B. Clearly, the power set .P(S) of S (the set consisting of all 
subsets of S) forms a semigroup under this operation. Denote 

. A1 = A, An+1 = AAn, A≤n =
nU

i=1

Ai, A≥n =
∞U

i=n

Ai, n ∈ N.

If S is a monoid with identity 1, then we also have the notation .A0 = {1}. For any 
.A,B ∈ P(S), we use .A−1B and .AB−1 to denote the set 

. {x ∈ S | ax ∈ B for some a ∈ A}

and the set 

. {x ∈ S | xb ∈ A for some b ∈ B}

respectively. In addition, we also simply write aA, Aa, .a−1A and .Aa−1 for .{a}A, 
.A{a}, .{a}−1A and .A{a}−1, where a is an element of S.



1.1 Semigroups (Monoids) 3

Let .(M, ·, 1) be a monoid, .a ∈ M . An element . a' of M is called a group inverse 
of a if .aa' = a'a = 1. .a ∈ M is called a unit of M if a has a group inverse in M . It  
is clear that any unit of M has a unique group inverse in M . The set of all units of 
M forms a group under the operation of M , which is called the group of units of M . 

A nonempty subset T of a semigroup S is called a subsemigroup of S, if  T is 
closed under the semigroup operation of S, that is, T forms a semigroup under the 
induced operation of S. If  T happens to be a monoid (group) under the operation of 
S, then T is called a submonoid (subgroup) of  S. For any nonempty subset X of S, 
the intersection of all subsemigroups of S containing X is clearly a subsemigroup, 
called the subsemigroup of S generated by X and denoted by . <X>, which is the 
minimal subsemigroup containing X. If  .S = <X>, then say S is generated by X 
or X is a generating subset of S. A semigroup generated by a singleton is called a 
monogenic semigroup. 

A nonempty subset I of a semigroup S is called an ideal (left ideal, right ideal, 
quasi-ideal) of  S if .IS ∪ SI ⊆ I (.SI ⊆ I , .IS ⊆ I , .SI ∩ IS ⊆ I ). It is easy 
to show that all subsets above mentioned are subsemigroups of S. An (left, right, 
quasi-) ideal is called a principal (left, right, quasi-) ideal if it can be generated by 
one element of S. Clearly, S itself is trivially an (left, right, quasi-) ideal of S. All  
other (left, right, quasi-) ideals are said to be proper. A semigroup has no proper 
(left, right, quasi-) ideal is called a (left, right, quasi-) simple semigroup. One can 
easily show that a semigroup is quasi-simple if and only if it is a group. 

The Monoid of Binary Relations 
Let X be a set. A  binary relation or simply a relation on X is a subset of .X × X. 
The set .B(X) of all binary relations on X forms a monoid under the operation of 
composition of relations 

. ρ ◦ σ = {(x, y) ∈ X × X | (∃z ∈ X) (x, z) ∈ ρ, (z, y) ∈ σ }.

Obviously, .ιX = {(x, x) | x ∈ X}, the  equality relation is the identity of the monoid. 
For .ρ ∈ B(X), we also write .xρy for .(x, y) ∈ ρ. 

We list some frequently used notations and notions about binary relations as 
follows. Let .ρ ∈ B(X). 

(1) .dom(ρ) = {x ∈ X | (∃y ∈ X) (x, y) ∈ ρ} is the domain of . ρ. Clearly, . x ∈
dom(ρ) if and only if .xρ

d= {y | (x, y) ∈ ρ} is not empty. 
(2) .im(ρ) = {x ∈ X | (∃y ∈ X) (y, x) ∈ ρ} is the image of . ρ. 
(3) .ρ−1 = {(x, y) | (y, x) ∈ ρ} is the inverse of . ρ. Clearly .dom(ρ−1) = im(ρ), 

.im(ρ−1) = dom(ρ). 
(4) .ρ1 = ρ, .ρn+1 = ρ ◦ ρn, .n ∈ N; .ρ∞ = U∞

n=1 ρn is the transitive closure of . ρ. 

A transformation (partial transformation) . ϕ on X is a relation such that for any 
.x ∈ X, .|xϕ| = 1 (.|xϕ| ≤ 1). The set of all transformation (partial transformation) 
is denoted by .T (X) (.PT (X)). Obviously, .T (X) is a submonoid of .PT (X) and 
.PT (X) is a submonoid of .B(X).
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An equivalence . ρ on X is a relation which is reflexive (i.e., .ιX ⊆ ρ), symmetric 
(i.e., .ρ−1 = ρ) and transitive (i.e., .ρ2 ⊆ ρ). The set of all equivalences on X is 
denoted by .E (X). 

A partition . π of X is a subset of .P(X) satisfying the following three condi-
tions: 

(1) For any .X' ∈ π,X' /= ∅; 
(2) For any .X', X'' ∈ π , .X' ∩ X'' /= ∅ implies .X' = X''; 
(3) .

U
X'∈π X' = X. 

The set of all partitions of X is denoted by .π(X). 
For any equivalence . ρ on X, the  quotient set .X/ρ = {xρ | x ∈ X} constitutes a 

partition . πρ of X. We call such . xρ a .ρ-class of X. Clearly, 

. 
η :E (X) → π(X)

ρ |→ X/ρ

is a bijection. An equivalence . ρ saturates a subset L of X means L is the union of 
some .ρ-classes. 

A (partial) order . ≤ on X is a relation which is reflexive, antisymmetric (i.e. 
.≤ ∩ ≤−1⊆ ιX) and transitive. A total order (or linear order) . ≤ on X is a partial 
order which satisfies that any pairs of elements in X are comparable, that is, for any 
.x, y ∈ X, .x ≤ y or .y ≤ x holds. .x ∈ X is called a minimal element of X if for all 
.y ∈ X, .y ≤ x implies .y = x; x is called a minimum element of X if .x ≤ y for all 
.y ∈ X. Similarly we can define concepts of the maximal element and the maximum 
element. Clearly, by antisymmetry of the relation, the minimum element (maximum 
element) is unique whenever it exists. A well-order . ≤ on X is a total order which 
satisfies that any nonempty subset of X contains a minimal element. A set with a 
order (total order, well-order) is called an ordered (totally ordered, well-ordered) 
set. A totally ordered subset Y of an ordered set X is usually called a chain. In an  
ordered set X, we used .x < y to stand for .x ≤ y but .x /= y. 

Congruences, Quotients and Homomorphisms 
In the rest of this section, let S and T be semigroups (monoids with identity . 1S and 
. 1T respectively). 

A left congruence (right congruence) . ρ on S is an equivalence which is left 
(right) compatible with respect to the semigroup operation, that is, 

. (∀a, b, c ∈ S) “aρb ⇒ caρcb”

. ((∀a, b, c ∈ S) “aρb ⇒ acρbc”).

A congruence . ρ on S is both a left congruence and a right congruence, which is 
equivalent to .ρ ∈ E (X) and . ρ is compatible, that is 

.(∀a, b, c, d ∈ S) “aρb, cρd ⇒ acρbd”.
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If . ρ is a congruence on S, then the quotient set .S/ρ is a semigroup under the 
following multiplication: 

. (∀x, y ∈ S) xρ · yρ = (xy)ρ.

.S/ρ is called the quotient semigroup of S with respect to . ρ. Let  .S/ρ = {Si |i ∈ I }. 
Then .C = {ci ∈ Si |i ∈ I } is called a cross-section of . ρ. 

A mapping .ϕ : S → T is called a semigroup (monoid) homomorphism from S to 
T if . ϕ preserves the operations on two semigroups, that is, 

. ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ S

. (ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ S and ϕ(1S) = 1T ).

An injective (surjective, bijective) homomorphism is called a monomorphism 
(epimorphism, isomorphism). A homomorphism (isomorphism) from S to itself is 
called an endomorphism (automorphism). The set of all endomorphism is denoted 
by .End(S). 

Let . ρ be a congruence on S. Then .x |→ xρ is an epimorphism from S to 
. S/ρ, which is called the natural homomorphism induced by . ρ and denoted by . ρ#. 
Let . ϕ be a homomorphism from S to T . Then .{(x, y) ∈ S × S | ϕ(x) = ϕ(y)} is a 
congruence on S, which is called the kernel of . ϕ and denoted by .kerϕ. 

The following theorems are well-known. 

Theorem 1.1.1 ([36]) Let . ρ be a congruence on a semigroup (monoid) S. If  
.ϕ : S → T is a homomorphism such that .ρ ⊆ kerϕ. Then there is a unique 
homomorphism .ψ : S/ρ → T such that .im(ψ) = im(ϕ) and the diagram 

. 

commutes. Moreover, . ψ is injective if and only if .ρ = kerϕ. 

Proof Define .ψ : S/ρ → T by 

.ψ(sρ) = ϕ(s) (sρ ∈ S/ρ). (1.1.1) 

Then . ψ is well-defined, since for all .s, s' ∈ S, 

.sρ = s'ρ ⇔ (s, s') ∈ ρ ⇒ (s, s') ∈ kerϕ ⇔ sϕ = s'ϕ.
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It is now a routine matter to verify that . ψ is a homomorphism, . im(ψ) = im(ϕ)

and .ρ# ◦ ψ = ϕ. The uniqueness of . ψ is also obvious, since any homomorphism . ψ

satisfying .ρ# ◦ ψ = ϕ must be defined by the rule (1.1.1). 
. ψ is injective if and only if “for any .sρ, s'ρ ∈ S/ρ, .ψ(sρ) = ψ(s'ρ) implies 

.sρ = s'ρ”, and if and only if “for any .s, s' ∈ S, .ϕ(s) = ϕ(s') implies .(s, s') ∈ ρ”, 
which is equivalent to .ρ ⊇ kerϕ, and hence .ρ = kerϕ. nu

One application of this theorem is to the situation where . ρ and . σ are congruences 
on S with .ρ ⊆ σ . The theorem implies that there is a homomorphism . ψ from . S/ρ

onto .S/σ such that the diagram 

. 

commutes. The homomorphism . ψ is given by 

. ψ(aρ) = aσ (aρ ∈ S/ρ),

and the congruence .kerψ on S is given by 

. kerψ = {(aρ, bρ) ∈ S/ρ × S/ρ | (a, b) ∈ σ }.
It is usual to write .kerψ as .σ/ρ. From Theorem 1.1.1, it follows that there is an 
isomorphism .θ : (S/ρ)/(σ/ρ) → S/σ defined by 

. θ((sρ)(σ/ρ)) = sσ (s ∈ S),

and such that the diagram 

. 

commutes. We summarize in a theorem: 

Theorem 1.1.2 ([36]) Let . ρ, . σ be congruences on a semigroup (monoid) S such 
that .ρ ⊆ σ . Then 

. σ/ρ = {(aρ, bρ) ∈ S/ρ × S/ρ | (a, b) ∈ σ }
is a congruence on .S/ρ, and .(S/ρ)/(σ/ρ) = S/σ .
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Let I be an ideal of S. Then .ρI = ιS ∪ (I × I ) is a congruence on S, which is 
called the Rees congruence with respect to I . We always write .S/I rather than . S/ρI

and call it the Rees quotient with respect to I . 

Typical Classes of Semigroups 
We now introduce some typical classes of semigroups which are often used in this 
book. Let S be a semigroup. S is called 

(1) a band if .a2 = a for all .a ∈ S; 
(2) a left zero semigroup if .ab = a for all .a, b ∈ S; 
(3) a right zero semigroup if .ab = b for all .a, b ∈ S; 
(4) a rectangular band if .a2 = a and .aba = a for all .a, b ∈ S; 
(5) a semilattice if .a2 = a and .ab = ba for all .a, b ∈ S; 
(6) a null semigroup (or zero semigroup) if  S contains the zero element 0 and . ab =

0 for all .a, b ∈ S; 
(7) a nilpotent semigroup if S contains the zero element 0 and there is an . n ∈ N

such that .a1a2 · · · an = 0 for all .ai ∈ S, .i = 1, 2, . . . , n; 
(8) a nil-semigroup if S contains the zero element 0 and every elements of S is 

nilpotent, that is, 

. (∀a ∈ S)(∃n ∈ N)an = 0.

The elements of S satisfying the equality .a2 = a are called idempotents and the 
set of all idempotents of S is denoted by .E(S). 

In a semigroup S, the relations . L , . R and . J are defined as follows: 

. 

(∀a, b ∈ S) aL b if and only if S1a = S1b,

(∀a, b ∈ S) aRb if and only if aS1 = bS1,

(∀a, b ∈ S) aJ b if and only if S1aS1 = S1bS1,

and define .H = L ∧ R, .D = L ∨ R. All the above relations are equivalences 
on S, called the Green’s relations on S. We denote the . J (. L , . R, . H , . D)-class 
containing a by . Ja (. La , . Ra , . Ha , . Da). 

An element a of S is said to be regular if .axa = a for some .x ∈ S. Denote the 
set of all regular elements of S by .Reg(S). S is said to be regular if every element 
of S is regular. .a' ∈ S is called an inverse of .a ∈ S if .aa'a = a and .a'aa' = a'. 
The set of all inverses of a is denoted by .V (a). Then it is clear that . a ∈ Reg(S)

if and only if .V (a) /= ∅. An element a of S is said to be completely regular if 
.axa = a and .ax = xa for some .x ∈ S. S is said to be completely regular if every 
element of S is completely regular. A completely regular simple semigroup is called 
a completely simple semigroup. The readers are referred to Howie’s book [36] for  
systemic introduction to the theory of Green’s relations and regular semigroups. 

The concepts such as substructures, generating sets, congruences, homomor-
phisms defined above can also be similarly defined in monoids, groups and other 
algebraic systems.
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In this book, we use .|X| to represent the cardinality of set X, .|X| < ∞ to 
represent X is finite and .|X| = ∞ to represent X is infinite. For a subset L of a 
set X, we use . Lc to represent .X \ L = {x ∈ X | x /∈ L}, call it the complement of L 
in X. If . Lc is finite, then we call L is cofinite. 

1.2 Free Semigroups (Monoids) and Languages 

Let A be a nonempty set, which we call an alphabet. 

. A+ d= {a1a2 · · · an|ai ∈ A, i = 1, 2, . . . , n, n ∈ N}

is a semigroup with respect to “. ·” as follows 

. (a1a2 · · · an) · (b1b2 · · · bm) = a1a2 · · · anb1b2 · · · bm.

.A+ is called the free semigroup generated by A. .A∗ d= (A+)1 is the free monoid 
generated by A. The elements of A are called letters. The elements of . A∗ are called 
words over A. 1 is called the empty word over A (we may regard it to be a word 
without letter). Any subset of a free monoid . A∗ is called a language over A. 

The length .lg(w) of a word .w = a1a2 · · · an with .ai ∈ A is n, the number of 
letters occurring in w. We often denote the number of occurrences of .a ∈ A in w by 
. wa . Then we have .lg(w) = E

a∈A wa . The set of letters occurring in w is denoted 
by .alph(w). For any .L ⊆ A∗, .alph(L) = U

w∈L alph(w). 
A word  u is called a prefix of a word w if u is a left factor of w, that is, . w = uv

for some .v ∈ A∗. Suffixes are defined dually. u is called an infix of w if u is a factor 
of w, that is, .w = xuy for some .x, y ∈ A∗. It is clear that the relation 

. ≤P
d= {

(x, y) ∈ A∗ × A∗ | x is a prefix of y
}

on . A∗ is a partial order called the prefix order. Similarly, we can define the suffix 
order . ≤S and infix order . ≤I. Denote the set of all prefixes (suffixes, infixes) of w 
by .P(w) (.S(w), .I (w)). For a language L over A, we define .P(L) = U

w∈L P (w), 
.S(L) = U

w∈L S(w) and .I (L) = U
w∈L I (w). L is said to be prefix-closed (suffix-

closed, infix-closed) if  .P(L) ⊆ L (.S(L) ⊆ L, .I (L) ⊆ L). Indeed, these “. ⊆” are  
“. =”, because .w ∈ P(L) (S(L), I (L)) for all .w ∈ L. 

Let L be a language over A. We use  .lg(L) and .Lg(L) to represent the minimal 
and maximal length of words in L respectively. If the above maximal length does 
not exist, then let .Lg(L) = ∞. L is called bounded if .Lg(L) < ∞, otherwise L is 
called unbounded. Finite languages are clearly bounded. If A is finite, then . L ⊆ A∗
is bounded if and only if L is finite. 

An abstract definition of “a free semigroup on A” can be given as follows: 
F is a free semigroup on A if there is an injection .α : A → F satisfying for



1.2 Free Semigroups (Monoids) and Languages 9

every semigroup S and every homomorphism .ϕ : A → S, there exists a unique 
homomorphism .ψ : F → S such that the diagram 

. 

commutes. 
The following proposition shows that why we call .A+(A∗) the free semigroup 

(monoid) over A. 

Proposition 1.2.1 ([36, 57]) Let A be an alphabet, S .(M) a semigroup (monoid), 
. ϕ a mapping from A to S .(M). Then there exists a unique homomorphism . ϕ from 
.A+ (. A∗) to S (M) such that .ϕ |A = ϕ. Furthermore, . ϕ is surjective if and only if 
.ϕ(A) generates S (M). 

Proof If . ϕ is a homomorphism from .A+ (. A∗) to  S (M), then for any . w =
a1a2 · · · an, .ai ∈ A, .i = 1, 2, . . . , n, .n ∈ N (. N0), 

. ϕ(w) = ϕ(a1)ϕ(a2) · · · ϕ(an),

(ϕ(w) = ϕ(a1)ϕ(a2) · · · ϕ(an), (1.2.1)

ϕ(w) = 1M, n = 0).

And the mapping . ϕ from .A+ (. A∗) to  S (M) satisfying (1.2.1) is indeed a 
homomorphism from . A+ (. A∗) to  S (M). This shows the existence and uniqueness 
of the homomorphism we require. 

The set .ϕ(A) generates S (M) if and only if for every .s ∈ S (.m ∈ M), s (m) 
.= ϕ(b1)ϕ(b2) · · · ϕ(bn) = ϕ(b1b2 · · · bn) for some .b1, b2, . . . , bn ∈ A, .n ∈ N (. N0). 
This is equivalent to . ϕ is surjective. nu

The property above is called the universal mapping property. See any book on 
universal algebras, such as [10], for details. 

Usually, a semigroup (monoid) is said to be free if it is isomorphic to .A+ (. A∗) 
for some alphabet A. 

Take A as a generating subset of a semigroup (monoid) S (M) and . ϕ as the 
equality relation . ιA on A, we have  

Corollary 1.2.2 Any semigroup (monoid) is a homomorphic image of a free 
semigroup (monoid). 

Next, we discuss some algebraic properties of free semigroups. 

Proposition 1.2.3 ([3, 57, 84]) A semigroup S is free if and only if every element of 
S has a unique factorization as a product of elements of .A = S \ S2.
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Proof The necessity is clear. Conversely, let .ı : A → S be the inclusion mapping 
(i.e. .ı(a) = a for any .a ∈ A). Extend . ı to an epimorphism .ϕ : A+ → S. Then by 
the unique factorization property of S, . ϕ is injective and hence an isomorphism. nu

For a free semigroup S, the  set .A = S \ S2, the minimum generating set of S, is  
called the base of S. 

A semigroup S is said to be equidivisible if for any .a, b, c, d ∈ S, . ab = cd

implies .a = cu, .ub = d or .c = au, .ud = b for some .u ∈ S1. 
Clearly, any free semigroup is equidivisible. Moreover, we have the following 

proposition. 

Proposition 1.2.4 ([57]) A semigroup S is free if and only if it is equidivisible and 
.
n∞

n=1 Sn = ∅. 

Proof The necessity is obviously. Conversely, since .
n∞

n=1 Sn = ∅, we have the  
chain .S ⊇ S2 ⊇ · · · ⊇ Sn ⊇ · · · is strictly descending. Then for any .s ∈ S, there 
exists an integer k such that .s ∈ Sk \Sk+1 (otherwise .s ∈ n∞

n=1 Sn, a contradiction). 
Thus .s = a1a2 · · · ak for some .ai ∈ A = S \ S2, .i = 1, 2, . . . , k. This shows 
the existence of factorizations for any .s ∈ S. To prove the uniqueness, for any 
two factorization of .s = a1a2 · · · ak = b1b2 · · · bl of s as products of elements 
of A, we put .n = min(k, l) and proceed by induction on n. For  .n = 1 we have 
.s = a1 = b1 by definition of A. For  .n > 1, equidivisibility yields either .a1 = b1u, 
.ua2a3 · · · ak = b2b3 · · · bl or .a1u = b1, .a2a3 · · · ak = ub2b3 · · · bl for some . u ∈
S1. The definition of A gives that .u = 1, .a1 = b1 and .a2a3 · · · ak = b2b3 · · · bl . 
Then the uniqueness follows from the induction hypothesis applied to . a2a3 · · · ak =
b2b3 · · · bl . Therefore, by Proposition 1.2.3, S is free. nu

The following corollary is known as the Levi’s Theorem. 

Corollary 1.2.5 (Levi’s Theorem, [62]) A semigroup S is free if and only if it 
is equidivisible and there exists a homomorphism l from S to semigroup . N under 
integer addition. 

Proof We need only to show the sufficiency. For any .s ∈ S, if  .s ∈ Sk , then . s =
s1s2 · · · sk for some .si ∈ S, .i = 1, 2, . . . , k, which implies .l(s) = Ek

i=1 l(si) ≥ k. 
Hence .s /∈ Sl(s)+1 for any .s ∈ S, which implies .

n∞
n=1 Sn = ∅. Then by Proposition 

1.2.4, S is free. nu
The mapping l in the above corollary is called the length function on S. If there 

exists a length function on S, then S is called a semigroup with length. 
A nonempty language C over A is called a code if 

. x1x2 · · · xm = y1y2 · · · yn, xi, yj ∈ C, i = 1, 2, . . . , m, j = 1, 2, . . . , n

implies 

.m = n and xi = yi, i = 1, 2, . . . , n.
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A nonempty language L is called a prefix (suffix, infix) language over A, if no word  
in L is a prefix (suffix, infix) of another word in L, that is, any two different words 
of L are incomparable with respect to the prefix (suffix, infix) ordering . ≤P (. ≤S, . ≤I). 
It is clear that any prefix (suffix, infix) language expect . {1} is a code, so a prefix 
(suffix, infix) language expect . {1} is also called a prefix (suffix, infix) code. A  bifix 
code is both a prefix code and a suffix code. 

We denote the sets of all codes, prefix codes, suffix codes, bifix codes and infix 
codes over A by .C(A), .P(A), .S(A), .B(A) and .I(A), respectively. Usually, we just 
discuss codes over alphabet containing at least two letters, since a language L over 
an one-letter alphabet A is a code if and only if it is a singleton of . A+. One can 
easily show that if .|A| ≥ 2, then 

. I(A) C B(A) C
P(A)

S(A)
C C(A).

If S is a subsemigroup of . A+, then .X = S \ S2 is the minimal generating set of 
S. Clearly, by Proposition 1.2.3, S is free if and only if X is a code over A. 

A subset T of a semigroup S is said to be unitary (left unitary, right unitary, 
weakly unitary) if  .T −1T ∪ T T −1 ⊆ T 1 (.T −1T ⊆ T 1, .T T −1 ⊆ T 1, . T −1T ∩
T T −1 ⊆ T 1). 

Proposition 1.2.6 ([3, 57, 84]) A subsemigroup S of .A+ is free if and only if it 
is weakly unitary in . A+. Moreover, .X ⊆ A+ is a code (prefix code, suffix code, 
bifix code) if and only if .X+ is a weakly unitary (left unitary, right unitary, unitary) 
subsemigroup of . A+. 

Proof We only show that a subsemigroup S of . A+ is free if and only if it is weakly 
unitary in .A+ (or equivalently, X is a code if and only if .X+ is a weakly unitary 
subsemigroup of . A+). The other statements are left to the readers. 

Suppose that S is a free subsemigroup of . A+. Let  .w ∈ S−1S ∩ SS−1. Then 
there exist .u, v ∈ S such that .uw,wv ∈ S. Since S is free, by equidivisibility, 
.u(wv) = (uw)v implies that there exist .x ∈ S1 such that .u = uwx or .ux = uw. 
.u = uwx implies .w = 1; .ux = uw implies .w = x ∈ S1. Thus . S−1S ∩ SS−1 ⊆ S1

and S is weakly unitary. 
Conversely, to prove S is free, by Levi’s Theorem, we need only show that S is 

equidivisible, because any subsemigroup of . A+ is with length. Suppose that . ab =
cd, .a, b, c, d ∈ S. Then by equidivisibility of . A+, there exists .u ∈ A∗ such that 
.a = cu, .ub = d or .c = au, .ud = b. In either case, u is in .S−1S ∩ SS−1. By the fact 
that S is weakly unitary, .u ∈ S1. Thus S is equidivisible and hence free. nu
Corollary 1.2.7 ([3, 57, 84]) The intersection of free subsemigroups of .A+ is free 
if the intersection is not empty. 

For any .X ⊆ A+, the intersection of all free subsemigroups of .A+ containing 
X is the minimum free subsemigroup of .A+ containing X, that is, it is the free 
semigroup generated by X, which is called the free hull of X.
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Theorem 1.2.8 (Defect Theorem, [84]) Let X be a finite nonempty language over 
A, and Y the base of the free hull of X. If  X is not a code, then .|Y | ≤ |X| − 1. 

Proof Consider the mapping .α : X → Y associating to .x ∈ X the word .y ∈ Y such 
that .x ∈ yY ∗. Since Y is a code, the mapping . α is well defined. 

As X is not a code, there exists an equality .x1x2 · · · xm = x'
1x

'
2 · · · x'

n with 
.xi, x

'
j ∈ X, .x1 /= x'

1, .i = 1, 2, . . . , m, .j = 1, 2, . . . , n. Hence . α(x1) = α(x'
1)

and . α can not be injective. 
Now we show that . α is surjective. If it is not the case, let .z ∈ Y be such that 

.z /∈ α(X). Consider the set .Z = (Y \ z)z∗. One can check that Z is a code over 
A. However, .X ⊆ Z+

C Y+, which contradicts the fact that . Y+ is the free hull of 
X. nu
Corollary 1.2.9 ([3, 57, 84, 117]) .X = {x, y} ⊆ A+ is a code if and only if x and 
y are not powers of a common word. 

Proof If .x = wm and .y = wn are powers of a common word w, then clearly 
.xy = wm+n = yx, and hence X is not a code. Conversely, if X is not a code, then 
by the Defect Theorem, the base of the free hull of X contains only one word, say 
w, which implies x and y are powers of w. nu

The algebraic properties, generalizations and related topics of free semigroups 
and monoids have been investigated in many literatures. The researches on Hua 
semigroups are one of them. 

In 1949, L. K. Hua has shown that if h is a mapping from a ring R to a ring  . R'
such that for any .a, b ∈ R, 

. h(a + b) = h(a) + h(b), . (1.2.2) 

h(ab) = h(a)h(b) or h(b)h(a), (1.2.3) 

then h is either a homomorphism or an anti-homomorphism (see [39]). This result 
has been included in some texts of algebra as an exercise, for example Jacobson [47, 
p. 74], where, it is called Hua Theorem. 

In 1977, C. M. Reis and H. J. Shyr translated the above result from rings to free 
semigroups (see [102]). They showed that if h is a mapping from a free semigroup 
S to itself such that Condition (1.2.3) holds for any .a, b ∈ S, then h is either a 
homomorphism or an anti-homomorphism. 

In 2003, K. P. Shum and Y. Q. Guo gave a new proof of Hua Theorem by using 
group theory, and gave an example which shows that Reis and Shyr’s result does not 
hold generally for arbitrary semigroups (see [112]). 

In [80], we have generalized the above Reis and Shyr’s result and give some 
systematic studies of the semigroups in which Reis and Shyr’s result holds. We 
call such semigroups Hua semigroups and show that every cancellative semigroup 
(which is a generalization of free semigroups and monoids) is a Hua semigroup.
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1.3 Disjunctive (Regular) and Dense Subsets of Semigroups 

Let L be a subset of semigroup S. For  .x ∈ S, we define the set of all contexts of x 
with respect to L by 

. ContL(x) =
{
(u, v) ∈ S1 × S1 | uxv ∈ L

}
.

Define the binary relation . PL (or .PL(S)) as follows:  

. xPLy if and only if ContL(x) = ContL(y),

that is, 

. PL =
{
(x, y) ∈ S × S | (∀u, v ∈ S1) uxv ∈ L if and only if uyv ∈ L

}
.

It is easy to see that . PL is a congruence on S. We call it  syntactic congruence 
(or principal congruence) on S determined by L. The  index of . PL is the number 
of .PL-classes, denoted by .|PL|. The natural homomorphism . P #

L is usually called 
the syntactic homomorphism determined by L and denoted by . ϕL. The  .PL-class 
containing x is denoted by .[x]L for any .x ∈ S. 

The left (right) principal congruence determined by L, denoted by .P (l)
L (.P (r)

L ), 
is defined similarly by using left (right) contexts of elements of S with respect to L. 
For example, 

. P
(l)
L =

{
(x, y) ∈ S × S | (∀u ∈ S1) ux ∈ L if and only if uy ∈ L

}
.

Clearly, .PL = PLc , and .PL ⊆ P
(l)
L (P

(r)
L ). In fact, we have  

Proposition 1.3.1 . PL (.P (l)
L , .P (r)

L ) is the largest congruence (left congruence, right 
congruence) on S saturating L. 

Proof Immediate. nu
Let L be any subset of a semigroup S. Then L is said to be disjunctive in S (or a 

disjunctive subset of S) if .PL = ιS , the equality on S. Denote all disjunctive subsets 
of S by .D(S). L is said to be regular in S (or a regular subset of S) if the index of 
. PL is finite. Denote all regular subsets of S by .R(S). 

Let .L ⊆ A+ (.L ⊆ A∗), . PL the syntactic congruence of L on . A+ (. A∗). We call 
.A+/PL (.A∗/PL) the  syntactic semigroup (syntactic monoid) of  L and denoted by 
.S(L) (.M(L)). A semigroup (monoid) is said to be syntactic if it is isomorphic to the 
syntactic semigroup (monoid) of some language. 

In the rest of this section, we only deal with free semigroups. The corresponding 
properties for free monoids can be similarly obtained.
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Lemma 1.3.2 ([3, 57]) Let A be an alphabet, S a semigroup. 

(1) For any epimorphism .θ : A+ → S, .P ⊆ S and .L = θ−1(P ), there exists a 
unique epimorphism .σ : S → S(L) such that the diagram 

. 

commutes, where . ϕL is the syntactic homomorphism of L. 
(2) Conversely, if for some .L ⊆ A+, .σ : S → S(L) is an epimorphism, then there 

exist a homomorphism .θ : A+ → S and .P ⊆ S such that .L = θ−1(P ) and 
.ϕL = σ ◦ θ , that is, the diagram 

. 

commutes. 

Proof 

(1) By Theorem 1.1.1, we need only show that .ker θ ⊆ PL, which is true by 
Proposition 1.3.1 since .ker θ saturates L. 

(2) For any .a ∈ A, we choose .sa ∈ S such that .σ(sa) = ϕL(a). This is possible, 
since . σ is surjective. Putting .θ(a) = sa , we extend . θ to a homomorphism from 
.A+ to S and also denote it by . θ . Then by definition of . θ , .σ ◦ θ = ϕL. Let  
.P = σ−1ϕL(L). Then we have 

. θ−1(P ) = θ−1σ−1ϕL(L) = ϕ−1
L ϕL(L) = L.

nu
The following proposition encourages us more or less to study disjunctive subsets 

of general semigroups (especially the existence problem). 

Proposition 1.3.3 ([57]) A semigroup is syntactic if and only if it contains a 
disjunctive subset. 

Proof Let .L ⊆ A+ and .ϕL : A+ → S(L) = A+/PL be the syntactic homomor-
phism, .X = ϕL(L). Since .ϕL = P

#
L and . PL saturates L, .ϕ−1(X) = L. We show  

that X is disjunctive in .S(L). In fact, suppose that .(s1, s2) ∈ PX, then . xs1y ∈ X

if and only if .xs2y ∈ X for all .x, y ∈ S(L)1. Let  .w1, w2 ∈ A+ be such that
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.ϕL(wi) = si , .i = 1, 2. Then we have for any .u, v ∈ A∗, 

. uw1v ∈ L ⇔ ϕL(u)s1ϕL(v) ∈ X ⇔ ϕL(u)s2ϕL(v) ∈ X ⇔ uw2v ∈ L.

It follows that .(w1, w2) ∈ PL, that is, .s1 = s2. 
Conversely, in view of Corollary 1.2.2, let  . θ be an epimorphism from . A+ to S. 

If .X ⊆ S is disjunctive in S and .L = θ−1(X), then by Lemma 1.3.2, there exists 
an epimorphism .σ : S → S(L) such that .ϕL = σ ◦ θ . For  .s1, s2 ∈ S, assume that 
.σ(s1) = σ(s2), or equivalently that .ϕL(w1) = ϕL(w2) for some . w1, w2 ∈ A+
such that .θ(wi) = si , .i = 1, 2. For any .x, y ∈ S1, if  .xs1y ∈ X, then there are 
.u, v ∈ A∗ such that .θ(u) = x, .θ(v) = y and .θ(uw1v) ∈ X, so  .uw1v ∈ L. 
But .ϕL(uw1v) = ϕL(uw2v), it follows that .uw2v ∈ L and .xs2y ∈ θ(L) = X. 
Similarly, .xs2y ∈ X implies .xs1y ∈ X. Since X is disjunctive in S, .s1 = s2. This  
shows that . σ is injective and hence an isomorphism. nu

Let S be a semigroup, .L ⊆ S. An element .x ∈ S is called completable (left 
completable, right completable) in  L if 

. (∃u, v ∈ S1) uxv ∈ L

. ((∃u ∈ S1) ux ∈ L, (∃u ∈ S1) xu ∈ L).

An element which is not [left, right] completable in L is called [left, right] 
incompletable. L is said to be dense in S if every element of S is completable in 
L (or equivalently, for any .x ∈ S, .S1xS1 ∩ L /= ∅). Otherwise, we call it thin (or 
non-dense). Similarly we can define left (right) dense and left (right) thin subsets of 
S. If a [left, right] dense subset L is a singleton, the unique element of L is called a 
[left, right] dense element of S. If the subsemigroup generated by L is [left, right] 
dense, then L is said to be [left, right] complete, otherwise, L is said to be [left, 
right] incomplete. 

A disjunctive (regular, dense, left dense, right dense, thin, left thin, right thin) 
subset of a free semigroup .A+ is usually called a disjunctive (regular, dense, left 
dense, right dense, thin, left thin , right thin) language over A. 

In the following proposition, we list some basic properties about dense subsets, 
which will be used in this book. 

Proposition 1.3.4 Let S be a semigroup, .X, Y ⊆ S. Then 

(1) S is dense in itself, . ∅ is thin in S; 
(2) If X is dense in S, .Y ⊇ X, then Y is dense in S; 
(3) .X ∪ Y is dense in S if and only if at least one of X and Y is dense in S; 
(4) At least one of X and its complement is dense in S; 
(5) If X and Y are nonempty and at least one of them is dense in S, then XY is 

dense in S; 
(6) The intersection of a dense subset and an ideal of S is dense in S. 

Proof (1) and (2) are direct consequences of the definition of density.
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(3) If one of X and Y is dense, then by (2), .X ∪Y is dense. Conversely, If both X 
and Y are thin, then there are .x, y ∈ S such that .S1xS1∩X = ∅ and .S1yS1∩Y = ∅. 
Then .S1xyS1 ∩ (X ∪ Y ) = ∅. That is .X ∪ Y is thin. 

(4) is a direct consequence of (1) and (3). 
(5) Suppose, without loss of generality, that X is dense. Then for any .x ∈ S, 

.S1xS1 ∩X /= ∅. Since Y is not empty, we have .S1xS1 ∩XY ⊇ (S1xS1 ∩X)Y /= ∅. 
Thus XY is dense. 

(6) Let D be a dense subset and I be an ideal of S. Then for any .x ∈ S, .y ∈ I , 
there are .u, v ∈ S1 such that .uxyv ∈ D. Clearly, .uxyv ∈ I . Hence .uxyv ∈ D ∩ I . 
That is, .D ∩ I is a dense subset of S. nu
Proposition 1.3.5 Let S be a semigroup with zero 0, .L ⊆ S. Then 

(1) L is dense if and only if .0 ∈ L; 
(2) L is dense if and only if . Lc is thin; 
(3) If L is disjunctive, then S contains both dense and thin disjunctive subsets. 

Proof 

(1) Since 0 is a dense element of S, the sufficiency is a direct consequence of 
Proposition 1.3.4. 

On the other hand, suppose that .0 /∈ L. Then 0 is incompletable in L. Hence 
L is not dense. 

(2) Which can be directly derived from (1). 
(3) Since the complement of disjunctive subsets of S is also disjunctive, by 

Proposition 1.3.4 and (2), the statement is clear. 
nu

Proposition 1.3.6 Let S be a semigroup without zero. Then any disjunctive subset 
of S is dense. 

Proof Suppose that .L ⊆ S is disjunctive, but not dense. Then there exists . w ∈ S

such that .S1wS1 ∩ L = ∅. Since .S1uwvS1 ⊆ S1wS1, we have  . S1uwvS1 ∩ L = ∅
for any .u, v ∈ S1. Hence .S1wS1 ⊆ [w]L = {w}. This shows that w is the zero 
element of S, a contradiction. nu

For any subset L of a semigroup S, the  residue of L is the set 

. W(L) =
{
x ∈ S | S1xS1 ∩ L = ∅

}
.

Clearly, L is dense in S if and only if .W(L) = ∅. If .W(L) is not empty, then it is an 
ideal as well as a .PL-class of S. Thus it is the zero element of .S/PL. Furthermore, 
we have 

Proposition 1.3.7 For any subset L of a semigroup S, the following statements are 
equivalent: 

(1) Both L and . Lc are dense; 
(2) .W(L) = W(Lc) = ∅;



1.3 Disjunctive (Regular) and Dense Subsets of Semigroups 17

(3) .S/PL has not the zero element; 
(4) Either S contains no dense .PL-class, or contains at least two. 

Proof The equivalence of (1) and (2) is a direct consequence of the definition of 
.W(L). 

(2) . ⇒ (3). If Z is the zero element of .S/PL, then .S1ZS1 ⊆ Z. Let  .w ∈ Z. 
If .w /∈ L, then, since Z is a .PL-class and . PL saturates L, we have  .Z ∩ L = ∅, 
and hence .S1wS1 ∩ L = ∅. This implies that .w ∈ W(L), which contradicts to 
.W(L) = ∅. If  .w /∈ Lc, then, similarly, we have .w ∈ W(Lc), which contradicts to 
.W(Lc) = ∅. Thus .S/PL has not the zero element. 

(3) . ⇒ (4). Suppose that S contains exactly one dense .PL-class .Z = [z]L. Then 
for any .w ∈ S, we have  .wZ ⊆ [wz]L and .Zw ⊆ [zw]L. By Proposition 1.3.4, we  
know that wZ (Zw) and hence .[wz]L (.[zw]L) is dense in S. Thus . [wz]L = [zw]L =
Z, which implies .Z = [z]L is the zero element of .S/PL. 

(4) . ⇒ (2). If .W(L) /= ∅, then .W(L) is a dense .PL-class. Since .W(L) is an 
ideal, by Proposition 1.3.4, .W(L)c is not dense. Hence S contains only one dense 
.PL-class, a contradiction. Similarly, .W(Lc) /= ∅ is impossible either. nu
Proposition 1.3.8 Let S and T be two semigroups, .ϕ : S → T an epimorphism, 
.X ⊆ S and .Y ⊆ T . 

(1) If X is dense then so is .ϕ(X). 
(2) If Y is dense then so is .ϕ−1(Y ). 

Proof 

(1) Let y be any element in T . Since . ϕ is surjective, there exists .x ∈ S such that 
.ϕ(x) = y. Now by the density of X, there exist .u, v ∈ S such that .uxv ∈ X. 
Then .ϕ(u)yϕ(v) = ϕ(uxv) ∈ ϕ(X). Hence .ϕ(X) is dense. 

(2) Let x be any element in S and .y = ϕ(x). Then by the density of Y , there 
exist .s, t ∈ T such that .syt ∈ Y . Since . ϕ is surjective, we have .s = ϕ(u) and 
.t = ϕ(v) for some .u, v ∈ S. Then .ϕ(uxv) = ϕ(u)ϕ(x)ϕ(v) = syt ∈ Y . That is 
.uxv ∈ ϕ−1(Y ). Hence .ϕ−1(Y ) is dense. 

nu
At the end of this section, we give a description of dense elements in a semigroup. 

Proposition 1.3.9 Let S be a semigroup. Then the set of all dense elements is 

. K(S) =
n

{I | I is an ideal of S}.

Therefore, S contains dense elements if and only if S has the minimum ideal. 

Proof By the definition of density, .L ⊆ S is a dense subset of S if and only if L 
intersects with every ideal of S. Hence .x ∈ S is a dense element of S if and only if x 
is contained in every ideal of S, that is, if and only if .x ∈ K(S). Thus .K(S) is the set 
of all dense elements of S. Clearly, .K(S), if nonempty then, is the minimum ideal 
of S. Thus, S contains dense elements if and only if S has the minimum ideal. nu


