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Preface

Permanent magnet (PM) synchronous machine (PMSM) drives, including PM
brushless ac and dc drives, exhibit many advantages such as high efficiency and
high torque density. A high-performance PM brushless ac or dc drive needs accu-
rate rotor position information. This is usually obtained by using a hardware rotor
position sensor, such as a resolver, encoder, or Hall sensor. However, these sensors
increase drive size and cost and reduce reliability, particularly in harsh environ-
ments. Therefore, it is desirable to replace hardware rotor position sensors with
software-based rotor position sensorless techniques.
This book aims to comprehensively describe sensorless control techniques of

PMSM drives. We have strived to highlight the global research achievements
and also many new techniques developed at the University of Sheffield. The basic
principles and state-of-the-art rotor position sensorless control techniques are
explained, together with their challenges and practical solutions. The scope is very
broad, and readers may find the summary diagram in section 1.7 useful.
Thirty years ago, sensorless control of PMSM drives had limited application and

was mostly used for driving ventilation fans with brushless dc drives. However,
over the last 10 years, the field has rapidly expanded. Today, numerous commer-
cial products are using sensorless control techniques for a wide variety of applica-
tions, for example wind power generators, automotive compressors, water and oil
cooling pumps, electric bicycles, drones, general purpose variable frequency
drives, and household appliances (e.g. air-conditioning and refrigerator compres-
sors and fans, washing machines, dishwasher pumps, heat circulating pumps, and
vacuum cleaners), as well as fault-tolerance drives in electrified transportation and
aerospace applications. Despite these successes, the use of sensorless control for
applications that require high torque for rapid starting remains challenging. As
the technology continues to evolve and improve, it is likely that sensorless control
will find even broader applications, offering a reliable, cost-effective, and efficient
solution for a wide range of industrial and commercial needs.
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I∗ Amplitude of extra injected current signal A
IA(s), IB(s), IC(s) Three-phase currents after Laplace transform A
iA, iB, iC Three-phase stator currents A

IPA, I
P
B, I

P
C Three-phase primary current response peak

values
A

ISA, I
S
B, I

S
C Three-phase secondary current response peak

values
A

iABCh Three-phase high-frequency current responses A
IAD_error Disturbance current vector due to current

measurement error
A

Id, Iq Amplitudes of dq-axis currents A
id, iq d- and q-axis currents A

id, iq Estimated d- and q-axis currents A

idc dc-link current A
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i∗dc dc-link current reference A

id,ac, iq,ac Estimated d- and q-axis ac current components A

id,CM, iq,CM d- and q-axis currents of current model A

id,dc, iq,dc Estimated d- and q-axis dc current components A

idf, iqf Fundamental d- and q-axis currents A

Idh, Iqh Amplitudes of estimated dq-axis
high-frequency currents

A

idh, iqh d-and q-axis high-frequency currents A

idh, iqh Estimated d- and q-axis high-frequency
currents

A

ivdh, i
v
qh Virtual d- and q-axis high-frequency currents A

i∗dq References of d- and q-axis currents A

ipdq Predicted d- and q-axis currents A

ΔIerror Error between real and recorded currents A
i∗Extra Extra injected current signal A

iH, iL, iO High-level, low-level, and floating phase
currents

A

Im Peak value of phase current A
Imax Maximum current response peak value A
Imean Average current response peak value A
In Amplitude of negative sequence current

response
A

in Negative sequence current response A

in Estimated negative sequence current response A

ISQn Amplitude of negative sequence current
response of square-wave injection

A

ind, inq Estimated d- and q-axis negative sequence
current responses

A

Ineg_α, Ineg_β α- and β-axis components of negative sequence
HF current

A

Ip Amplitude of positive sequence current
response

A

ip Positive sequence current response A

ISQp Amplitude of positive sequence current
response of square-wave injection

A

(Continued)

List of Symbols xxiii



(Continued)

Symbol Description Unit

Ipos_α, Ipos_β α- and β-axis components of positive sequence
HF current

A

Iq_MAX Maximum q-axis current A
Iqu Quantum current of analog-to-digital

converter
A

Ireal Real current A
Irecord Recorded current A
Is Amplitude of stator current A
is Stator currents A
ΔIth Threshold current value A
iX, iY, iZ Phase currents of second winding set

of DTP-PMSM
A

iXf Fundamental current in arbitrary phase A
iXh High-frequency current in arbitrary phase A
iz1z2 Stator current in z1z2 subspaces A
iα, iβ α- and β-axis currents A

iα, iβ α- and β-axis estimated currents A

Δiα, Δiβ α- and β-axis current estimation errors A
Iαβh Amplitudes of α-and β-axis high-frequency

currents
A

iαβh α- and β-axis high-frequency currents A
i∗αβh α- and β-axis high-frequency currents before

compensating positive current
A

i∗∗αβh α- and β-axis high-frequency currents after
compensating for positive current

A

I0 Amplitude of dc component of three-phase
current responses

A

i0 Zero sequence current A
I2 Amplitude of second order harmonic

component of three-phase current responses
A

i2nd Secondary positive sequence harmonics in HF
current response

A

J Inertia kg.m2

kc Compensation factor for cross-coupling
inductances

mH/A

Ki Integration gain of PI controller
KΔLq Deviation factor of q-axis inductance rad/A

KΔLq1 Deviation factor of q-axis self-inductance
in Set 1

rad/A
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KΔMq21 Deviation factor of q-axis mutual-inductance
between two sets

rad/A

Kp Proportional gain of PI controller
kp3, kd3, ks3 Coil pitch factor, distribution factor, and skew

factor for third harmonic
KR Equivalent gain of resistance voltage divider
kr Compensation factor for cross-coupling error

angle
rad/A

KΔRs , KΔLQ Deviation factors of resistance and q-axis
equivalent inductance

rad/A

kw3 Winding factor for third harmonic
Kω Slope of back-EMF envelope around ZCP V
L Phase self-inductance of BLDC mH
ΔL Asymmetric inductance mH
LAA, LBB, LCC Three-phase self-inductances mH
ΔLAB, ΔLBC, ΔLCA Three-phase inductance asymmetric errors of

BLDC
mH

Lc Second order harmonic amplitude of sine
inductance term in self-inductance

mH

LD, LQ Equivalent d- and q-axis inductances
of DTP-PMSM

mH

Ld, Lq d- and q-axis self-inductances mH

Ld, Lq Nominal values of d- and q-axis inductances mH

ΔLd, ΔLq Mismatch values of d- and q-axis inductances mH
Ldh, Lqh dq-axis incremental self-inductances mH
Ldq, Lqd Cross-coupling dq-axis inductances mH
Ldqh, Lqdh Cross-coupling dq-axis incremental

inductances
mH

Ld1, Ld2, Lq1, Lq2 d- and q-axis self-inductances of two winding
sets

mH

Leq Equivalent inductance mH
LH, LL High- and low-level inductances mH
LΔh Amplitude of hth spatial inductance mH
Llm Boundary inductance mH
Lls Leakage self-inductance mH
LMAX, LMIN Maximum and minimum inductances mH
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Ln Negative sequence inductance mH
Lp Positive sequence inductance mH
Lqds Approximated cross-coupling inductances mH
Lsa Average between d- and q-axis incremental

inductances
mH

Lsd Difference of d- and q-axis incremental
inductances

mH

Lsj , Lsk jth and kth order self-inductances mH
Ls0 Average value of self-inductance Wb
Ls2 Amplitude of second order harmonic

component of self-inductance
Wb

LXX, LYY, LZZ Three-phase self-inductances of first winding
set in DTP-PMSM

mH

Lαα, Lββ α- and β-axis self-inductances mH
L0 Zero sequence inductance mH
M Phase mutual-inductance of BLDC mH
MAB, MBA, MAC,
MCA, MBC, MCB

Three-phase mutual-inductances mH

Mc Second order harmonic amplitudes of sine
inductance terms in mutual-inductances

mH

Md12, Md21, Mq12,
Mq21

d- and q-axis mutual-inductances between two
winding sets

mH

ΔMq21, ΔMq12 Deviation values of q-axis inductances between
two sets

mH

Msj, Msk jth and kth order mutual-inductances mH
Ms0 Average value of mutual-inductance Wb
Ms2 Second order harmonic of mutual-inductance Wb
MXY,MYX,MYZ,MZY,
MZX, MXZ

Three phase mutual-inductances of second
winding set in DTP-PMSM

mH

Mαβ, Mβα α- and β-axis mutual-inductances mH
Ns Number of sample points
P(k) Covariance matrix of EKF
P Number of pole pairs
p Derivative operator
Q(k), R(k) Covariances of process noise andmeasurement

noise of EKF
R Phase resistance of BLDC Ω
ΔRA, ΔRB, ΔRC Asymmetric resistances components Ω
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ΔRave dc offset due to resistance asymmetry Ω
Rd, Rq d- and q-axis resistances Ω
Rdc dc-link resistance Ω
Rdq dq-axis mutual-resistance Ω
Req Equivalent resistance Ω
RN Resistance of auxiliary resistor network Ω
Rs Phase resistance Ω
Rs Nominal value of phase resistance Ω
Rs Balanced part of three-phase resistances Ω
ΔRs Mismatch value of phase resistance Ω
RXh Equivalent HF resistance of inverter in

arbitrary phase
Ω

R1, R2 Nominal values of low and high side
resistances of resistance voltage divider

Ω

R1, R2 Actual values of low and high side resistances
of resistance voltage divider

Ω

S Sliding mode surface
SA, SB, SC Switching states of three legs of VSI
t Time s
ΔT Period of injected square-wave voltage signal s
Δt Time step s
Tc Time constant of LPF s
td Time interval of half cycle between two zero-

crossing points
s

tdd Turn-off delay of power device s
tdt Deadtime s
tdu Turn-on delay of power device s
Tinj Period of extra injected current signal s
Ti1, Ti2 Periods of first and second injected HF voltage

signals
s

TL Load torque Nm
Tm_BLAC Electromagnetic torque of a BLAC machine Nm
Tm_BLDC Electromagnetic torque of a BLDC machine Nm
Topt Optimal duration of voltage pulse s
TP Duration of voltage pulse s
tperiod Fundamental period s
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TP_MAX, TP_MIN Maximum and minimum durations of voltage
pulse

s

tr Remainder of division of time by injection
period

s

Ts Sampling period s
tφ[n] nth time delay for commutation instant s
tθ[n] nth ZCP time interval s
T0 Duration of zero voltage vector s
T1 Duration of voltage vector 1 s
T2 Duration of voltage vector 2 s
t23, t34, t45, t25, t52, t56,
t61, t12

Period between sectors s

uVA, uVB, uVC Three-phase vertical error correction
common-mode bias

V

u1, u2, u3, u4, u5, u6 Zero-crossing thresholds V
ΔV Average terminal voltage error V
vA, vB, vC Three-phase stator voltages V
ΔvAB, ΔvBC, ΔvCA Three-phase horizontal voltage shifts V
VAD Maximum sampling voltage V
VAG(s), VBG(s),
VCG(s)

Three-phase terminal voltages after Laplace
transform

V

vAG, vBG, vCG Voltage between phase terminal and ground V
vAh, vBh, vCh Injected three-phase HF voltages V
vAN, vBN, vBN Phase voltages of a PM machine in ABC

reference frame
V

vBG Acquired phase B terminal voltage V
Vc Amplitude of equivalent voltage source V
vd, vq d- and q-axis voltages V
vd, vq Estimated d- and q-axis voltages V
Vdc dc-link voltage V
ΔVdc dc-link voltage variation V
vd ff Estimated d-axis feed-forward voltage V
vdh, vqh d- and q-axis high-frequency voltages V
vdh, vqh Estimated d- and q-axis high-frequency

voltages
V

vvdh, v
v
qh Virtual d- and q-axis high-frequency voltages V

vdh1, vdh2 First and second injected HF voltage signals V
vd,VM , vq,VM Voltages of voltage model V
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