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Preface 

The XIV Congress of the International Association for Engineering Geology and the 
Environment (XIV IAEG Congress 2023) was successfully held in Chengdu, China 
from September 21 to 27, 2023. Focusing on the main theme “Engineering Geology 
for a Habitable Earth”, researchers and practitioners worldwide from academia, 
industry, and government have joined us in this prestigious event. Based on the 
topics discussed at the congress, the proceedings are organized into six volumes as 
follows:

. Volume 1: Engineering Geomechanics of Rock and Soil Masses

. Volume 2: Geohazard Mechanisms, Risk Assessment and Control, Monitoring 
and Early Warning

. Volume 3: Active Tectonics, Geomorphology, Climate and Geoenvironmental 
Engineering Geology

. Volume 4: Technological Innovation and Applied for Engineering Geology

. Volume 5: Megacity Development and Preservation of Cultural Heritage Engi-
neering Geology

. Volume 6: Marine and Deep Earth Engineering Geology 

Meanwhile, on behalf of the organizing committee, we would also like to express 
our deepest appreciation to the technical program committee members, reviewers, 
session chairs, and volunteers for their strong support for congress. 

Last but not the least, our gratitude also goes to the editors and press for their 
great support to the congress. 

XIV IAEG Congress 2023 Organizing CommitteeSeptember 2023
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Chapter 1 
On Stability of a Slope with Bedrock 
Using the Upper Bound Limit Analysis 

Bing Yang, Jiangrong Hou, Xushen Zheng, Guoyi Wang, Songke Song, 
and Yang Luo 

Abstract The potential failure modes and stability of a slope with bedrock was 
investigated systematically based on the upper bound limit analysis in this paper. 
The effect of interface between bedrock and soil on the slope stability was discussed 
in detail. The equations for calculating safety factors for three possible failure modes 
of the slope with bedrock due to gravity were derived. The most dangerous failure 
mode of the slope was determined using a program to optimize the solution to the 
stability equation for the slope. Finally, the effects of the inclination angle along 
the interface, the controlling angle of the interface position, the slope angle, and the 
interface strength parameters on the failure mode and safety factor were examined 
quantitatively. The results show that the relative position of the bedrock-soil interface 
and the empty surface of the slope is an important factor affecting the stability of 
the slope. Regarding to global failure along the interface between bedrock and soil 
(Mode 1 in this paper), the safety factor decreases at first and then increases as 
the inclination angle at the upper part of the interface increases. The shear strength 
parameters along the interface have a significant influence on the failure mode and 
safety factor.

B. Yang · J. Hou · X. Zheng · Y. Luo 
School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, People’s Republic 
of China 
e-mail: yangb@home.swjtu.edu.cn 

J. Hou 
e-mail: jiangronghou@my.swjtu.edu.cn 

J. Hou 
South China Institute of Geotechnical Engineering, South China University of Technology, 
Guangzhou 510641, Guangdong, China 

G. Wang 
CLP Construction Investment Co., Ltd, Chengdu 610212, People’s Republic of China 

S. Song (B) 
Sichuan Transportation Survey and Design Institute Co., Chengdu 610017, People’s Republic of 
China 
e-mail: 54881770@qq.com 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024 
S. Wang et al. (eds.), Engineering Geology for a Habitable Earth: IAEG XIV Congress 
2023 Proceedings, Chengdu, China, Environmental Science and Engineering, 
https://doi.org/10.1007/978-981-99-9069-6_1 

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-9069-6_1&domain=pdf
mailto:yangb@home.swjtu.edu.cn
mailto:jiangronghou@my.swjtu.edu.cn
mailto:54881770@qq.com
https://doi.org/10.1007/978-981-99-9069-6_1


2 B. Yang et al.

Keywords Slope with bedrock · Limit analysis · Slope stability · Failure mode ·
Safety factor 

1.1 Introduction 

The analysis of slope stability has received wide attention for decades due to its 
practical importance (Fellenius 1927; Bishop 1955; Janbu 1973; Morgenstern and 
Price 1965; Spencer 1967; Duncan and Wright 1980; Chen and Morgenstern 1983; 
Zhu and Lee 2002; Griffiths and Marquez 2007). The application of limit analysis to 
earth slopes was started by Drucker and Prager (1952), who applied the kinematic 
approach of limit analysis to the stability of slopes undergoing plane-strain failure. 
Both translational and rotational failure mechanisms were considered in their study. 
The limit analysis based on the log-spiral mechanism for simple slopes was proposed 
by Chen et al. (1969). A variety of solutions to a wide range of problems using this 
method can be found in the monograph by Chen (1975). At the same time, the 
upper bound analysis was used by some researchers (Karal 1977a, b; Chen and Chan 
1984; Izbicki 1981). Extensions of the upper bound solutions to nonlinear failure 
envelopes have been investigated by Baker and Frydman (1983), Zhang and Chen 
(1987), Drescher and Christopoulos (1988), and Collins et al. (1988). Later, Donald 
and Chen (1997) systematically elaborated the theoretical background, numerical 
techniques, validations and extensions of a new upper bound slope stability anal-
ysis method. Moreover, the influence of pore water pressure, seismic effects, and 
soil reinforcement were investigated by Michalowski (1995, 1998, 1999). Major 
contributions for soil slope stability analysis were presented by Michalowski and his 
co-worker who provided sets of stability charts for cohesive-frictional slopes which 
took seismic loadings and pore pressure into account (Michalowski 2002; Viratjandr 
and Michalowski 2006). Through using both lower and upper bound analyses to 
estimate slope stability, several researchers proposed sets of stability charts for inho-
mogeneous soil slopes and cohesive-frictional soil slopes subjected to pore pressure 
and seismic loadings respectively (Yu et al. 1998; Kim et al. 1999; Loukidis et al. 
2003). 

The stability of an inhomogeneous slope has been also investigated by many 
researchers (Rulon and Freeze 1985; Cho  2007; Damiano and Olivares 2010; Lian-
heng et al. 2013; Zhan et al. 2013; Liu et al. 2015; Tingkai et al. 2016). Lianheng 
et al. (2013) analyzed the stability of slopes reinforced with prestressed anchor cables 
based on upper bound limit analysis. Tingkai et al. (2016) investigated the stability 
of a slope that was reinforced with a row of piles using limit analysis method. 

Slopes with bedrock are a kind of slopes whose lower parts are bedrock and the 
upper parts are a loose accumulation body, and the sliding mass are located within 
the upper parts, namely, the overburden layer. However, the failure modes may be 
different in this type of slopes and those homogeneous slopes. The influence of the 
bedrock-soil interface on the failure mode and safety factor may not be ignored. At 
present, little studies have systematically investigated the effects of interface between
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bedrock and soil on the stability of slopes, although many studies may involve this 
type of slope. When the bedrock exists in a slope, the slip surface determined by 
the traditional rotational failure mechanism may pass through the bedrock layer. 
Obviously, this does not correspond to an actual situation and will decrease the 
safety factor of the slope. Therefore, the position of the critical slip surface in an 
actual slope should be moved up. 

In this paper, a new method based on upper bound limit analysis is given to 
investigate the stability of slopes with bedrock. The constraint conditions for the 
presence of bedrock were introduced into the equations for calculating safety factors 
of slopes using the upper bound limit analysis. The most dangerous failure mode 
of the slope will be examined. Furthermore, the effects of the inclination angle 
along the interface, the controlling angle of the interface position, the slope angle, 
and the interface strength parameters on the failure mode and safety factor will be 
investigated. 

1.2 The Method for Predicting Stability of a Slope 
with Bedrock 

The slope model considered in this study is shown in Fig. 1.1. Line BCD is the 
interface between bedrock and the overburden layer, which is assumed that it can 
generalize the shape of interfaces of most slopes. According to our previous work 
shows that mainly three kinds of failure modes may arise (Yang 2019). Although the 
three failure modes cannot cover all the cases, it nearly involves most of the cases. 
Therefore, only three failure modes have been considered in this paper. The first is 
global failure along the interface between bedrock and the overburden layer, which 
is defined as Mode 1. The second is local failure of the log-spiral slip surface due to 
cracking at the top of the slope, which is defined as Mode 2. The third is local failure 
of the slope with a log-spiral slip surface due to cracking in the slope (Mode 3). The 
three failure modes are shown in Fig. 1.1. The equations for calculating the safety 
factor of the slope for each mode will be derived.

1.2.1 Failure in Mode 1 

The global failure mechanism of the slope is shown in Fig. 1.2, where BCD is the 
interface between bedrock and the overburden layer, i.e., the slip surface. The soil is 
divided into two portions by the vertical velocity discontinuity surface (CE) of the 
turning point (C) over the sliding surface. Each portion was treated as a rigid body, 
and the slip surface (BCD) and velocity discontinuity surface (CE) between the two 
portions were treated as a plastic body that dissipates energy.
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Fig. 1.1 Schematic diagram of the three failure modes

Fig. 1.2 Schematic showing the global failure mode (Mode 1) 

The geometric parameters of slope shown in Fig. 1.2 are defined as follows: H is 
the slope height, γ is the unit weight of the soil, β is the slope angle, α is the slope 
inclination, θ3 is the angle between AC and the horizontal line, θ1 is the dip angle of 
the slip surface BC, L1 is the length of BC, θ2 is the dip angle of slip surface CD, 
L2 is the length of CD, and L3 is the length of the discontinuity surface CE. θ3 will 
influence the position and length of lines BC and CD. The internal friction angle 
and soil cohesion in slope are ϕ and c, respectively. The equivalent internal friction 
angle and soil cohesion at the interface between bedrock and the overburden layer 
are ϕ, and c,. Suppose that the velocities at the slip surface BC and CD are V1 and 
V2, respectively. The relative velocity at discontinuity surface CE is V3. . According 
to the associated flow rule, the angle between the velocities at the sliding surface (V1 

and V2) and the sliding surface is ϕ,, and the angle between V3 and the discontinuity 
surface (CE) is ϕ. 

According to geometric relationships among V1, V2, and V3 in Fig. 1.2, the  
following equations hold:
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V2 = 
cos

(
θ1 − ϕ − ϕ,)

cos(ϕ + ϕ, − θ2) 
V1 (1.1) 

V3 = sin(θ1 − θ2) 
cos(θ2 − ϕ − ϕ,) 

V1 (1.2) 

The strength reduction technique was introduced in the upper bound of limit 
analysis method in order to obtain the safety factor of the slope (Donald and Chen 
1997; Michalowski 1998). The reduced shear strength parameters can be expressed 
as 

cm = c F 
tan ϕm = tan ϕ 

F

]
(1.3) 

c,
m = c,

F 

tan ϕ,
m = tan ϕ

,
F

]
(1.4) 

where F is the strength reduction factor. 

Rate of External Work. In this study, the only external load acting on slope only 
considers gravity. Then the work done by the external force only includes that by 
gravity. The corresponding rate of external work can be expressed as 

Wext = WG1 + WG2 = γ S1V1 sin
(
θ1 − ϕ,

m

) + γ S2V2 sin
(
θ2 − ϕ,

m

)
(1.5) 

where S1 and S2 are the volume per unit width of the two portions of the soil, 
respectively. When θ3 ≥ 90◦, 

S1 =
[
sin(θ1 + θ3)[sin θ3 sin(θ1 − α) + sin α sin(θ1 + θ3)] 

2 sin  θ1 sin(θ1 − α)
− 

cos θ3 sin(β + θ3) 
2 cos β

]

· f 2 1 H 
2 (1.6) 

S2 = 
sin(β + θ3)(cos β + sin β cos θ3 · f1) 

sin(2β) 
f1H 

2 (1.7) 

In contrast, when θ3 < 90◦, 

S1 =
[
sin(θ1 + θ3)[sin θ3 sin(θ1 − α) + sin α sin(θ1 + θ3)] 

2 sin  θ1 sin(θ1 − α)
− 

cos θ3 sin(α + θ3) 
2 cos  α

]

· f 2 1 H 
2 

(1.8)
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S2 =
[
sin(β + θ3) 
2 sin  β 

+ 
cos θ3 sin(θ3 + α) · f1 

2 cos α

]
· f1H 2 (1.9) 

where f1 = sin(β−θ2) 
sin β sin(θ2+θ3) . 

Rate of Internal Energy Dissipation. Three processes contribute to the rate of 
internal energy dissipation: the rate of dissipation of energy along interface BC and 
CD (W1 and W2, respectively) and that along the velocity discontinuity surface 
CE (W3). 

The total rate of energy dissipated is 

Wint = W1 + W2 + W3 (1.10) 

where 

W1 = c,
mV1 cos ϕ

,
mL1 = c,

mHV1f1 cos ϕ
,
m 

sin(θ3 + α) 
sin(θ1 − α) 

(1.11) 

W2 = c,
mV2 cos ϕ

,
mL2 = c,

mHV2f1 cos ϕ
,
m 

sin(β + θ3) 
sin(β − θ2) 

(1.12) 

When θ3 ≥ 90◦, 

W3 = cmV3 cos ϕmL3 = cmHV3f1 cos ϕm 
sin(β + θ3) 

cos β 
(1.13) 

In contrast, when θ3 < 90◦, 

W3 = cmV3 cos ϕmL3 = cmHV3f1 cos ϕm 
sin(α + θ3) 

cos α 
(1.14) 

Determination of Safety Factor. According to the upper limit theorem of limit 
analysis, let the rate of external work be equal to the rate of internal energy dissipation, 
i.e., 

Wext = Wint (1.15) 

The critical height of the slope (Hcr) can be obtained from Eqs. (1.1)–(1.15): 

Hcr = 
1 

γ 
f
(
θ1, θ2, θ3, β, α,  c, ϕ,  c,, ϕ,, F

)
(1.16) 

According to the optimization method proposed by Chen (1992), which was used 
to solve Eq. (1.16), and the minimum safety factor can be determined.
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1.2.2 Failure in Mode 2 

Figure 1.3 shows a diagram of local failure of the log-spiral slip surface due to 
cracking at the top of the slope. The log-spiral slip surface is GI, which can be 
expressed as 

r = r0e[(θ −θ0)tanϕm] (1.17) 

where r0 is the length of OG, θ0 is the angle between OG and the positive x direction. 
rh is the length of OI and θh is the angle between OI and the positive x direction. θ ,
and θ , are the inclination angles of OF and OF,. L is the crack length at the top of 
the slope (i.e., AG). β is the slope angle, α is the inclination angle at the top of the 
slope, H , is the height of the sliding body, H is the slope height, and l1 is the length 
of DI on the slope. 

Work-energy Balance Equation. The logarithmic-spiral failure mechanism of the 
slope shown in Fig. 1.3 is determined by the rate of external work due to gravity: 

Wext = γ r3 0G(f1 − f2 − f3) (1.18) 

where γ is specific weight of the soil, G is the rotational angular velocity, and f1, f2, 
and f3 are defined in Eqs. (1.21)–(1.23). The rate of internal energy dissipation along 
the velocity discontinuity surface (GI) is as follows: 

Wint = 
θh ∫
θ0 

cm(V cos ϕm) 
rd θ 

cos ϕm 
= 

cmr2 0G

2 tan  ϕm 
{exp[2(θh − θ0) tan ϕm] −  1} (1.19)

Fig. 1.3 Schematic showing the failure in Mode 2 
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If Wext = Wint , then 

γ r0(f1 − f2 − f3) = cm 
2 tan  ϕm 

{exp[2(θh − θ0) tan ϕm] −  1} (1.20) 

Where 

f1 = {(3 tan  ϕm cos θh + sin θh)exp[3(θh − θ0) tan ϕm] −  3 tan  ϕm cos θ0 

− sinθ0}/3
(
1 + 9tan2 ϕm

)
(1.21) 

f2 = 
1 

6 

L 

r0 
(2 cos θ0 − 

L 

r0 
cos α) sin(θ0 + α) (1.22) 

f3 = 
1 

6 
exp[(θh − θ0) tan ϕm][sin(θh − θ0) − 

L 

r0 
sin(θh + α)] 

· {cos θ0 − 
L 

r0 
cos α + cos θhexp[(θh − θ0) tan ϕm] (1.23) 

r0 = sin(β − α)(H − l1 sin β) 
sin β{sin(θh + α) exp[(θh − θ0) tan ϕm] − sin(θ0 + α)} (1.24) 

L 

r0 
= 

sin(θh − θ0) 
sin(θh + α) 

− sin(θh + β) 
sin(θh + α) sin(β − α) 

{sin(θh + α)exp[(θh − θ0) tan ϕm] −  sin(θ0 + α)} (1.25) 

Suppose that the slope of a point F on the curve GI is the same as the slope of 
the straight line BC. Suppose further that OF is extended and intersects with the 
straight line BC at point E. Similarly, assume that the slope of point F, is the same 
as the slope of CD. Suppose further that OF, is extended and intersects with CD at 
point E,. 

In order to ensure that the logarithmic spiral curve GI is above the interface BCD, 
it is necessary to include constraint conditions when calculating the homogeneous 
slope stability. 

According to the relationship between polar and Cartesian coordinates, the slope 
at any point on the logarithmic spiral GI in Cartesian coordinates can be expressed 
as 

k = 
tan ϕm sin θ + cos θ 
tan ϕm cos θ − sin θ 

(0 < θ  < π  ) (1.26) 

It is also easy to show that the slope of the line BC is 

k1 = −  tan θ1 (1.27) 

When k = k1, then θ = θ ,, i.e.,
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tan ϕm sin θ , + cos θ ,

tan ϕm cos θ , − sin θ , + tan θ1 = 0(0 < θ , < π  ) (1.28) 

The equation of the line OE is 

y = tan θ ,x (1.29) 

According to the geometric relationship, the coordinates of D point are

[
xD = rh cos θh − l1 cos β 
yD = rh sin θh + l1 sin β 

(1.30) 

where rh = r0 exp[(θh − θ0) tan ϕm]. 
In the triangle ACD, the length of line CD can be expressed as 

|CD| = 
sin(β + θ3) 

sin β sin(θ2 + θ3) 
H (1.31) 

According to the geometric relationship, the coordinates of point C are

[
xC = xD + |CD| cos θ2 
yC = yD − |CD| sin θ2 (1.32) 

Combining Eqs. (1.27) and (1.32) yields the equation of the straight line BC: 

y = k1x + (yC − k1xC ) (1.33) 

Substituting Eq. (1.29) into Eq. (1.33) yields the abscissa of point E: 

xE = 
tan θ1 · xC + yC 
tan θ , + tan θ1 

(1.34) 

The condition |OE| ≥ |OF| should be met when the log-spiral curve GI is above 
the interface BC, i.e. 

|xE| 
/
1 + (tan θ ,)2 ≥ r0 exp

[(
θ , − θ0

)
tan ϕm

]
(1.35) 

Similarly, the condition
||OE,|| ≥ ||OF,|| should be met, i.e., 

|xE, | 
/
1 + (tan θ ,,)2 ≥ r0 exp

[(
θ ,, − θ0

)
tan ϕm

]
(1.36) 

where θ ,, is determined using the following:
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tan ϕm sin θ ,, + cos θ ,,

tan ϕm cos θ ,, − sin θ ,, + tan θ2 = 0(0 < θ ,, < π  ) (1.37) 

xE, = 
tan θ2(rh cos θh − l1 cos β) + (rh sin θh + l1 sin β) 

tan θ ,, + tan θ2 
(1.38) 

Determining the Safety Factor. For Mode 2, the actual safety factor and its corre-
sponding failure mechanism can be determined by using a constrained nonlinear 
optimization method. The strength reduction factor F is regarded as an objective 
function in a minimization problem: 

min F(θ0, θh, l1) (1.39) 

The constraints in Eq. (1.39) can be divided into three cases. 

(1) θ0 < θ , ≤ θ ,, < θh 

This case is shown in Fig. 1.3 and is applicable in most cases. The corresponding 
constraints are 

s.t. 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

0 ≤ θ0 ≤ π 
2 

θ0 < θh ≤ π 
0 ≤ l1 ≤ H 

sin β 
Eq.(35) 
Eq.(36) 

(1.40) 

(2) θ ,, ≥ θh ≥ θ , or θ ,, ≥ θ , ≥ θh. 

This case is shown in Fig. 1.4 and is applicable to the case with higher slope 
angle β and smaller θ2 (i.e., E, and F, may be located outside the slope). Thus, 
the corresponding constraints are 

s.t. 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

0 ≤ θ0 ≤ π 
2 

θ0 < θh ≤ π 
0 ≤ l1 ≤ H 

sin β 
Eq.(35) 

or 

⎧ 
⎪⎨ 

⎪⎩ 

0 ≤ θ0 ≤ π 
2 

θ0 < θh ≤ π 
0 ≤ l1 ≤ H 

sin β 

(1.41)

(3) θ ,, ≥ θ0 ≥ θ , or θ0 ≥ θ ,, ≥ θ ,. 

This case is shown in Fig. 1.5 and is applicable to smaller β and larger θ1 values 
(i.e., E and F may be located outside the slope). The corresponding constraints are
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s.t. 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

0 ≤ θ0 ≤ π 
2 

θ0 < θh ≤ π 
0 ≤ l1 ≤ H 

sin β 
Eq.(36) 

|AB| ≥ |AG| 

or 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

0 ≤ θ0 ≤ π 
2 

θ0 < θh ≤ π 
0 ≤ l1 ≤ H 

sin β 
|AB| ≥ |AG| 

(1.42)

where 

|AB| = sin(β − θ2) sin(θ1 + θ3) 
sin β sin(θ2 + θ3) sin(θ1 − α) 

H (1.43) 

|AG| = r0
/
sin(θh − θ0) 
sin(θh + α) 

− sin(θh + β) 
sin(θh + α) sin(β − α) 

{sin(θh + α)exp[(θh − θ0) tan ϕm] − sin(θ0 + α)}) (1.44) 

For a specific problem, the optimum solution to Eq. (1.39) in each of the three 
aforementioned cases can be obtained. 

1.2.3 Failure in Mode 3 

The local failure mode on the surface of the slope was assumed to occur on the log-
spiral surface GI, as shown in Fig. 1.6. Similar to Mode 2, the work-energy balance 
equation is

Fig. 1.4 Local failure of the slope with cracking at the top (case 2)
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Fig. 1.5 Local failure of the slope with cracking at the top (case 3)

γr0(f1 − f4) = cm 
2 tan  ϕm 

{exp[2(θh − θ0) tan ϕm] −  1} (1.45) 

where f1 is defined in Eq. (1.21). 

f4 = 
1 

6 

H ,

r0 

sin(θh + β) 
sin β 

exp[(θh − θ0) tan ϕm]{cos θ0 + cos θhexp[(θh − θ0) tan ϕm]} 
(1.46)

Fig. 1.6 Schematic showing local failure in Mode 3 
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r0 = H ,

{sin θhexp[(θh − θ0) tan ϕm] −  sin θ0} (1.47) 

rh = r0exp[(θh − θ0) tan ϕm] (1.48) 

|xE| 
/
1 + (tan θ ,)2 ≥ r0 exp

[(
θ , − θ0

)
tan ϕm

]
(1.49) 

|xE, | 
/
1 + (tan θ ,)2 ≥ r0 exp

[(
θ , − θ0

)
tan ϕm

]
(1.50) 

The strength reduction factor F in Mode 3 is regarded as an objective function in 
a minimization problem: 

min F
(
θ0, θh, l2, H ,) (1.51) 

where l2 is the distance between the shear exit and the slope toe (i.e., DI). The 
constraints of Eq. (1.51) can be divided into the following three cases: 

(1) θ0 < θ , ≤ θ , < θh 

This case is shown in Fig. 1.6 and is applicable in most cases. The corresponding 
constraint is 

s.t. 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎩ 

0 ≤ θ0 ≤ π 
2 

θ0 < θh ≤ π 
0 ≤ l2 ≤ H−H ,

sin β 
0 ≤ H , ≤ H 
Eq.(49) 
Eq.(50) 

(1.52) 

(2) θ , ≥ θh ≥ θ , or θ , ≥ θ , ≥ θh. 

This case is shown in Fig. 1.7 and is applicable to higher β and smaller θ2 values 
(i.e., E, and F, may be located outside the slope). The corresponding constraint is 

s.t. 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

0 ≤ θ0 ≤ π 
2 

θ0 < θh ≤ π 
0 ≤ l2 ≤ H −H ,

sin β 
0 ≤ H , ≤ H 
Eq.(49) 

or 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

0 ≤ θ0 ≤ π 
2 

θ0 < θh ≤ π 
0 ≤ l2 ≤ H −H ,

sin β 
0 ≤ H , ≤ H 

(1.53)

(3) θ , ≥ θ0 ≥ θ , or θ0 ≥ θ , ≥ θ ,. 

This case is shown in Fig. 1.8 and is applicable to smaller β and larger θ1 values (i.e., 
E and F may be located outside the slope). The corresponding constraint is


