Springer Proceedings in Mathematics \& Statistics

Shakir Ali
Mohammad Ashraf
Vincenzo De Filippis
Nadeem ur Rehman Editors
Advances in Ring
Theory and
Applications
WARA22, Messina, Italy, July 18-20, 2022

Springer Proceedings in Mathematics \& Statistics

Volume 443

This book series features volumes composed of selected contributions from workshops and conferences in all areas of current research in mathematics and statistics, including data science, operations research and optimization. In addition to an overall evaluation of the interest, scientific quality, and timeliness of each proposal at the hands of the publisher, individual contributions are all refereed to the high quality standards of leading journals in the field. Thus, this series provides the research community with well-edited, authoritative reports on developments in the most exciting areas of mathematical and statistical research today.

Shakir Ali • Mohammad Ashraf . Vincenzo De Filippis • Nadeem ur Rehman Editors

Advances in Ring Theory and Applications

WARA22, Messina, Italy, July 18-20, 2022

Editors

Shakir Ali
Department of Mathematics
Aligarh Muslim University
Aligarh, India
Vincenzo De Filippis
Department of Engineering
University of Messina
Messina, Italy
Mohammad Ashraf
Department of Mathematics
Aligarh Muslim University
Aligarh, India
Nadeem ur Rehman
Department of Mathematics
Aligarh Muslim University
Aligarh, India

ISSN 2194-1009
ISSN 2194-1017 (electronic)
Springer Proceedings in Mathematics \& Statistics
ISBN 978-3-031-50794-6
ISBN 978-3-031-50795-3 (eBook)
https://doi.org/10.1007/978-3-031-50795-3
Mathematics Subject Classification: 05C10, 05C12, 05C25, 05E10, 13N15, 16B99, 16E50, 16N60, 16N80, 16R50, 16S50, 16U20, 16U80, 16U99, 16W10, 16W25, 17B40, 20C30, 46J10, 46H99, 46L10, 47B47, 47B48, 47L35
© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland
Paper in this product is recyclable.

Organization

WARA22 is organized by the Department of Engineering at University of Messina (Messina, Italy) in cooperation with the Department of Mathematics at Aligarh Muslim University (Aligarh, India), Department of Mathematics at EGE University (Izmir, Turkey), and Department of Mathematics at Chuzhou University (Chuzhou, China).

Organizing Committee

Vincenzo De Filippis (Chair), University of Messina, Messina, Italy Shakir Ali, Aligarh Muslim University, Aligarh, India
Nurcan Argaç, EGE University, Izmir, Turkey
Mohammad Ashraf, Aligarh Muslim University, Aligarh, India
Shuliang Huang, Chuzhou University, Chuzhou, China
Nadeem ur Rehman, Aligarh Muslim University, Aligarh, India

Scientific Committee

E. Albaş
A. Ali
S. Ali
N. Argaç
M. Ashraf
N. Baydar Yarbil
L. Carini
V. De Filippis

Ç. Demir
B. Dhara
M. P. Eroğlu
A. Facchini
S. Huang
T. -K. Lee
L. Oukhtite
F. Rania
N. ur Rehman
G. Scudo
F. Shujat
M. A. Siddeeque
S. K. Tiwari
F. Wei

Sponsoring Institutions

University of Messina, Messina, Italy
Aligarh Muslim University, Aligarh, India
EGE University, Izmir, Turkey
Chuzhou University, Chuzhou, China

Preface

This volume contains the proceedings of the Workshop on Associative Rings and Algebras (WARA22) which was held in hybrid mode, that is, both in-person (at University of Messina, Italy) and virtually (on Zoom platform) from July 18 to July 20, 2022. The purpose of the workshop was to present the state of art both in the theory of Lie structures of associative rings and algebras and in the theory of functional identities in rings. The main topics covered referred to rings with involution, Lie and Jordan structures, rings and algebras arising under various constructions, modules, bimodules and ideals in associative algebras, behavior of derivations, automorphisms, and other kinds of additive maps in prime and semiprime rings. The conference was sponsored by University of Messina (Italy), Aligarh Muslim University (India), EGE University (Turkey), and Chuzhou University (China). The main aim of the Workshop was to facilitate the exchange of research ideas and to contribute to mutual communications and collaborations among ring theorists and experts in functional identities theory. A total of 10 invited talks on current topics of algebra and its applications were delivered by distinguished algebraists. The speakers included Profs. Asma Ali (Aligarh Muslim University, India), Mohammad Ashraf (Aligarh Muslim University, India), Luisa Carini (University of Messina, Italy), Çagri Demir (EGE University, Turkey), Münevver Pínar Eroğlu (Dokuz Eylul University, Turkey), Alberto Facchini (University of Padova, Italy), Tsiu-Kwen Lee and JhengHuei Lin (National Taiwan University, Taipei, Taiwan), Giovanni Scudo (University of Messina, Italy), Faiza Shujat (Taibah University, Saudi Arabia), and Feng Wei (Beijing Institute of Technology, China).

The workshop was particularly devoted to young researchers in order to give them the opportunity to have a correct approach to new research developments and ideas within ring theory, both by attending conferences presented and through the interaction with the invited speakers. More than 100 researchers from all over the world participated in the meetings, thus having the possibility of exchanging new ideas, discussing open problems already known in the literature, proposing new ones, as well as laying the foundations for future research collaborations in the field of algebra in general and with particular regard to the applications of the ring theory in other areas such as, for example, Physics (Lie-admissible algebras), Differential geometry
(Poisson algebras), Mechanics (maps covariant under the action of Lie algebras), Calculus (operator algebras and Banach spaces), and Informatics (cryptography and coding theory). Each of the conference sessions was characterized by a subsequent lively debate on the topics covered. Although it was not the initial intentions of the organizers, it was precisely from these open discussions that the idea of proposing a volume that collected a series of new results was born. This book is then the outcome not only of some invited lectures presented at the conference, but also of research papers by invited algebraists who could not attend the conference. All papers of the volume are peer-reviewed by anonymous experts. To this regard, we would like to thank all those who have contributed to this volume with their papers and those who have kindly and friendly accepted to serve as referees of the submitted papers. We also express our thanks to Springer for giving us the opportunity to publish this volume. Finally, let us thank Dr. Banu Dhayalan (Project Coordinator, Springer), Dr. Francesca Ferrari (Assistant Editor, Springer), and Dr. Francesca Bonadei (Executive Editor, Springer), without whose active assistance and help this project would not have been completed.

Messina, Italy
Aligarh, India
Aligarh, India
Aligarh, India
November 2023

Vincenzo De Filippis
Shakir Ali
Mohammad Ashraf
Nadeem ur Rehman

Contents

A Note on Multiplicative (Generalized)-Derivations and Left Sided Ideals in Semiprime Rings 1
Gurninder S. Sandhu, Basudeb Dhara, and Sourav Ghosh
On Weakly Generalized Reversible Rings 13
Nirbhay Kumar and Avanish Kumar Chaturvedi
Additivity of Multiplicative b-Generalized (Skew) Derivations 21
Sk Aziz and Om Prakash
Specht Modules and Representations of Symmetric Group 29
Maha Oudah Alshammari and Faryad Ali
Commutativity Theorems on Prime Rings with Generalized Derivations 61
Basudeb Dhara, Sukhendu Kar, and Kalyan Singh
Commutativity of σ-Prime Rings with Generalized Derivation 73
Adnan Abbasi and Muzibur Rahman Mozumder
A Note on b-Generalized Skew Derivations on Prime Rings 87
Mani Shankar Pandey and Ashutosh Pandey
Analysis of Some Topological Indices Over the Weakly Zero-Divisor Graph of the Ring $\mathbb{Z}_{p} \times \mathbb{Z}_{q} \times \mathbb{Z}_{r}$ 103
Nadeem ur Rehman, Shabir Ahmad Mir, and Mohd Nazim
A Study of Central Identities Equipped with Skew Lie Product Involving Generalized Derivations 119
Md. Arshad Madni, Mohd Shuaib Akhtar, and Muzibur Rahman Mozumder
Some Results on Left-sided Ideals of Semiprime Rings with Symmetric (α, β) n-Derivations 131
Muzibur Rahman Mozumder, Nazia Parveen, and Wasim Ahmed
Central Power Values of Generalized Derivation and Structure of Unital Banach Algebra 141
Asma Ali, Kapil Kumar, and Mohd Tasleem
Generalized Skew Derivation of Order 2 in Prime Ring with Multilinear Polynomial 155
Ashutosh Pandey and Balchand Prajapati
Local and 2-local Lie-type Derivations of Operator Algebras on Banach Spaces 175
Zhi-Cheng Deng and Feng Wei
The Noncommutative Singer-Wermer Conjecture and Generalized Skew Derivations 189
Feng Wei and Jing-Xiong Xu
Non-global Multiplicative Lie Triple Derivations on Rings 207
Mohammad Ashraf, Mohammad Afajal Ansari, and Md Shamim Akhter
Algebraic Identities on Prime and Semiprime Rings 223
Abu Zaid Ansari and Faiza Shujat
Generalized Derivations with Periodic Values on Prime Rings 231
Giovanni Scudo
On a Functional Identity Involving Power Values of Generalized Skew Derivations on Lie Ideals 245
Luisa Carini and Vincenzo De Filippis
Generalized Skew Derivations with Periodic Values on Lie Ideals 265 Milena Andaloro
Generalized Skew-Derivations Acting on Multilinear Polynomials in Prime Rings 279
Manami Bera and Basudeb Dhara
Results on \boldsymbol{b}-Generalized Derivations in Rings 301
Mohammad Salahuddin Khan, Shakir Ali, Abdul Nadim Khan, and Mohammed Ayedh
Results on Generalized Skew Bi-Semiderivation in Prime Rings 311
Faiza Shujat and Abu Zaid Ansari
Commuting Iterates of Generalized Derivations on Lie Ideals 319
Francesco Ammendolia
Non-linear Mappings Preserving Product $m^{*} n+n^{*} m$ on Factor von Neumann Algebras 343
Mohd Arif Raza and Tahani Al-Sobhi
A Commutativity Condition for Semiprime Rings with Generalized Skew Derivations 353
Francesco Rania
Results on Generalized Derivations in Prime Rings with Involution 363
Faez. A. Alqarni, Nadeem ur Rehman, and Hafedh M. Alnoghashi
Quantum Codes Over an Extension of \mathbb{Z}_{4} 375
Mohammad Ashraf, Naim Khan, Washiqur Rehman, and Ghulam Mohammad
Product of Traces of Permuting \boldsymbol{n}-Derivations on Prime and Semiprime Ideals of a Ring 391
Nazia Parveen

A Note on Multiplicative (Generalized)-Derivations and Left Sided Ideals in Semiprime Rings

Gurninder S. Sandhu, Basudeb Dhara, and Sourav Ghosh

Abstract

Let R be a 2-torsion free semiprime ring with center $Z(R)$ and λ a nonzero left sided ideal of R. Let $F, G: R \rightarrow R$ be multiplicative (generalized)-derivations associated with the map $d: R \rightarrow R$ (not necessarily additive nor derivation) and $H, T: R \rightarrow R$ be any two maps. The main goal of this article is to study identities: (1) $(d(x) F(y) \pm G(y) d(x)) \pm(H(x) y+y T(x))=0$ for all $x, y \in \lambda$; (2) $(d(x) F(y) \pm G(y) d(x)) \pm(x y \pm y x) \in Z(R)$ for all $x, y \in \lambda$.

Keywords Prime rings \cdot Semiprime rings \cdot Multiplicative (generalized)-derivation

1 Introduction

Let R be an associative ring. Then R is called prime (resp. semiprime) if for any $a, b \in R, a R b=(0)($ resp. $a R a=(0))$ implies $a=0$ or $b=0($ resp. $a=0)$. Recall that an additive mapping $d: R \rightarrow R$ is called a derivation if $d(x y)=d(x) y+x d(y)$ for all $x, y \in R$. In case d is not necessarily additive, then d is called multiplicative derivation of R. If $F: R \rightarrow R$ is an additive mapping and d is a derivation of R such that $F(x y)=F(x) y+x d(y)$ holds for all $x, y \in R$, then F is called a generalized derivation of R.

Like multiplicative derivation, if we drop additivity restriction of F, then F is called multiplicative generalized derivation of R. More precisely a mapping F :

[^0]$R \rightarrow R$ (not necessarily additive) is called a multiplicative generalized derivation of R, if there exists a derivation $d: R \rightarrow R$ such that $F(x y)=F(x) y+x d(y)$ holds for all $x, y \in R$.

It is natural to consider a pair of maps (F, d) which satisfies $F(x y)=F(x) y+$ $x d(y)$ holds for all $x, y \in R$, where F (not necessarily additive) and d (not necessarily derivation) are any two maps. In [10], Dhara and Ali introduced the notion of such type of mapping which is called as multiplicative (generalized)-derivation. A mapping $F: R \rightarrow R$ (not necessarily additive) is said to be multiplicative (generalized)derivation, if $F(x y)=F(x) y+x g(y)$ holds for all $x, y \in R$, where g is any mapping (not necessarily a derivation nor an additive map).

Evidently, these mappings extend the concept of derivations, multiplicative derivations, generalized derivations as well as multiplicative generalized derivations.

After Posner's paper [18], much attention has been devoted to investigate commutative structure (or commutativity) of a ring by imposing polynomial constraints involving derivations and generalized derivations on suitable subsets of it (see [2-$5,13-15,19,20$] and references therein). In [2], Ali and Huang proved that if R is a 2-torsion free semiprime ring, d a derivation of R and I an ideal of R such that any one of the following holds: (i) $[d(x), d(y)]= \pm[x, y]$ for all $x, y \in I$; (ii) $d(x) \circ d(y)= \pm(x \circ y)$ for all $x, y \in I$, then d is commuting on I, i.e., $[d(x), x]=0$ for all $x \in I$.

Ashraf et al. [3] studied the commutativity of a prime ring R admitting a generalized derivation F associated with a nonzero derivation d satisfying any one of the following conditions: (i) $[d(x), F(y)]= \pm[x, y]$, (ii) $d(x) \circ F(y)= \pm(x \circ y)$ for all $x, y \in I$, where I is a nonzero ideal of R.

Dhara et al. [9] extended above results by considering R a 2-torsion free semiprime rings and concluded that R contains a nonzero central ideal.

There are ongoing interest to investigate the identities replacing generalized derivation with multiplicative (generalized)-derivation, because multiplicative (generalized)-derivation is a generalization of derivation as well as generalized derivation. Thus multiplicative (generalized)-derivations are the large number of maps which satisfy the above identities. Recently, few papers have investigated identities involving multiplicative (generalized)-derivations in prime and semiprime rings (see $[1,6-8,10-12,16,17,21,22]$). In [16], Khan studied identities (i) $[d(x), F(y)] \pm[x, y]=0$ and (ii) $d(x) \circ F(y) \pm(x \circ y)=0$ for all x, y in some suitable subsets of R, where F is a multiplicative (generalized)-derivation with associated map d.

In [16, Theorem 3.1 and Theorem 3.4], author proved that: Let R be a 2torsion free semiprime ring, I a nonzero ideal of R and $F: R \rightarrow R$ a multiplicative (generalized)-derivation associated with the map $d: R \rightarrow R$. If $d(x) \circ$ $F(y) \pm(x \circ y)=0$ for all $x, y \in I$, or $[d(x), F(y)] \pm[x, y]=0$ for all $x, y \in I$, then $[[x, d(x)], d(x)]=0$ for all $x \in I$.

Recently, Dhara et al. [7], improved the second result, that is, $[d(x), F(y)] \pm$ $[x, y]=0$ for all $x, y \in \lambda$, where λ is a nonzero left ideal of a 2-torsion free semiprime ring R, and obtained that $\lambda[d(\lambda), \lambda]=(0)$. But question is "can we conclude the same conclusion when $d(x) \circ F(y) \pm(x \circ y)=0$ for all $x, y \in \lambda$?"

In the present article our motivation is to answer this question by considering more generalized situation $(d(x) F(y) \pm G(y) d(x)) \pm(H(x) y+y T(x))=0$ for all $x, y \in \lambda$ and obtained the same conclusion $\lambda[d(\lambda), \lambda]=(0)$, where F, G : $R \rightarrow R$ are two multiplicative (generalized)-derivations associated with the map $d: R \rightarrow R$ and $H, T: R \rightarrow R$ are any two maps and λ a nonzero left sided ideal of semiprime ring R.

2 Preliminaries and Auxiliary Lemmas

In the sequel, we shall make extensive use of the basic (anti-)commutator identities and some known facts of the subject, which are stated as follows:
(i) $[x y, w]=x[y, w]+[x, w] y$;
(ii) $[x, y w]=y[x, w]+[x, y] w$;
(iii) $(x y \circ w)=(x \circ w) y+x[y, w]=x(y \circ w)-[x, w] y$;
(iv) $(x \circ y w)=[x, y] w+y(x \circ w)=(x \circ y) w-y[x, w]$.

Lemma 1 Let R be a semiprime ring. If $F: R \rightarrow R$ is a multiplicative (generalized)derivation of R associated to the map d of R, then d must be multiplicative derivation.

Proof For any $x, y, z \in R$,

$$
\begin{equation*}
F(x y z)=F((x y) z)=F(x y) z+x y d(z)=F(x) y z+x d(y) z+x y d(z) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
F(x y z)=F(x(y z))=F(x) y z+x d(y z) . \tag{2}
\end{equation*}
$$

By (1) and (2),

$$
x\{d(y z)-d(y) z-y d(z)\}=0
$$

Since R is semiprime ring, it yields $d(y z)-d(y) z-y d(z)=0$ implying $d(y z)=$ $d(y) z+y d(z)$ for all $y, z \in R$. Therefore, d is a multiplicative derivation.

Lemma 2 Let R be a ring with center $Z(R)$ and d be a multiplicative derivation of R. Then $d(Z(R)) \subseteq Z(R)$.

Proof For any $x \in R$ and $z \in Z(R), x z=z x$ and hence

$$
0=d(x z)-d(z x)=d(x) z+x d(z)-d(z) x-z d(x)=x d(z)-d(z) x=[x, d(z)] .
$$

This implies $d(z) \in Z(R)$ for any $z \in Z(R)$, as desired.
Lemma 3 Let R be a 2-torsion free semiprime ring and λ is a nonzero left ideal of R. If $a, b \in R$ such that $a x b+b x a=0$ for all $x \in \lambda$, then $a x b=0=b x a$ for all $x \in \lambda$.

Proof Let $x, y \in \lambda$. By using the fact $a x b=-b x a$ for all $x \in \lambda$, we have

$$
\begin{gathered}
(a x b) y(a x b)=-(b x a) y(a x b)=-\{b(x a y) a\} x b=-\{-a(x a y) b\} x b \\
=a(x a y b x) b=-b(x a y b x) a=-(b x a) y(b x a)=-(a x b) y(a x b) .
\end{gathered}
$$

Thus 2(axb) y $(a x b)=0$. Since R is 2-torsion free semiprime ring, $\lambda(a \lambda b)=(0)$.
Since R is semiprime ring, it must contain a family of prime ideals $\Omega=\left\{P_{\alpha} \mid \alpha \in\right.$ $\Lambda\}$ such that $\bigcap_{\alpha \in \Lambda} P_{\alpha}=(0)$. Let P_{α} be any member of Ω. Then $\lambda(a \lambda b)=(0)$ implies either $\lambda a \subseteq P_{\alpha}$ or $\lambda b \subseteq P_{\alpha}$, so that $b \lambda a \subseteq P_{\alpha}$ or $a \lambda b \subseteq P_{\alpha}$. By hypothesis, $b \lambda a \subseteq P_{\alpha}$ implies that $a \lambda b \subseteq P_{\alpha}$ and hence $a \lambda b \subseteq P_{\alpha}$ for any $P_{\alpha} \in \Omega$. Thus $a \lambda b \subseteq$ $\bigcap_{\alpha \in \Lambda} P_{\alpha}=0$, that is, $a \lambda b=(0)$.

Lemma 4 Let R be a prime ring, I a nonzero ideal of R and d a multiplicative derivation of R. If $[d(I), I]=(0)$, then $d: R \rightarrow Z(R)$.

Proof For any $x, y, u \in I, r, t \in R$,

$$
0=[d(x), r y]=r[d(x), y]+[d(x), r] y=[d(x), r] y .
$$

By primeness of $R,[d(x), r]=0$ implying $d(I) \subseteq Z(R)$.
Again,

$$
\begin{equation*}
0=[d(x t), r]=[d(x) t+x d(t), r]=d(x)[t, r]+[x d(t), r] . \tag{3}
\end{equation*}
$$

Substituting $x=r x$ and then using (3), we get $d(r) x[t, r]=0$ for all $x \in I, t, r \in R$. By primeness of R, for each $r \in R$, either $d(r)=0$ or $r \in Z(R)$. Since $r \in Z(R)$ implies $d(r) \in Z(R)$, therefore in any case, we can conclude that $d(r) \in Z(R)$ for all $r \in R$. Hence conclusion follows.

3 Main Results

Theorem 1 Let R be a 2-torsion free semiprime ring and λ be a nonzero left ideal of R. If R admits multiplicative (generalized)-derivations $F, G: R \rightarrow R$ associated with the same map $d: R \rightarrow R$ and any two maps $H, T: R \rightarrow R$ such that $(d(x) F(y) \pm G(y) d(x)) \pm(H(x) y+y T(x))=0$ forall $x, y \in \lambda$, then $\lambda[d(\lambda), \lambda]=$ (0).

Proof We assume that

$$
\begin{equation*}
(d(x) F(y) \pm G(y) d(x)) \pm(H(x) y+y T(x))=0, \quad \forall x, y \in \lambda \tag{4}
\end{equation*}
$$

Substituting $y t$ for y in (4), where $t \in \lambda$, we get

$$
\begin{equation*}
d(x)\{F(y) t+y d(t)\} \pm\{G(y) t+y d(t)\} d(x) \pm(H(x) y t+y t T(x))=0, \quad \forall x, y, t \in \lambda \tag{5}
\end{equation*}
$$

By (4), above relation yields

$$
\begin{equation*}
d(x) y d(t) \pm G(y)[t, d(x)]+y d(t) d(x) \pm y[t, T(x)]=0, \quad \forall x, y, t \in \lambda \tag{6}
\end{equation*}
$$

Writing $u y$ in place of y in (4), where $u \in \lambda$, we obtain

$$
\begin{equation*}
d(x) u y d(t) \pm G(u y)[t, d(x)]+\operatorname{uyd}(t) d(x) \pm u y[t, T(x)]=0, \quad \forall x, y, t \in \lambda . \tag{7}
\end{equation*}
$$

Pre-multiplying (6) by u and then subtracting from (7), one can see that

$$
\begin{equation*}
[d(x), u] y d(t) \pm(G(u y)-u G(y))[t, d(x)]=0, \quad \forall x, y, t, u \in \lambda \tag{8}
\end{equation*}
$$

Replacing t by $t w$ in (8), where $w \in \lambda$ and then using it, we observe that

$$
\begin{gather*}
{[d(x), u] y(d(t) w+t d(w)) \pm(G(u y)-u G(y))[t, d(x)] w} \\
\pm(G(u y)-u G(y)) t[w, d(x)]=0, \tag{9}
\end{gather*}
$$

for all $x, y, t, w, u \in \lambda$. By using (8), (9) gives

$$
\begin{equation*}
[d(x), u] y t d(w) \pm(G(u y)-u G(y)) t[w, d(x)]=0, \quad \forall x, y, t, w, u \in \lambda \tag{10}
\end{equation*}
$$

Put $t=[p, d(v)] t$ in (10) (since $[p, d(v)] t \in \lambda)$, we get

$$
\begin{equation*}
\pm(G(u y)-u G(y))[p, d(v)] t[w, d(x)]+[d(x), u] y[p, d(v)] t d(w)=0 \tag{11}
\end{equation*}
$$

for all $x, y, t, w, u, p, v \in \lambda$. By using (8) we get

$$
\begin{equation*}
-[d(v), u] y d(p) t[d(x), w]+[d(x), u] y[d(v), p] t d(w)=0, \quad \forall x, y, t, w, u, p, v \in \lambda \tag{12}
\end{equation*}
$$

Since $d(v) u \in \lambda$, we put $u=d(v) u$ in (12) and get

$$
\begin{equation*}
[d(x), d(v)] u y[d(v), p] t d(w)=0, \quad \forall x, y, t, w, u, p, v \in \lambda . \tag{13}
\end{equation*}
$$

Put $x=x v$ in (13) and then using (13), we get

$$
\begin{equation*}
(d(x)[v, d(v)]+[x, d(v)] d(v)) u y[d(v), p] t d(w)=0, \quad \forall x, y, t, w, u, p, v \in \lambda \tag{14}
\end{equation*}
$$

Let $q \in \lambda$. Put $x=q x$ in (14) and then using (14), we obtain

$$
\begin{equation*}
(d(q) x[v, d(v)]+[q, d(v)] x d(v)) u y[d(v), p] t d(w)=0, \quad \forall x, y, t, w, u, p, v, q \in \lambda \tag{15}
\end{equation*}
$$

For $q=v, p=v, w=v, y=[v, d(v)] y$ in (15)

$$
\begin{equation*}
(d(v) x[v, d(v)]+[v, d(v)] x d(v)) u[v, d(v)] y[v, d(v)] t d(v)=0, \quad \forall x, y, t, u, v \in \lambda \tag{16}
\end{equation*}
$$

This gives

$$
\begin{equation*}
(d(v) x[v, d(v)]+[v, d(v)] x d(v))(\lambda[v, d(v)])^{3}=(0), \quad \forall x, v \in \lambda \tag{17}
\end{equation*}
$$

that is

$$
\begin{equation*}
d(v) x[v, d(v)] b+[v, d(v)] x d(v) b=(0) \tag{18}
\end{equation*}
$$

where $b=(\lambda[v, d(v)])^{3}$. Put $x=b x$ in (18) and then we have

$$
\begin{equation*}
(d(v) b) x([v, d(v)] b)+([v, d(v)] b) x(d(v) b)=(0) \tag{19}
\end{equation*}
$$

By Lemma 3

$$
\begin{equation*}
d(v) b x[v, d(v)] b=(0) \tag{20}
\end{equation*}
$$

This gives

$$
\begin{equation*}
d(v) \lambda[v, d(v)]^{3} x[v, d(v)](\lambda[v, d(v)])^{3}=(0) \tag{21}
\end{equation*}
$$

that is

$$
\begin{equation*}
(\lambda[v, d(v)])^{8}=(0) \tag{22}
\end{equation*}
$$

Since a semiprime ring contains no nonzero nilpotent left ideals, it follows that

$$
\begin{equation*}
\lambda[v, d(v)]=(0) \tag{23}
\end{equation*}
$$

Corollary 1 Let R be a 2-torsion free semiprime ring and I a nonzero ideal of R. If R admits multiplicative (generalized)-derivations $F, G: R \rightarrow R$ associated with the same map $d: R \rightarrow R$ and any two maps $H, T: R \rightarrow R$ such that $(d(x) F(y) \pm$ $G(y) d(x)) \pm(H(x) y+y T(x))=0$ for all $x, y \in I$, then $[d(I), I]=(0)$.
Proof By Theorem $1, I[d(I), I]=(0)$. Since R is semiprime, $[d(I), I] \subseteq I \cap$ $\operatorname{ann}(I)=0$.
Corollary 2 Let R be a 2-torsion free semiprime ring, λ a nonzero left ideal of $R, F: R \rightarrow R$ multiplicative (generalized)-derivation associated with the map d : $R \rightarrow R$ and $H: R \rightarrow R$ any map. If any one of the following holds:
(i) $[d(x), F(y)] \pm[H(x), y]=0$ for all $x, y \in \lambda$,
(ii) $d(x) \circ F(y) \pm H(x) \circ y=0$ for all $x, y \in \lambda$,
(iii) $[d(x), F(y)] \pm[x, y]=0$ for all $x, y \in \lambda$,
(iv) $d(x) \circ F(y) \pm(x \circ y)=0$ for all $x, y \in \lambda$,
then $\lambda[d(\lambda), \lambda]=(0)$.
Corollary 3 Let R be a prime ring of char $(R) \neq 2$ and I a nonzero ideal of R. If R admits multiplicative (generalized)-derivations $F, G: R \rightarrow R$ associated with the same map $d: R \rightarrow R$ and any maps $H, T: R \rightarrow R$ such that $(d(x) F(y) \pm$ $G(y) d(x)) \pm(H(x) y+y T(x))=0$ for all $x, y \in I$, then d maps R into its center.

Proof By Corollary 1, $[d(I), I]=(0)$. Then again by Lemmas 1 and 4, conclusion follows.

Corollary 4 Let R be a prime ring of char $(R) \neq 2$ and I a nonzero ideal of R. If R admits a multiplicative (generalized)-derivation $F: R \rightarrow R$ associated with the map $d: R \rightarrow R$ such that $[d(x), F(y)] \pm[x, y]=0$ for all $x, y \in I$, then R must be commutative.

Proof Assuming $G=F, H=I d$ (identity map) and $T=-H$ in Corollary 3, we conclude by Corollary 3 that $d(R) \subseteq Z(R)$ and hence by hypothesis $[I, I]=(0)$. This implies that R is commutative.

Corollary 5 Let R be a prime ring of char $(R) \neq 2$ and I a nonzero ideal of R. If R admits a multiplicative (generalized)-derivation $F: R \rightarrow R$ associated with the map $d: R \rightarrow R$ such that $d(x) \circ F(y) \pm x \circ y=0$ for all $x, y \in I$, then R is commutative and $F(x y)=F(x) y$ for all $x, y \in R$.

Proof By Corollary 3, $d(R) \subseteq Z(R)$ and hence by hypothesis $2 d(x) F(y) \pm x \circ$ $y=0$ for all $x, y \in I$. Replacing y with $y z$, we obtain $2 d(x)(F(y) z+y d(z)) \pm$ $\{(x \circ y) z-y[x, z]\}=0$ for all $x, y, z \in I$. By using hypothesis, this relation yields $2 d(x) y d(z) \mp y[x, z]=0$ for all $x, y, z \in I$. Now replacing y with $y r$, where $r \in R$, in $2 d(x) y d(z) \mp y[x, z]=0$ and using this relation, we get $y[r,[x, z]]=0$ for all $x, y, z \in I$ and $r \in R$. Primeness of R, implies $[R,[I, I]]=(0)$. This gives that R is commutative. Then from above relation, we have $d(x) y d(z)=0$ for all $x, y, z \in$ I which gives $d(I)=(0)$. Now $d(I)=(0)$ implies $d(R)=(0)$. Hence $F(x y)=$ $F(x) y$ for all $x, y \in R$.

Theorem 2 Let R be a 2-torsion free semiprime ring and λ be a nonzero left ideal of R. Let R admits multiplicative (generalized)-derivations $F, G: R \rightarrow R$ associated with the same map $d: R \rightarrow R$ such that $(d(x) F(y) \pm G(y) d(x)) \pm(x y \pm$ $y x) \in Z(R)$ for all $x, y \in \lambda$. If $d(Z(R)) \neq(0)$, then $\lambda[d(\lambda), \lambda] d(Z(R))=(0)$ and $\lambda[\lambda, \lambda] d(Z(R))=(0)$.

Proof By hypothesis,

$$
\begin{equation*}
(d(x) F(y) \pm G(y) d(x)) \pm(x y \pm y x) \in Z(R), \quad \forall x, y \in \lambda \tag{24}
\end{equation*}
$$

Since $Z(R) \neq(0)$, we choose $0 \neq z \in Z(R)$. Since $y z=z y \in \lambda$, taking $y z$ instead of y in our initial hypothesis (24), we observe
$d(x)(F(y) z+y d(z)) \pm(G(y) z+y d(z)) d(x) \pm(x y \pm y x) z \in Z(R), \quad \forall x, y \in \lambda$.
By using (24) and the fact $d(z) \in Z(R)$, it yields

$$
(d(x) y \pm y d(x)) d(z) \in Z(R), \quad \forall x, y \in \lambda
$$

It can be re-written as $[(d(x) y \pm y d(x)) d(z), r]=0$ for all $x, y \in \lambda$ and $r \in R$.
Since $d(z) \in Z(R)$, it follows that

$$
\begin{equation*}
[d(x) y \pm y d(x), t] d(z)=0, \quad \forall x, y, t \in \lambda \tag{26}
\end{equation*}
$$

Substituting $y t$ in place of y in (26) and using it, we find

$$
\begin{equation*}
[y[d(x), t], t] d(z)=0, \quad \forall x, y, t \in \lambda . \tag{27}
\end{equation*}
$$

Replacing y by $d(x) y$ in (27), we get $[d(x), t] y[d(x), t] d(z)=0$ for all $x, y, t \in \lambda$. This implies $(\lambda[d(x), t] d(z))^{2}=(0)$ for all $x, t \in \lambda$. It forces

$$
\begin{equation*}
\lambda[d(x), t] d(z)=(0), \quad \forall x, t \in \lambda . \tag{28}
\end{equation*}
$$

Writing $x u$ in place of x in (28) and using it, we can easily write after simple calculation that

$$
\begin{equation*}
y d(x)[u, t] d(z)+y[x, t] d(u) d(z)=0, \quad \forall x, y, t, u \in \lambda . \tag{29}
\end{equation*}
$$

Replacing u by $u w$ in (29), to get

$$
\begin{equation*}
y d(x) u[w, t] d(z)+y[x, t] u d(w) d(z)=0, \quad \forall x, t, u, w \in \lambda . \tag{30}
\end{equation*}
$$

Returning to (28), we may look at it as

$$
y d(w) u d(z)-y u d(w) d(z)=0, \quad \forall u, w \in \lambda .
$$

Writing $y[x, t]$ for y in the last expression, we obtain

$$
\begin{equation*}
y[x, t] d(w) u d(z)-y[x, t] u d(w) d(z)=0, \quad \forall x, t, u, w \in \lambda . \tag{31}
\end{equation*}
$$

Comparing (30) and (31), we have

$$
\begin{equation*}
y d(x) u[w, t] d(z)+y[x, t] d(w) u d(z)=0, \quad \forall x, t, u, w \in \lambda . \tag{32}
\end{equation*}
$$

Substituting $u v$ in place of u in (32) and using it in order to get

$$
\begin{equation*}
y d(x) u[[w, t], v] d(z)=0, \quad \forall x, t, u, w, v \in \lambda . \tag{33}
\end{equation*}
$$

Replacing x by $z x$ in (33), we find

$$
y x d(z) u[[w, t], v] d(z)=0, \quad \forall x, t, u, w, v \in \lambda .
$$

Taking $[[w, t], v]$ instead of x in the above relation, we find $(\lambda[[w, t], v] d(z))^{2}=(0)$ for all $w, t, v \in \lambda$. It forces $x[[w, t], v] d(z)=0$ for all $x, w, t, v \in \lambda$. Replacing w by $w t$ in the last expression, we find $x[w, t][t, v] d(z)=0$ for all $w, t, v \in \lambda$. Substituting $y v$ instead of v, we get $x[w, t] y[t, v] d(z)=0$ for all $x, y, w, t, v \in \lambda$. It yields $(\lambda[w, t] d(z))^{2}=(0)$, and it is implying that $\lambda[\lambda, \lambda] d(Z(R))=(0)$. Thus the proof is completed.

Corollary 6 Let R be a prime ring of char $(R) \neq 2$ and λ be a nonzero left ideal of R. If R admits multiplicative (generalized)-derivations F and G associated with the same map d such that $(d(x) F(y) \pm G(y) d(x)) \pm(x y \pm y x) \in Z(R)$ for all $x, y \in \lambda$ and $d(Z(R)) \neq(0)$, then $\lambda[d(\lambda), \lambda]=(0)$ and $\lambda[\lambda, \lambda]=(0)$.

Proof We know that for any prime ring R and $0 \neq z \in Z(R), r z=0$ implies $r=0$. Therefore, by Theorem $2, \lambda[d(\lambda), \lambda]=(0)$ and $\lambda[\lambda, \lambda]=(0)$.

Corollary 7 Let R be a prime ring with char $(R) \neq 2$ and I be a nonzero ideal of R. If R admits multiplicative (generalized)-derivations F and G associated with the same map d such that $(d(x) F(y) \pm G(y) d(x)) \pm(x y \pm y x) \in Z(R)$ for all $x, y \in I$ and $d(Z(R)) \neq(0)$, then R is commutative.

Proof In light of Corollary 6, we have $[d(I), I]=(0)$ for all $y, t \in I$. By Lemma $4, d(R) \subseteq Z(R)$. In view of our initial hypothesis

$$
\begin{equation*}
[d(x) \bar{F}(y) \pm(x y \pm y x), t]=0, \quad \forall x, y, t \in I, \tag{34}
\end{equation*}
$$

where $\bar{F}=F \pm G$. Note that \bar{F} is a multiplicative (generalized)-derivation of R associated with the map μd, where $\mu=2$ or $\mu=0$. Writing $y t$ in place of y in (34), we have

$$
\begin{equation*}
[d(x) \bar{F}(y) t+\mu d(x) y d(t) \pm\{(x y \pm y x) t \mp y[x, t]\}, t]=0, \quad \forall x, y, t \in I \tag{35}
\end{equation*}
$$

By (34), above relation yields

$$
[\mu d(x) y d(t) \mp y[x, t], t]=0, \quad \forall x, y, t \in I .
$$

This implies

$$
\begin{equation*}
\mu[y, t] d(x) d(t) \mp[y[x, t], t]=0, \quad \forall x, y, t \in I . \tag{36}
\end{equation*}
$$

Replacing y by $r y$ in (36) and then using it, we get

$$
\begin{equation*}
\mu[r, t] y d(x) d(t) \mp[r, t] y[x, t]=0, \quad \forall x, y, t \in I, r \in R . \tag{37}
\end{equation*}
$$

Substituting $y w$ for y in (37), we obtain

$$
\begin{equation*}
\mu[r, t] y w d(x) d(t) \mp[r, t] y w[x, t]=0, \quad \forall x, y, t \in I, r \in R . \tag{38}
\end{equation*}
$$

Right multiplying by w in (37) and then subtracting from (38), we obtain $[r, t] y[w,[x, t]]=0$ that is $[w,[r, t]] y[w,[x, t]]=0$ for all $x, y, t, w \in I$ and $r \in R$. Primeness of R forces that $[w,[x, t]]=0$ for all $x, w, t \in I$ which assures commutativity of R.

Corollary 8 Let R be a prime ring of char $(R) \neq 2$, I a nonzero ideal of R and F : $R \rightarrow R$ multiplicative (generalized)-derivation associated with the map $d: R \rightarrow R$ such that $d(Z(R)) \neq(0)$. If any one of the following holds:
(i) $[d(x), F(y)] \pm[x, y] \in Z(R)$ for all $x, y \in I$;
(ii) $d(x) \circ F(y) \pm x \circ y \in Z(R)$ for all $x, y \in I$,
then R is commutative.
Example 3.1 Let Z be the set of all integers and $R=\left\{\left.\left(\begin{array}{ccc}0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0\end{array}\right) \right\rvert\, a, b, c \in Z\right\}$. Since $\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right) R\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)=(0), R$ is not prime. Let $I=\left\{\left.\left(\begin{array}{lll}0 & x & y \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right) \right\rvert\, x, y \in Z\right\}$ be an ideal of R.

Define the mappings $F, d: R \longrightarrow R$ by $F\left(\begin{array}{ccc}0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0\end{array}\right)=\left(\begin{array}{ccc}0 & a & 0 \\ 0 & 0 & c^{2} \\ 0 & 0 & 0\end{array}\right)$ and $d\left(\begin{array}{lll}0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0\end{array}\right)=\left(\begin{array}{ccc}0 & a & b c \\ 0 & 0 & -c \\ 0 & 0 & 0\end{array}\right)$.

We notice that F and d are not additive maps and so F can not be a generalized derivation and d can not be a derivation. It is easy to verify that F satisfies $F(x y)=$ $F(x) y+x d(y)$ for all $x, y \in R$. Therefore, F is a multiplicative (generalized)derivations associated with the map d. We see that $[d(x), F(y)] \pm[x, y]=0$ and $d(x) \circ F(y) \pm x \circ y=0$ for all $x, y \in I$. Since R is noncommutative, the primeness hypothesis is not superfluous in Corollaries 4 and 5.

Acknowledgements The third author expresses his thanks to the University Grants Commission, New Delhi, for its JRF awarded to him under UGC-Ref. No.: 1156/(CSIR-UGC NET DEC. 2018) dated 24.07.2019. We are highly thankful to the referee whose comments and suggestions have enhanced the paper.

References

1. Ali, A., Dhara, B., Khan, S., Ali, F.: Multiplicative (generalized)-derivations and left ideals in semiprime rings. Hacettepe J. Math. Stat. 44(6), 1293-1306 (2015). https://doi.org/10.15672/ HJMS. 2015449679
2. Ali, S., Huang, S.: On derivations in semiprime rings. Algebr. Represent. Theor. 15, 1023-1033 (2012). https://doi.org/10.1007/s10468-011-9271-9
3. Ashraf, M., Ali, A., Rani, R.: On generalized derivations of prime rings. Southeast Asian Bull. Math. 29(4), 669-675 (2005)
4. Ashraf, M., Ali, A., Ali, S.: Some commutativity theorems for rings with generalized derivations. Southeast Asian Bull. Math. 31, 415-421 (2007)
5. Bell, H.E., Daif, M.N.: On derivations and commutativity of prime rings. Acta Math. Hungar. 66(4), 337-343 (1995). https://doi.org/10.1007/BF01876049
6. Camci, D.K., Aydin, N.: On multiplicative (generalized)-derivations in semiprime rings. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 66(1), 153-164 (2017). https://doi.org/10.1501/ Commua1_00000000784
7. Dhara, B., Kar, S., Kuila, S.: A note on multiplicative (generalized)-derivations and left ideals in semiprime rings. Rend. Circ. Mat. Palermo Ser. II 70(2), 631-640 (2021). https://doi.org/ 10.1007/s12215-020-00515-4
8. Dhara, B., Mozumder, M.R.: Some identities involving multiplicative generalized derivations in prime and semiprime rings. Bol. Soc. Paran. Mat. 36(1), 25-36 (2018). https://doi.org/10. 5269/bspm.v36i1.30822
9. Dhara, B., Ali, S., Pattanayak, A.: Identities with generalized derivations in semiprime rings. Demonstratio Math. 46(3), 453-460 (2013). https://doi.org/10.1515/dema-2013-0471
10. Dhara, B., Ali, S.: On multiplicative (generalized)-derivation in prime and semiprime rings. Aequat. Math. 86, 65-79 (2013). https://doi.org/10.1007/s00010-013-0205-y
11. Dhara, B., Pradhan, K.G.: A note on multiplicative (generalized) derivations with annihilator conditions. Georgian Math. J. 23(2), 191-198 (2016). https://doi.org/10.1515/gmj-2016-0020
12. Gölbaşi, Ö.: Multiplicative generalized derivations on ideals of semiprime rings. Math. Slovaca 66(6), 1285-1296 (2016). https://doi.org/10.1515/ms-2016-0223
13. Huang, S.: Generalized derivations of prime rings. Internat. J. Math. Math. Sci., Article ID 85612, 6 pages (2007). https://doi.org/10.1155/2007/85612
14. Huang, S.: Derivations with Engel conditions in prime and semiprime rings. Czech. Math. J. 61(136), 1135-1140 (2011). https://doi.org/10.1007/s10587-011-0053-7
15. Huang, S., Davvaz, B.: Generalized derivations of rings and Banach algebras. Commun. Algebra 41, 1188-1194 (2013). https://doi.org/10.1080/00927872.2011.642043
16. Khan, S.: On semiprime rings with multiplicative (generalized)-derivations. Beitr. Algebra Geom. 57, 119-128 (2016). https://doi.org/10.1007/s13366-015-0241-y
17. Koç, E., Gölbaşi, Ö.: Some results on ideals of semiprime rings with multiplicative generalized derivations. Commun. Algebra 46(11), 4905-4913 (2018). https://doi.org/10.1080/00927872. 2018.1459644
18. Posner, E.C.: Derivation in prime rings. Proc. Am. Math. Soc. 8, 1093-1100 (1957). https:// doi.org/10.2307/2032686
19. Quadri, M.A., Khan, M.S., Rehman, N.: Generalized derivations and commutativity of prime rings. Indian J. Pure Appl. Math. 34(9), 1393-1396 (2003)
20. Sandhu, G.S., Kumar, D.: A note on derivations and Jordan ideals of prime rings. AIMS Math. 2(4), 580-585 (2017). https://doi.org/10.3934/Math.2017.4.580
21. Sandhu, G.S., Camci, D.K.: Some results on prime rings with multiplicative derivations. Turk. J. Math. 44, 1401-1411 (2020). https://doi.org/10.3906/mat-2002-24
22. Tiwari, S.K., Sharma, R.K., Dhara, B.: Multiplicative (generalized)-derivations in semiprime rings. Beitr. Algebra Geom. 58(1), 211-225 (2017). https://doi.org/10.1007/s13366-015-0279-x

On Weakly Generalized Reversible Rings

Nirbhay Kumar and Avanish Kumar Chaturvedi

Abstract

We introduce a notion of weakly generalized reversible rings as a proper generalization of generalized reversible rings. In support, we give examples. We show that every central reversible ring is an example of weakly generalized reversible ring. Also, we study some properties and characterizarions of weakly generalized reversible ring.

Keywords Reversible rings - Generalized reversible rings • Central reversible rings

1 Introduction

Throughout this paper, all rings are associative with identity unless otherwise stated. We denote the ring of all $n \times n$ matrices over a ring R by $M_{n}(R)$, the ring of all $n \times n$ upper triangular matrices over a ring R by $M_{n}(R)$; and a square matrix whose (i, j) th entry is 1_{R} (the identity of R) and elsewhere 0_{R} (the zero of R) by $E_{i j}$. The readers are referred to [5] for all undefined terminologies and notions.

Cohn [2] called a ring R reversible if $a b=0$ implies $b a=0$ for all $a, b \in R$. In 2014, Kose et al. [4] introduced the notion of central reversible ring as a generalization of reversible ring. They called a ring R central reversible if for any $a, b \in R, a b=0$ implies $b a \in C(R)$; where $C(R)$ denotes the set of all central elements of R. Recently, Subba et al. [6] introduced the notion of generalized reversible ring as a generalization of reversible ring. They called a ring R generalized reversible if, for any $a, b \in R \backslash\{0\}$, $a b=0$ implies that there exists $m \in \mathbb{N}$ such that $b^{m} \neq 0$ and $b^{m} a=0$.

By the motivation, we introduced a notion of weakly generalized reversible ring as a generalization of generalized reversible ring.

[^1]
2 Definition and Properties

Definition 1 We call a ring R weakly generalized reversible if, for any $a, b \in R \backslash\{0\}$, $a b=0$ implies that there exist $m, n \in \mathbb{N}$ such that $b^{m} \neq 0$ and $b^{m} a^{n}=0$.

Example 1 Every generalized reversible ring is weakly generalized reversible. However, a weakly generalized reversible ring need not to be generalized reversible. For example, let F be a field and S be the polynomial ring $F<x, y>$ in two noncommuting indeterminates x and y. If I is the ideal $<x^{2}, x y, y^{2}>$ of a ring S and $R=S / I$, then elements of the ring R are of the form $(a+b x+c y+d y x)+I$, where $a, b, c, d \in F$. Let $\bar{f}=(a+b x+c y+d y x)+I, \bar{g}=\left(a^{\prime}+b^{\prime} x+c^{\prime} y+\right.$ $\left.d^{\prime} y x\right)+I \in R \backslash\{I\}$ such that $\bar{f} \bar{g}=I$. Then $a a^{\prime}+\left(b a^{\prime}+a b^{\prime}\right) x+\left(c a^{\prime}+a c^{\prime}\right) y+$ $\left(d a^{\prime}+c b^{\prime}+a d^{\prime}\right) y x \in I$ which implies that

$$
a a^{\prime}=b a^{\prime}+a b^{\prime}=c a^{\prime}+a c^{\prime}=d a^{\prime}+c b^{\prime}+a d^{\prime}=0
$$

Claim:- $\underline{a=0}$ and $a^{\prime}=0$: If possible, suppose that $a \neq 0$. Since F is a field, $a a^{\prime}=0$ implies that $a^{\prime}=0$. Hence $b a^{\prime}+a b^{\prime}=0=c a^{\prime}+a c^{\prime}$ implies that $b^{\prime}=0=c^{\prime}$. So, $d a^{\prime}+c b^{\prime}+a d^{\prime}=0$ implies that $d^{\prime}=0$. Therefore, $\bar{g}=I$ which is a contradiction. Thus, $a=0$. Next, since $\bar{f} \neq I$, at least one of b, c and d must be nonzero. If $b \neq 0$ or $c \neq 0$, then $b a^{\prime}+a b^{\prime}=c a^{\prime}+a c^{\prime}=0$ gives $a^{\prime}=0$. If $b=c=0$, then d must be nonzero and so, in this case, equation $d a^{\prime}+c b^{\prime}+a d^{\prime}=0$ gives $a^{\prime}=$ 0 . Hence $\bar{f}=(b x+c y+d y x)+I$ and $\bar{g}=\left(b^{\prime} x+c^{\prime} y+d^{\prime} y x\right)+I$. Therefore, $\bar{f}^{2}=b c y x+I$ and so $\bar{g}^{1} \bar{f}^{2}=I$. Thus, R is weakly generalized reversible. Since $(x+I)(y+I)=I,(y+I)(x+I) \neq I$ and $(y+I)^{2}=I$, so R is not generalized reversible.

Remark 1 1. Obviously, every subring of a weakly generalized reversible ring is weakly generalized reversible.
2. Quotient of a weakly generalized reversible ring need not be weakly generalized reversible. For example, the ring S in Example 1 is weakly generalized reversible being an integral domain but $R=S / I$ is not weakly generalized reversible.

A central reversible ring need not be generalized reversible. For example, if R is the following subring of matrix ring $M_{3}(\mathbb{Z})$:

$$
\left\{\left.\left[\begin{array}{lll}
a & b & c \\
0 & a & d \\
0 & 0 & a
\end{array}\right] \right\rvert\, a, b, c, d \in \mathbb{Z}\right\}
$$

then R is central reversible by [4, Example 2.2]. However, R is not generalized reversible as if we take $A=E_{23}, B=E_{12} \in R$, then $A B=0, B A=E_{13} \neq 0$ and $B^{2}=0$. However, we find the following result:

Proposition 1 Every central reversible ring is weakly generalized reversible.

Proof Let R be a central reversible ring. Let $a, b \in R \backslash\{0\}$ such that $a b=0$. Then $b a \in C(R)$ and so $b a^{2}=(b a) a=a(b a)=(a b) a=0$. Hence R is weakly generalized reversible.

Proposition 2 A finite subdirect product of weakly generalized reversible rings is weakly generalized reversible.

Proof Let R be the subdirect product of two rings P and Q. Then, there exist ideal I and J in R such that $R / I \cong P, R / J \cong Q$ and $I \cap J=0$. Suppose that P and Q are weakly generalized reversible. Then, we need to show that R is weakly generalized reversible. Let x and y be two nonzero elements in R such that $x y=0$. There are two cases:
Case-I: $x \notin I \cup J$ and $y \notin I \cup J$: Then, x and y are neither in I nor J. So, $x+$ $I \neq I, y+I \neq I$ and $x+J \neq J, y+J \neq J$. Since R / I is weakly generalized reversible, $x+I \neq I, y+I \neq I$ and $(x+I)(y+I)=I$, so there exist $m, n \in \mathbb{N}$ such that $y^{m} \notin I$ and $y^{m} x^{n} \in I$. Similarly there exist $k, l \in \mathbb{N}$ such that $y^{k} \notin J$ and $y^{k} x^{l} \in J$. Let $i=\max (m, k)$ and $j=\max (n, l)$. Then, clearly $y^{i} \neq 0$ and $y^{i} x^{j}=I \cap J=0$.
Case-II: $x \in I \cup J$ or $y \in I \cup J$: In this case $y x \in I \cup J$. So, $y x \in I$ or $y x \in J$. If $y x \in I \cap J=0$, we have nothing to prove. Hence, assume that $y x \in I$ and $y x \notin J$. Now since J is an ideal and $y x \notin J$, clearly $x, y \notin J$. Thus, we have $x+J \neq J, y+J \neq J$ and $(x+J)(y+J)=J$. Since R / J is weakly generalized reversible, there exist $m, n \in \mathbb{N}$ such that $y^{m} \notin J$ and $y^{m} x^{n} \in J$. Clearly $y^{m} \neq 0$ and $y^{m} x^{n} \in I \cap J=0$ as $y x \in I$.

Thus, in both cases, there exist $m, n \in \mathbb{N}$ such that $y^{m} \neq 0$ and $y^{m} x^{n}=0$. Therefore, R is weakly generalized reversible.

Corollary 1 A finite product of rings is weakly generalized reversible if and only if each ring of the product is weakly generalized reversible.

Corollary 2 For any central idempotent e of a ring $R, e R$ and $(1-e) R$ are weakly generalized reversible if and only if R is weakly generalized reversible.

Proposition 3 For any ideal I of a ring R having no nonzero nilpotent element, R is weakly generalized reversible whenever R / I is so.

Proof Let x and y be two nonzero elements in R such that $x y=0$. Then, $(x+$ $I)(y+I)=I$. There are two cases.
Case-I: $x \notin I$ and $y \notin I$. So $x+I \neq I$ and $y+I \neq I$. Since R / I is weakly generalized reversible, there exist $m, n \in \mathbb{N}$ such that $y^{m} \notin I$ and $y^{m} x^{n} \in I$. Now since $y^{m} x^{n} \in I$ and $\left(y^{m} x^{n}\right)^{2}=y^{m} x^{n-1}(x y) y^{m-1} x^{n}=0, y^{m} x^{n}=0$ as I has no nonzero nilpotent element.
Case-II: $x \in I$ and $y \in I$. So, $y x \in I$ and $(y x)^{2}=y(x y) x=0$. Hence $y x=0$ as I has no nonzero nilpotent element.

Thus, in both cases, there exist $m, n \in \mathbb{N}$ such that $y^{m} \neq 0$ and $y^{m} x^{n}=0$. Therefore, R is weakly generalized reversible.

3 Some Extensions

Recall [1], for a ring R,

$$
R_{n}=\left\{\left.\left[\begin{array}{cccccc}
a & a_{12} & a_{13} & \cdots & a_{1 n-1} & a_{1 n} \\
0 & a & a_{23} & \cdots & a_{1 n-1} & a_{1 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & a & a_{n-1 n} \\
0 & 0 & 0 & \cdots & 0 & a
\end{array}\right] \right\rvert\, a, a_{i j} \in R \text { for any } i, j\right\}
$$

is a subring of the upper triangular matrix ring $T_{n}(R)$. We observe that for any ring R and $n \geq 3$, the ring R_{n} is not generalized reversible as if we take $A=E_{23}, B=$ $E_{12} \in R_{n}$, then $A B=0, B A=E_{13} \neq 0$ and $B^{2}=0$.

Proposition 4 Let S be a multiplicatively closed subset of a ring R consisting of central regular elements. Then, R is weakly generalized reversible if and only if $S^{-1} R$ is so.

Proof Suppose that R is weakly generalized reversible and let $0 \neq \gamma=r_{1} s_{1}^{-1}, 0 \neq$ $\delta=r_{2} s_{2}^{-1} \in S^{-1} R$ such that $\gamma \delta=\left(r_{1} r_{2}\right)\left(s_{1} s_{2}\right)^{-1}=0$. Then, $r_{1}, r_{2} \neq 0$ and $r_{1} r_{2}=$ 0 . So, there exist $m, n \in \mathbb{N}$ such that $r_{2}^{m} \neq 0$ and $r_{2}^{m} r_{1}^{n}=0$ as R is weakly generalized reversible. This implies that $\delta^{m}=\left(r_{2}^{m}\right)\left(s_{2}^{m}\right)^{-1} \neq 0$ and $\delta^{m} \gamma^{n}=\left(r_{2}^{m} r_{1}^{n}\right)\left(s_{2}^{m} s_{1}^{n}\right)^{-1}=$ 0 . Thus, $S^{-1} R$ is weakly generalized reversible.

Conversely, suppose that $S^{-1} R$ is weakly generalized reversible and let $0 \neq$ $x, y \in R$ such that $x y=0$. If we take $\alpha=x 1^{-1}, \beta=y 1^{-1} \in S^{-1} R$, then $\alpha, \beta \neq 0$ and $\alpha \beta=0$. So, there exist $m, n \in \mathbb{N}$ such that $\beta^{m}=y^{m} 1^{-1} \neq 0$ and $\beta^{m} \alpha^{n}=$ $\left(y^{m} x^{n}\right)(1)^{-1}=0$ as $S^{-1} R$ is weakly generalized reversible. This implies that $y^{m} \neq 0$ and $y^{m} x^{n}=0$. Thus, R is weakly generalized reversible.

Corollary 3 For any ring $R, R[x]$ is weakly generalized reversible ring if and only if the Laurent polynomials ring $R\left[x, x^{-1}\right]$ is so.

Proof If we take $S=\left\{1, x, x^{2}, x^{3}, \ldots\right\}$, then S is a multiplicatively closed subset of $R[x]$ consisting of central regular elements and $S^{-1}(R[x])=R\left[x, x^{-1}\right]$. So, result follows from Proposition 4.

Let R be an algebra over \mathbb{Z}. Then the set $R \times \mathbb{Z}$ with operations $\left(r_{1}, m_{1}\right)+$ $\left(r_{2}, m_{2}\right)=\left(r_{1}+r_{2}, m_{1}+m_{2}\right)$ and $\left(r_{1}, m_{1}\right)\left(r_{2}, m_{2}\right)=\left(r_{1} r_{2}+m_{1} r_{2}+m_{2} r_{1}, m_{1} m_{2}\right)$, where $r_{i} \in R$ and $m_{i} \in \mathbb{Z}$, form a ring with identity $(0,1)$. Construction of this ring was due to J. L. Dorroh in [3]. This ring is called as Dorroh extension of R by \mathbb{Z} and usually denoted by $D(R, \mathbb{Z})$.
Lemma 1 [6, Lemma 2.11] For any $(r, s) \in D(R, \mathbb{Z})$ and for any positive integer k,

$$
(r, s)^{k}=\left(\sum_{i=0}^{k-1}{ }^{k} C_{i} s^{i} r^{k-i}, s^{k}\right)
$$

Proposition 5 A ring R is weakly generalized reversible if and only if the Dorroh extension ring $D(R, \mathbb{Z})$ is so.

Proof Suppose that R is weakly generalized reversible and let $(0,0) \neq(a, b)$, $(c, d) \in D(R, \mathbb{Z})$ such that $(a, b)(c, d)=(a c+b c+d a, b d)=(0,0)$. Then, $a c+$ $b c+d a=0$ and $b d=0$. Since $c, d \in \mathbb{Z}$ and $b d=0, b=0$ or $d=0$. Thus, there are two cases:
Case-I: $b=0$ In this case, $a\left(c+d 1_{R}\right)=0$ and $a \neq 0$ as $a c+b c+d a=0$ and $(a, b) \neq(0,0)$. If $c+d 1_{R} \neq 0$, then by the assumption that R is weakly generalized reversible, there exist $m, n \in \mathbb{N}$ such that $\left(c+d 1_{R}\right)^{m} \neq 0$ and $\left(c+d 1_{R}\right)^{m} a^{n}=0$. Since Lemma 1 shows that sum of components of $(c, d)^{m}$ is $\left(c+d 1_{R}\right)^{m}$, so $(c, d)^{m} \neq(0,0)$. Also,

$$
\begin{aligned}
(c, d)^{m}(a, b)^{n} & =\left(\sum_{i=0}^{m-1}{ }^{m} C_{i} d^{i} c^{m-i}, d^{m}\right)(a, 0)^{n} \\
& =\left(\sum_{i=0}^{m-1}{ }^{m} C_{i} d^{i} c^{m-i}, d^{m}\right)\left(a^{n}, 0\right) \\
& =\left(\left(\sum_{i=0}^{m-1}{ }^{m} C_{i} d^{i} c^{m-i}\right) a^{n}+d^{m} a^{n}, 0\right) \\
& =\left(\left(\sum_{i=0}^{m-1}{ }^{m} C_{i} d^{i} c^{m-i}+d^{m} 1_{R}\right) a^{n}, 0\right) \\
& =\left(\left(c+d 1_{R}\right)^{m} a^{n}, 0\right)=(0,0) .
\end{aligned}
$$

If $c+d 1_{R}=0$, then $(c, d)(a, b)=(c, d)(a, 0)=(c a+d a, 0)=\left(\left(c+d 1_{R}\right)\right.$ $a, 0)=(0,0)$.
Case-II: $d=0$ In this case, $\left(a+b 1_{R}\right) c=0$ and $c \neq 0$ as $a c+b c+d a=0$ and $(c, d) \neq(0,0)$. If $a+b 1_{R} \neq 0$, then by the assumption that R is weakly generalized reversible, there exist $m, n \in \mathbb{N}$ such that $c^{m} \neq 0$ and $c^{m}\left(a+b 1_{R}\right)^{n}=0$. Clearly $(c, d)^{m}=(c, 0)^{m}=\left(c^{m}, 0\right) \neq(0,0)$ and

$$
\begin{aligned}
(c, d)^{m}(a, b)^{n} & =(c, 0)^{m}\left(\sum_{i=0}^{n-1}{ }^{n} C_{i} b^{i} a^{n-i}, b^{n}\right) \\
& =\left(c^{m}, 0\right)\left(\sum_{i=0}^{n-1}{ }^{n} C_{i} b^{i} a^{n-i}, b^{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(c^{m}\left(\sum_{i=0}^{n-1}{ }^{n} C_{i} b^{i} a^{n-i}\right)+c^{m} b^{n}, 0\right) \\
& =\left(\left(c^{m}\left(\sum_{i=0}^{n-1}{ }^{n} C_{i} b^{i} a^{n-i}+b^{n} 1_{R}\right), 0\right)\right. \\
& =\left(c^{m}\left(a+b 1_{R}\right)^{n}, 0\right)=(0,0) .
\end{aligned}
$$

If $a+b 1_{R}=0$, then $(c, d)(a, b)=(c, 0)(a, b)=(a c+b c, 0)=\left(\left(a+b 1_{R}\right) c, 0\right)=$ (0,0).

Thus, in all cases, there exist $m, n \in \mathbb{N}$ such that $(c, d)^{m} \neq(0,0)$ and $(c, d)^{m}$ $(a, b)^{n}=(0,0)$. Therefore, $D(R, \mathbb{Z})$ is weakly generalized reversible.

The converse follows from the fact that R is a subring of $D(R, \mathbb{Z})$.
Recall that if B is a subring of a ring A having same identity, then the set, denoted and defined by $R[A, B]=\left\{\left(a_{1}, \ldots, a_{n}, b, b, \ldots\right) \mid n \in \mathbb{N}, a_{i} \in A, b \in B\right\}$ form aring with respect to the component wise addition and multiplication.

Proposition 6 Let B be a subring of a ring A having same identity. Then, A is weakly generalized reversible if and only if $R[A, B]$ is so.

Proof Suppose that A is weakly generalized reversible and let $0 \neq X=\left(a_{1}, \ldots, a_{n}\right.$, $\left.a_{n+1}, a_{n+1}, \ldots\right), 0 \neq Y=\left(b_{1}, \ldots, b_{n}, b_{n+1}, b_{n+1}, \ldots\right) \in R[A, B]$ such that $X Y=$ $\left(a_{1} b_{1}, \ldots, a_{n} b_{n}, a_{n+1} b_{n+1}, a_{n+1} b_{n+1}, \ldots\right)=0$. Let $i_{1}, i_{2}, \ldots, i_{r}$ be all indices for which a_{j} and b_{j} both are nonzero. Since A is weakly generalized reversible, there exist $m_{j}, n_{j} \in \mathbb{N}$ such that $b_{j}^{m_{j}} \neq 0$ and $b_{j}^{m_{j}} a_{j}^{n_{j}}=0$ for all $j \in\left\{i_{1}, i_{2}, \ldots, i_{r}\right\}$. Clearly, $b_{i} a_{i}=0$ for all $i \in\{1,2, \ldots, n, n+1\} \backslash\left\{i_{1}, i_{2}, \ldots, i_{r}\right\}$. Let $m=$ $\max \left\{m_{i_{1}}, \ldots, m_{i_{r}}, 1\right\}$ and $n=\max \left\{n_{i_{1}}, \ldots, n_{i_{r}}, 1\right\}$. Then, clearly, $Y^{m} \neq 0$ and $Y^{m} X^{n}=0$. Thus, $R[A, B]$ is weakly generalized reversible.

The converse follows from the fact that A is a subring of $R[A, B]$.

Acknowledgements The authors are thankful to the referee and editor for their useful comments to improve this paper.

References

1. Chaturvedi, A.K., Kumar, N., Shum, K.P.: On Z-symmetric rings. Math. Slovaca 71(6), 13611374 (2021)
2. Cohn, P.M.: Reversible rings. Bull. London Math. Soc. 31(6), 641-648 (1999)
3. Dorroh, J.L.: Concerning adjunctions to algebras. Trans. Am. Math. Soc. 26(6), 85-88 (1932)
4. Kose, H., Ungor, B., Halicioglu, S., Harmanci, A.: A generalization of reversible rings. Iranian J. Sci. Tech. 38(1), 43-48 (2014)
5. Lam, T.Y.: A First Course in Noncommutative rings, 2nd edn., Graduate Texts in Mathematics, vol 131. Springer, New York (2001)
6. Roy, D., Subedi, T.: On a generalization of reversible rings. An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 65(2), 331-340 (2019)

[^0]: G. S. Sandhu

 Department of Mathematics, Patel Memorial National College, Rajpura 140401, India
 e-mail: gurninder_rs@pbi.ac.in
 B. Dhara (\triangle)

 Department of Mathematics, Belda College, Belda, Paschim Medinipur 721424, W.B., India
 e-mail: basu_dhara@yahoo.com
 S. Ghosh

 Department of Mathematics, Jadavpur University, Kolkata 700032, W.B., India
 e-mail: mathsourav99@gmail.com

[^1]: N. Kumar

 Department of Mathematics, Feroze Gandhi College, Raebareli 229001, India
 A. K. Chaturvedi (\boxtimes)

 Department of Mathematics, University of Allahabad, Prayagraj 211002, India
 e-mail: akchaturvedi.math@gmail.com; achaturvedi@allduniv.ac.in

