Zephyr RTOS

Embedded
C Programming

Using Embedded RTOS POSIX API

Andrew Eliasz

ApPress:

Zephyr RTOS
Embedded C
Programming

Andrew Eliasz

Apress’

Zephyr RTOS Embedded C Programming: Using Embedded
RTOS POSIX API

Andrew Eliasz
First Technology Transfer
Croydon, Surrey, UK

ISBN-13 (pbk): 979-8-8688-0106-8 ISBN-13 (electronic): 979-8-8688-0107-5
https://doi.org/10.1007/979-8-8688-0107-5

Copyright © 2024 by Andrew Eliasz

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Susan McDermott

Development Editor: Laura Berendson

Project Manager: Jessica Vakili

Cover designed by eStudioCalamar
Cover image by Pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1
New York Plaza, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on the Github repository: https://github.com/Apress/Zephyr-RTOS-
Embedded-C-Programming. For more detailed information, please visit https://www.apress.com/
gp/services/source-code.

If disposing of this product, please recycle the paper

https://doi.org/10.1007/979-8-8688-0107-5

Table of Contents

About the AUthOrc.cccmmssemmmsssnsmsssssmsssssmssasss s ssnsssssanss Xvii
About the Technical REVIEWETcsscesssssmssssansssssnsssssnsssssnsssssnsssssnnss Xix
Chapter 1: An Introduction ... ———————————— 1
What This BOOK IS “All ADOUL”cccumrrnrnininininesenesesesesesesssssssssssssssssssssssssssssanns 1
What Is an RTOS and When and Why “Do You Need One”?........ccocevvverrereeserseraenns 2
What IS @an RTOS?......com e 4
Using Open Source RTOS in Systems Requiring Functional Safety 5
Reconciling Certification with Open SOUICE..........ccocvvevrrereresernseseneses e 10
Zephyr As @ Modular RTOS........cccovririnenenissnrese s sesse s ssssessessesesssssesseees 11
Zephyr As a Fully Featured RTOS.ccccvvrrnnnnrenerenessese s ssssesessessssessessens 12
Arguments for ChoosSing Zephyr 0S..........ccevrevrrmrerrerensssessesessssessessessssessessenes 14
What Makes Zephyr RTOS Specialcccvivvnininiennnnnsncsess s ssssessessens 15
Zephyr and SECUNTYcoerreeererrerere s 15
REfEIBNCESc vttt 17
Chapter 2: A Review of RTOS Fundamentalsccccceumrmrnnsssssssnnnnnnnnnas 19
Embedded System Software Development Strategies/Options.........ccevvvveviernene 23
Multitasking and Interprocess Communication and Synchronization
Concepts and Patterns.......cccvovvvvvierenssersensesssessesesessssesessessesessessessessssessesaens 29
LTSS 29
Intertask COMMUNICALION..........coceeeereecrrce e 33
SEMAPNOTE......cicircre e e e an 34
Binary SEMAPNOreccvvcerrcererre e e 34

TABLE OF CONTENTS

iv

Counting SEMAPNOIEcccevevvverrere e se e naeenes 35
Mutual Exclusions Semaphore (MULEX)........ccceerureerenrerenenerseserensesessesesesesessesenns 36
Priority Inversion AVOIdANCE...........cceeecrerererenerese e 37
Using Semaphores and Mutexes in Interrupt Service Routines.........ccecvcviennene 38
Semaphore Usage Patterns and SCenarios..........ccccveevvrnsrienennsensensesesessenenes 38
Wait and Signal Synchronizationccccvvevnvnvnennnnsnie s sessessesseens 38
Credit Tracking SynChronization...........cccuecvverevnsnsenenssessessesessssesesessesessessenses 39
Synchronizing Access to a Shared Resource Using a Binary Semaphore........... 40
Message Queueing and Message QUEUESccccvverernrensenenesensessesessssessessens 4
Interlocked, One-Way Data Communicationcccccvvvnvnieninnnsnienesnsensennens 43
Interlocked, Two-Way Data Communication...........cccceeevvvnvenernnensensenesensensenens 44
PIPES ettt a e e e e nae e 45
Event Objects (Event REGISIENS)cucvevvrerrerernnenserene s sesessessssesessessessssessessens 47
Condition VariabIEscceeeeerrrncrercrrs s 48
Interrupts and EXCEPLIONS ... 49
TIMING AN TIMEIScovveeerrereresese s s e e nnsnnns 52
Memory Management..........covoeirerenesnsere e s 53
Synchronization Patterns and Strategies........ccccvvrrervrnrrienesnsensesse e ses s 56
Communication Patterns..........ccurnnnnssss s 58
Patterns Involving the Use of Critical Sectionsccceoverecrnccvnienencccrnccnen 59
Common Activity Synchronization Design Patternsccccoveevnscnerrescrnscnene 59
Common Resource Synchronization Design Patterns...........cocoouevnresenrenerensenens 61
Some More Advanced Thread Interaction Patterns..........ccccevvcrnienniesernsennns 62
Handling Multiple Data Items and Multiple INPULScovvvvererevenserienenesrerenaens 65
Sending Urgent/High Priority Data Between TaskSccuvrerererrerserersesessersenses 66
DEVICE DIIVEISceeeeereeereeererese e s 66
RETBIBINCESceeceeeer s 67

TABLE OF CONTENTS

Chapter 3: Zephyr RTOS Application Development Environments

and Zephyr Application Building PrincCiplesccceemmmmrrsssssssssssnnnsnnas 69
Setting Up a Zephyr SDK CLI (Command-Line Interface) Development
Environment on Microsoft Windowsccececrecennncnnesnese e ssssesens 71
Choices of Boards and Development Kits for Getting Started..........c.ccoceevveruenee. 74
Setting Up an nRF Connect SDK Development Environment Using a
Microsoft VS Code—Based IDE...............c.ccoeoerrnienencrrrnseseese s 81
WOrKing i VS COUE.........coerreerererereereeererese e 85
GIODAI ACHONS ... e 91
Application-Specific ACHIONScccvvererrrrrrrr e 92
BUild-SPeCifiC ACTIONScccerereeririeriere st ser s e e e sre e e saesnens 92
DEtAIS VIBW ...t 93
DEVICEIIBE VIBW ...t e 94
ACHIONS VIBW.......eeeceecerce e 95

Exercise: Building and Running a Zephyr Sample Application Using VS Code....95
Introduction to the Zephyr RTOS Device Driver Model and the Zephyr RTOS

Device Driver APIs and Data Structures............ccocovvvnnnnnsnnnnnsscsesssnes 97
GPIO INPULS...ceveereerreresserese s sesesse e sessessessesaesessessessessssessessessessssessesasssssensesaens 106
UART Communications Between a Target Board and a PCcccecevrvcennne. 108
Zephyr Logging MOdUIE ... 111
Plan of Action for Exploring Multithreading and Thread Synchronization......... 114
Using Simulation and Simulators for Testing and Developing Zephyr RTOS

0] 01Tz (0] LS 114
Zephyr Applications Using ReN0dE...........ccocvverveeniniinnnnenessen e sessesssesesenns 115
Renode and Firmware TeStiNgccevvvrrriennnnsnse s 116
Building Machines in RENOE...........ccuerererererrcrerenerese s 116
Emulators vs. SIMUIALOrSccccvveerninernserssese s 117
SimMUIALOr USE CASES.....ccveeerrierrrreseree s s e e s sss e e sessssenns 118

TABLE OF CONTENTS

EMUIALOr USE CASEScccererrrrrrisisirissssssssse s se e e s sssesssssssas 119
Advantages of Simulators and Emulators............ccovcevrenrncnnnennescrniesennenens 119
Disadvantages of Simulators and Emulatorscocovrennerrecnnscnesenennne 120
SUMMANiZING RENOUE........ccvverrreeree s 121
REfEIENCEScovieerercerte et e 122
Chapter 4: Zephyr RTOS Multithreadingccucccemminsssnnnnmssssnnsnssssanns 123
(0]) RS 124
Devicetrees and Devicetree Configuration..........ccccveevivverievierienensensessessssessensenes 126
Kconfig and Devicetree Usage HeuristiCscccuuvvrnnnnnnniennsnsenessssensensens 127
Multithreading in ZePRYF ... s 127
Zephyr Kernel Mode and User Mode Threads.........c.ccovveerennenesenessesesensesessnnens 133

An Overview of Generic Zephyr Features Pertaining to Privilege Modes,
Stack Protection and Separation, User Mode Threads, and Memory Domains...134

Privilege MOES ... s 134
Safety Model and Threats That Zephyr RTOS Applications Need to Protect

T 1 TR 135
ARM Cortex M Memory Protection Unit (MPU): An OVerviewcccoeveevenenens 137
USEI SYSCAIIS.....cccerereeeeereres e s 138
Zephyr RTOS Thread Prioritiesocvveerverernnensensesensssessesessssessessessessssessessesaes 139
Thread CuStom Datacccovrnenencnrninnsssssse s 141
Dropping Privileges........ccucieriinrnre s 141
Thread Termination ..o 142
SYSEEM TRIEAUScovreeerreerrresere s e 142
Basic Multithreading SCENArI0Sccccovirernresnenre s 144
Simple Multithreading EXampIecocvcvverernnensenienesessessesesessessesessessssessessens 145
FIFOS iN ZEPNYE c.eereecectrerere s sessesse s s e s s sae s ssessessssessesaesasssssensenes 147
Synchronizing Threads Using Semaphores and Sleeping..........ccoeeerererenenen 151

TABLE OF CONTENTS

Signalling Using a Condition Variableccccvvvverennrnienennsensessesssessensensens 157
The Dining Philosophers Problem..........ccccovninnnninsne e 162
Producers and Consumers and Multithreading............ccooverreenerrencrnsesesenerennes 170
The Zephyr RTOS Producer-Gonsumer EXampleccocvvevinnnnnseniennsensensennns 171
Using Zephyr RTOS System Calls: Essential Concepts and Overview 176
Producer-Consumer Example Sample Driver Partc.cccovvvvvvnveniennsensennenns 179
Shared Memory Partition, System Heap, Memory Pool, and Kernel
QUEUES P ...t 185
Application A Part.........ccociinisnnrn e 186
APP B Part.......cciiiicicirisireresesesese st ss e 194
Shared Memory, Protected Memory Partitions, and Memory Domains 200
MemOry Partitions..........ccuverernnnneniennnirserse s ses e s sa s s s sss e s 200
Zephyr Shared Memory EXample........ccvvevernnenieniensnsensessessssssessesesssssssessesses 205
RETBIBNCES ..ot 215
Chapter 5: Message Queues, Pipes, Mailboxes, and Workqueues.....217
Zephyr MesSSage QUEUEco.eecrerererererreereeeresse e e ses e se s e sse e sse e sessssesssnens 218
Message Queue — Technical Details and the Message Queue API.................... 219
Overview of the Message Queue APl FUNCHIONS..........cccccvvrevnnnsenienenenseniennens 221
Message QUEUE EXAMPIE........ccvvrrerererserseresss s s sessessessessssessessessssessessees 222
Exercise Scenario DESCHPLiONc.ccvvvevrrrerevnsensere s sessere s sessesse e sessessessees 223
Zephyr MailDOX.......ccvcreree e s 236
Mailbox Message FOrmat...........ccooocveenerencrsscnseses e 237
Mailbox Message Life CYCIE........cuurrrrerernnmrrnsmsesesesssesessesessesessssesessesessssessnnes 238
Mailbox Sending and Receiving Thread Compatibilityc.ccccvrveriniererienernne. 238
Mailbox Message Sending — Synchronous and Asynchronous..........ccceceveeeuene. 239
The Mailbox APl — Data Types and FUNCLiONS.........ccccvcvveriniennnnensnsense s 239
Message DESCHPIOrS ... e 240

vii

TABLE OF CONTENTS

Sending and Receiving Zephyr MailboxX MeSSages........ccvverrerrrrerserserseressersersens 242
SeNding @ MESSAQE.......ccuecerrrierirerireeris et se s e se s e see e e ens 243
Receiving @ Mailbox MESSAQGE.........ccvrermrrrerrrerereere e 246
Introductory Zephyr Mailbox EXampleccovcevenernnesnsennnesesesesessesessssenennes 251
Zephyr RTOS WOIKQUEUEBSc.ecerrrerrrrenerreesssessssesessesessssessssssssssssssssssessssssssnens 256
Delayable WOTK ... sses e s s s s se s s e s ss s snesaesseas 258
Simple Workqueue EXample 1covvvrrrerernsensenesesessessessesssssssessessessssessessens 259
Simple Workqueue EXample 2ccovvevrererenernsesenesese s sessesesessesenns 261
Simple Workqueue EXample 3 ... ssssessessens 263
SUMMANY ...t e s e s e nenssnenns 267
Chapter 6: Using Filesystems in Zephyr Applicationscccuuisnes 269
0T 1o] o (]) TR 270
SDC and MMC Cardsccoererermrmrmssmsessssssssssesessssssssssssesssssssssssesssssssssssssssns 276
SD Card SUPPOIt Vid SPL........cccverrererrrrerrerers s ssssessessessssessessessessssessessens 277
Zephyr RTOS DiSK ACCESS APlcovueierecrinierine e sesss e ses e ssesesessesessenens 278
Zephyr File SYSIEM AP ..o 279
Working With Dir€CtOrIEsS......ccvveerrrrereresereserrssesesese e s sesse e e s sessssssssnens 283
File Systems — A High-Level OVEIVIEWc.cccevenerenernsennnesesssesessesessesessnnes 284
Overview of the FAT File System and FatFs.........c.cccvvvvininnnncnienenenseniennens 285
Overview of the LittleFS File SYStEMcccvvvvvnienennsensere s ssesessensessens 288
Walkthrough of a LittleFS Example Programcccccovvevnvcnenenennsevensesenenens 288
SUMMANY.....eieeereeereree e s e se s e re e e e e 302
REfEIBNCEScoveeeerreerree s 302
Chapter 7: Developing Zephyr BLE Applications..........cccousssannnnsssnnns 305
BLE: A ShOrt HiSTOIYvceiiiiirecrse s 306
USES OF BLE ... s 307
BLE ArChItECIUIEeceeeicrircerice s 307

viii

TABLE OF CONTENTS

BLE PRYSICal LAYETcceriirierieereriirren e sessss e s e s s s s se s ssessessesssssnesaenseas 308
BLE LiNK LAYETceeciecieircre st sn e s ss s 309
BLE Unicast Connection SCeNArioccocorreerernererenerenseseseses e sesesesse e 310
BLE Broadcast COnNect SCENAI0..........ccvvrerrrsesesesessesesessssessssessssesessesessssessanes 311
BLE Link Layer AddreSSing........ccvueresesmsesersssessssessssssssssssssssesssssssssssssssssssssenes 312
BLE PaCKEt TYPES ..ccvererirercie st s s s s s 312
Connections and Connection EVENTS............cccovrnmnnnnsenesnssssssssessssssesesessns 313
HCI (Host Controller Interface) Layer..........cccovvevreeerenernsenenesesssesessesessesessens 314
Logical Link Control and Adaptation Protocol (L2CAP) Layerc.ccccerererenne. 314
BLE Actors — Peripherals, Broadcasters, Centrals, and Observers..........c..c...... 315
BLE PeriPREral........ccccrveereninininesisesessesesss s s s se s s ssssessssssessnnes 315
BLE CENIal ..o s e 315
HCI — Generic ACCESS Profile (GAP)ccccvrerereerersersersessssessessessssessessessssessessenes 316
Attribute ProtoCol (ATT) ... s snas 317
Data AHFDULESccoeeereecre e 317
GATT Attribute and Data Hierarchy..........cccuoeerenrnsnnsesnssessseseseses e 319
CharaCteriStiCScvverrrierre s e 319
PrOfIES ...t s 320
ALribute OPErationS.........ccvvererrrrrererr s s sae e enes 322
Requests — Flow Control, Reading Attributes, and Writing to Attributes............ 323
BIUBLOOLN 5. s 324
BLE SECUNTY...covvierreerrneresesessesessssesessese s ssssesssssss s s sesssssssssessssssssssssssssensenes 325
Building and Testing Peripheral and Central BLE Applications...........c.ccccveeruene. 327
The nRF52840 Dongle and IS USEScccvcvvernerieniensinsesesses e seses e ssessesaenns 327
nRF Connect Bluetooth Low Energy Applicationscccevverierennenserienensensensenns 328
Setting Up an nRF52840 Dongle for Use with the nRF Connect for

Desktop nRF BLE Application ... 329

ix

TABLE OF CONTENTS

Using the Dongle in BLE Central Mode...........coovvvverernnennenienesessensesesessessessees 331
BLE Network Connection Map.........ccoeevrenrnccninesenesesisesese e sesesesessesessenes 333
Using the Dongle in BLE Peripheral Mode...........ccccoverrnnenennenerencreneseseeneenes 336
Using the Power Mode Emulation to Set Up an Emulated Battery Service....... 339
BLE Application Development APIs Provided by Zephyr and the nRF
0] 01 1< 0T 0 343
The Source BLE Structure in the Zephyr Source Code..........ccvevvrveriereerersersennes 347
Building, Programming, and Configuring Host RoI€Scccceceervccrnvcnerecennnne. 347
Basic Peripheral EXample ... 347
Bluetooth: Central/Heart Rate Monitor.........c.ccccovvererenernsesenesesese s 356
Overview of the Connected FUNCLIONccccvicrncnncs e 365
Is It Possible to Run Both a Peripheral and a Central on the Same Board?371
L L U L= 372
31011117 OO 372
RETEBIBNCES ..o s 372
Chapter 8: Zephyr RTOS and Ethernet, Wi-Fi, and TCP/IPccccseue. 375
Zephyr and Network Management.............ccoveennenenenesssesessesesssessssesessssssseens 379
The NUcleo-F767ZI BO@rdcccoeovnreererennsenesesee s snas 382
Building and Troubleshooting the Zephyr Network Programming
Examples Using the STM32 Nucleo-F767ZI Board............ccevvvrerrerverierensensersenes 385
The BSD SOCKELS APL..........ccccemrerreeercneressseesesesessssss e sesss e sessssssssssssessssans 386
A Zephyr Echo Server Example OVErVIEWcccccvvrernnnienennssnsessessessssessenns 387
Zephyr 0S Services ModUuIe.........occoveeerenernsesrse s sesnenens 388
Strategies for Studying and Reverse Engineering (Where Necessary)
Zephyr Application COdEeccccvvererrrniene e e enes 393
Zephyr Network Management APL...........cccvvrnnnninnnn e sesenns 397
How to Request a Defined Procedure.cccovvvvrieviinsnnenesnsessesesss s 397

TABLE OF CONTENTS

Listening for Network EVENts........c.cccvrrininnnnininsin e see e 398
How to Define a Network Management Procedure...........ccccocevvvnvnenrnceniennenns 399
Signalling @ Network Event............ccovnnnnn s 400
Network Management Interface FUNCLIONS.........ccccovererncenenesenese e 401
Zephyr Shell MOdUIE ... 404
Shell ComMMANGS ..o s 404
Command Creation MaCr0S..........cccueuerermrmmnnmnmsesessssssse s sesesesnns 405
Creating Static CommaNdsccccvcrrvnncnrn s e 405
Dictionary COMMANGS.........cccvererrrrererereree s srens 406
The Shell and the Echo Server EXampleccccrevnininiennnnsnsessessssessesenns 408
Configuring a TCP Server Application to Use a Separate Thread for
EACh CONNECLION ... s 424
Data Structures Associated with TCP/IP Server-Side Connections................... 424
Thread Structures Pool for Handling Threads Involved in TCP/IP Server
L0 01 T 0 3L 426
Echo Server on the STM32 Nucleo-F767Z1 Board...........c.ccocvrvrerrenerensesessenerennes 431
SUMMANY....ctitierrnerisese e nr e 434
RETEIEINCES ... s 435

Chapter 9: Understanding and Working with the Devicetree in

General and SPI and 12C in Particularc.ccousemssasmssassssnsssansssanssns 437
Firmware Development Aspects of Application Developmentccccoveennene. 438
Overview of SPIand I2C.........ccccooeererrnsesresere e 442
SPIEXPIAINEAcveeeieeeeercer e 443
Advantages and Disadvantages of SPl..........cccocvvrvninnrninnnn e 446
2 O o - 1] 41T R 446
Devicetree Configurationccoccvrevrrcrncnne s s 448
Device Tree Source (DTS) Representation of Devicetrees.........ccecvveerererernnes 449

TABLE OF CONTENTS

Unit Addresses and the DeviCetree. ... 453
Devicetree ProCeSSINgccvvinrnienesnsine s s 457
Devicetree BiNAINGScoovocoereerernerereserese s snens 460
The Syntax of Binding Files........c.cuouvrermrenmsnsesnsesesesesssesessesesesessssesessssesssnens 462
Binding and Bus Controller NOAEScucucrvvernenesesesnsesesesesssesesesessssessanes 469
Phandles, Phandle-Array Type Properties, and Specifier Cell Names............... 471
Including .yaml Binding FileS........ccccuviririnnnnnnininsin e ssesens 473
Accessing the Devicetree in C and C++ Application Code..........cccceeerrcererencns 475
Working with Devices in Applications ... 476
Working with reg and interrupts Properties.........ccocuuernsernsenenesesssesensesesnens 480
Working With DEVICESccecerrererinerinisenese s se s sessssnssenens 481
Overview of How the DEVICE_DT_GET Macro Works............ccovrrernencneserennans 492
12C Case Study EXAMPIEcoevreverreriererenseresessssessessessssessessessessssessessessssessessenes 497
31011117 OO 505
RETEBIBNCES ..o s 505
Chapter 10: Building Zephyr RTOS Applications Using Renode 507
SimMUIALOr USE CASES.....ceveeerrrerrrerereeressessssesessssessssesesssse s ssssssessssessssessssssenns 509
EMUIATOr USE CASEScvverrreerrreerisessssesesss s s sse s e s s e ssssesssssssssanes 509
Advantages of Simulators and Emulators..........ccccvvevvrnveniennnnsensenesessensennns 510
Disadvantages of Simulators and EMulatorsccccvevvvvrierienensensensesessensensenns 511
3=] 1 0o 511
Renode INStallation ... 513
ReNO0AE SCIIPLS....cvceiiririrrre e e e s 520
What Is Needed to Emulate a Zephyr Application Using Renode?c.c..c.... 521

Boards and Processors Supported by Zephyr That Are Also Supported
01V 3T 1100 OSSR 522

xii

TABLE OF CONTENTS

Building an nRF52840 DK Application and Running It in Renodeccucu.... 526
Summary and Where NEXt? ... se s ses e 530
REfBIBNCEScctrerere s e e s 530

Chapter 11: Understanding and Using the Zephyr ZBus in

Application Development...........ccccinnnemmnmmnennmmmssssnmmssssnssssmmm. 531
ZEPNYE ZBUS ...ttt ettt e e 531
ZBUS ArCHItBCIUNE......cvccecce e 532
The ZBus and Code Reusability.........ccccccueeerrverniennescrnse e sesesesseens 535
Limitations of the ZBUS ... 535
ZBus Message Delivery Guarantees and Message Delivery Rates 535
ZBus Message Delivery Sequence GUArantees...........ocvvverersereresessesesensessssenens 536
ZBus Programming in PractiCecccvveriererensensesensssessenesessessesessessesessesseses 537
Hard Channels and Message Validation.............cccevrerivrnnnierinnensensessensssessenenes 543
Overview of ZBus Features and Their USEScoecererrenernncreneseseneresenens 544
Publishing and Reading to and from a Channel............cccconinennnccnncenennnnes 544
Claiming and Finishing @ Channel...........cccocvorvnrnnennesnnese s 545
Ensuring a Message Will Not Be Changed During a Notificationcc.c...... 546
Iterating over Channels and ODSEIVErS.......c.cvvververereressessesesessesessessssessessenes 547
Overview of the Virtual Distributed Event Dispatcher (VDED)c.ccoovvevveriernens 550
Walkthrough of a VDED Execution SCENArio.........ccceeeerrrvereneneresereeserensenesenens 551
Walking Through Some Selected Zephyr ZBus Examples..........cccooeerrecrerenens 556
Zephyr ZBus Hello WOKIdcccoveeereereerisesese s e ssssesessssesnsnens 557
Zephyr Bus Workqueue EXample ... 565

xiii

TABLE OF CONTENTS

Chapter 12: Zephyr RTOS Wi-Fi Applications........ccccusseensrssssnnssrsssanns 573
Approaches to Tackling the Various Wi-Fi MAC Problems...........cccocoevrenenenenens 574
SECUNTY ISSUES.....cucereeereeerercre e 575
WPA3 SAE Key Exchange ProtocCol...........ccccvveerennenenenerssesessesesesessssesessssessnnens 577
How Wi-Fi Uses the Radio Spectrum Allocated to It.........cc.ccoevvvinirceneriennne 577
Wi-Fi Frames and the 802.11 Packet Structure — An Overview............c.covunee. 579
ACCESS POINES......cviiiicire e 580
Discovering an AcCess PoiNt.........c.ccovvvrnininnsnsni s 581
Authentication and ASSOCILION...........ccoreceerererercrreere e 581
Zephyr RTOS and Wi-Fi Application Development...........cccovvnvnininnnniensennn 585
NRF7002 DK Board — AN OVEIVIEW.......cccveeerrnesrsesessesessssessssesessssesssssssssssessnns 586
Wi-Fi Scanning Example Walkthrough Using the nRF7002 DKcccccvcevunee. 587
Zephyr Network Management — AN OVEIVIEW.......ccevvverrerereenessessessessssessensenss 588
Requesting a Defined Network Management Procedure............cccveevrvceniennenn 589
Listening to Network EVENTSccoveierercrrccrereer e 589
Defining Network Management Procedures..........ccocuveernserenesesesesessesesssnensnnes 590
Signalling Network EVENTS..........cccvvcernsennenensse e sessesenns 591
Building the Wi-Fi Scan Example from the nRF Connect SDK Repository......... 591
Structured Overview of the Code of the Scan Example from the nRF
Connect SDK REPOSILOrYcccccverueeerecrirerere et se s ses e seens 592
Exploring the nRF Connect SDK Wi-Fi Shell Exampleccoevvvvniernceniennenn 607
Basic TCP/IP Application Programming Using the nRF7002 DK............ccccen.... 614
Structured Exploration of the nRF Connect SDK Wi-Fi sta Example 615
Wi-Fi BSD Sockets Programming.........ccccveeverennenierenesssnsessesessssessessessessssessesaes 631
nRF7002 DK — Basic TCP and UDP EXampleccceeervrerierierenensensenessssensensenes 631
Project source code directory STrUCLUTE...........ccoveeereecrerererere e 633
The Led TOggliNg TASKccocreeeerererereneree s sessenesnsnens 636

Xiv

TABLE OF CONTENTS

UDP Server Task on Target Board..........ccccvvererenrenierernsensessesessssessessessssessessenes 637
Python UDP Client to Test Out UDP Server on Target Board..............cccoverennennnes 641
TCP Server Task on Target BOArdcoccoceeecrernenerenerensesenesesesesse e sessesesnenens 642
UDP Echo Client Task on Target Boardccovrenerenernsmsensesesssesessesessssenennes 646
TCP Echo Client Task on Target Board.........c...ccovveneresernsesensesssesessesesessesssseens 648
Testing Out the BSD S0CKEtS EXaMPIE.......ccceververiererinrenserieseesessessessessssessessennes 651
RETBIBNCES ..ot s 651
INA@X..iiieisiesrsmssrs s s s ———— 653

About the Author

f Andrew Eliasz is the Founder and Head

at Croydon Tutorial College as well as the
Director of First Technology Transfer Ltd. First
Technology Transfer runs advanced training
courses and consults on advanced projects

¢ in IT, real-time, and embedded systems.

Most courses are tailored to customers’

needs. Croydon Tutorial College evolved

from Carshalton Tutorial College, which

was established to provide classes, distance-level teaching, workshops,
and personal tuition in computer science, maths, and science subjects

at GCSE, A Level, BTEC, undergraduate, and master’s levels. It has now
changed its name and location to Croydon Tutorial College at Weatherill
House, Croydon. In addition to teaching and tutoring, they also provide
mentoring and help for students having difficulties with assignments and
projects (e.g., by suggesting how to add to a project to obtain a better grade
as well as reviewing project content and writing styles).

xvii

About the Technical Reviewer

Jacob Beningo is an embedded software
consultant with over 15 years of experience in
microcontroller-based real-time embedded
systems. After spending over ten years
designing embedded systems for automotive,
defense, and space industries, Jacob founded
Beningo Embedded Group in 2009. He has
worked with clients in more than a dozen

countries to dramatically transform their

businesses by improving product quality, cost, and time to market. Jacob
has published more than 500 articles on embedded software development
techniques and is a sought-after speaker and technical trainer who holds
three degrees that include a Master of Engineering from the University
of Michigan. He is an avid writer, trainer, consultant, and entrepreneur
who transforms the complex into simple and understandable concepts
that accelerate technological innovation. Jacob has demonstrated his
leadership in the embedded systems industry by consulting and training
at companies such as General Motors, Intel, Infineon, and Renesas along
with successfully completing over 50 projects. He holds bachelor’s degrees
in Electronics Engineering, Physics, and Mathematics from Central
Michigan University and a master’s degree in Space Systems Engineering
from the University of Michigan.

In his spare time, Jacob enjoys spending time with his family, reading,
writing, and playing hockey and golf. In clear skies, he can often be found
outside with his telescope, sipping a fine scotch while imaging the sky.

Xix

CHAPTER 1

An Introduction

What This Book Is “All About”

This book is a foundational guidebook introducing programming
embedded and IoT/IIoT (Internet of Things/Industrial Internet of Things)
applications in C using the Zephyr RTOS framework. It is for engineers and
programmers planning to embark on a project involving the use of Zephyr
RTOS, or evaluating the potential advantages of using Zephyr RTOS in an
upcoming project.

You, the reader, probably have a digital electronics and embedded
systems programming background building specialized embedded
systems applications in C and assembler. Maybe the requirements of
upcoming applications are such that a classical bare metal programming
approach may not be the best way to go. Maybe you have inherited some
poorly documented complex multitasking code and the developers or
consultants involved in developing this code have left the project and your
company is considering migrating the code to use a real-time multitasking
operating system.

The aims of this book are to show you what Zephyr is capable of and
to introduce you to the basic RTOS programming skills required before
embarking on a real-world real-time RTOS-based project. The book can also
be thought of as a guide to the rich and complex framework that makes up
Zephyr RTOS and to the examples that are part of the Zephyr code repository.

© Andrew Eliasz 2024 1
A. Eliasz, Zephyr RTOS Embedded C Programming,
https://doi.org/10.1007/979-8-8688-0107-5_1

https://doi.org/10.1007/979-8-8688-0107-5_1#DOI

CHAPTER 1 AN INTRODUCTION

Alternatively, you may have embedded Linux programming experience
and have to develop applications on processors that, though powerful,
are too small to run a full Linux system. Here, again, one of the things
that makes Zephyr special is that it has embraced and adapted many of
the concepts and technologies that make Linux so special, things such
as support for the POSIX API and the use of Linux technologies such as
Kconfig and devicetree.

What Is an RTOS and When and Why “Do
You Need One”?

Modern microcontrollers come in a wide variety of sizes and complexity
ranging from 8-bit microcontrollers with less than 10 kilobytes (10K)

Flash and less than 2 kilobytes (2K) RAM through to multiprocessor

64-bit microcontrollers interfacing with gigabytes of memory. There are
SoC (System on Chip) processor architectures at the lower end of the
embedded computing spectrum and SoM (System on a Module) boards at
the upper end.

For tiny systems performing a single specialized task, or a small
number of fixed tasks, such as a motor controller in a toothbrush or power
drill controlling a motor, the code can be implemented as a bare metal
application. The complexity of modern connected applications means that
they are not best suited to being implemented as bare metal applications.
Modern microcontroller vendors often provide IDEs that provide a
graphical interface for configuring peripherals and “pulling in” driver
code into the project, thus allowing developers to focus on the application
they are trying to build. Examples include Microchip’s Harmony tool and
STMicroelectronics STM32CubelDE. Embedded systems applications can
also be developed using an IDE such as Microsoft’s VS Code with suitable
plug-ins.

CHAPTER 1 AN INTRODUCTION

An operating system can be thought of as software that provides
services that can be used for developing applications where multiple
pieces of work (tasks) have to be worked on concurrently. At the center of
an operating system is the scheduler, whose job is to decide which task is
to run next. In a cooperative multitasking operating system, a task runs till
it decides to suspend what it is doing and transfer control to the scheduler,
which will determine which task to run next. In a preemptive multitasking
operating system, a task can be preempted by the operating system at any
point. Preemption may occur because a higher priority task is ready to run,
or because the running task needs to access a resource that is currently
not available because it is being used by another task. The concept of Real
Time refers to how long it takes the system to respond to some event, such
as a button press, or arrival of data at a communications peripheral, or
completion of an ADC (Analog to Digital) conversion. A distinction is often
made between hard and soft real-time systems. In a hard real-time system,
itis an error if the time taken for a response exceeds some specified
duration. In a soft real-time system, the response time is interpreted in a
statistical sense in which most of the time the required time-to-completion
limits are met, but, occasionally, they are not.

Classical bare metal multitasking, typically, involves a combination of
a “superloop” that handles non-time-critical work, with time-critical work
being done in interrupt handlers. The classical Arduino IDE also follows
this pattern.

In the modern world of networked devices (both wired and wireless
networking) running relatively complex network protocol stacks and
doing so in a secure manner, the standard bare metal approach runs into
difficulties. A networked device may have several interfaces, for example,
wired or wireless Ethernet, USB, and serial communications such as CAN
bus, R$232, or RS485. The code involved is quite complex, and having to
handle the low-level details together with the other tasks being performed
by the device, such as, for example, taking sensor readings on a periodic
basis, adds further complexity. A networked device may have to interact

CHAPTER 1 AN INTRODUCTION

with a number of other devices, and the communication traffic patterns
may be unpredictable. Worse still traffic may be bursty, and the system will
need to protect itself against overloading by heavy bursts of traffic.

Packet-oriented communications protocols such as TCP/IP are
multilayered, and a packet will contain multiple headers corresponding to
the various layers and the functionality they provide. It is not uncommon
for protocols to support multiplexing. For example, the TCP/IP stack
handles both UDP and TCP traffic as well as ICMP traffic, and in the case
of UDP and TCP, there may be traffic associated with different processes
running on the device each identified by a particular identifier (port
number).

From the design and implementation point of view, a multitasking
approach allows the various tasks to be worked on separately and
then combined together, courtesy of the scheduling and intertask
communication and synchronization mechanisms such as semaphores
and message queues provided by the RTOS.

The key motivation underlying the use of an RTOS to build embedded
applications is that it provides a framework and its associated abstractions,
APIs that support developing code that can handle the time, priorities,
and preemptibility of the tasks that constitute that application so
that task deadlines can be met and the system exhibits deterministic
behavior. From a developer’s point of view, an RTOS can be thought of as
providing services, not only scheduling, synchronization, and intertask
communication services but also, if required, file systems services,

communications services, and security services.

What Is an RT0S?

The OS in RTOS stands for Operating System. An operating system can
be thought of as a collection of modules (libraries) that provide task
scheduling and control services, where a task is code that carries out a

CHAPTER 1 AN INTRODUCTION

particular piece of the overall application’s work. A modern advanced
operating system will also provide device drivers for widely used devices
and peripherals, communications protocol stacks and application layer
modules on which actual applications can be layered, security and
memory protection or memory management services, and much more
besides. The RT in RTOS stands for Real Time.

Real Time here refers to predictable and reproducible behavior. This
behavior may be predictable in a statistical sense, for example, where
the response times to some event will follow a statistical distribution
with a certain mean and variance. This is “soft” real time. For certain
applications, there may be a requirement that the response time is always
less than some specified value. Such applications are referred to as “hard”
real-time applications. It is also possible to have systems that involve both
“hard” and “soft” real-time aspects.

Using Open Source RTOS in Systems
Requiring Functional Safety

In the case of applications where a high degree of functional safety is
involved, the question also arises as to whether open source software
can be used for systems for which “functional safety” is a mandatory
requirement.

The use of RTOS code in safety-critical systems generally involves
the use of code that has been rigorously tested and validated so that it
conforms to one or more of the published safety standards. In the case of
FreeRTOS, for example, there is an open source version of FreeRTOS and a
validated version called SAFERTOS pre-certified to IEC 61508 for safety-
critical applications. Currently, there is no pre-certified version of Zephyr
RTOS. The Zephyr project is aiming to, eventually, be able to provide a
version that has been certified for use in safety-critical applications. This is
reflected in the Zephyr development and code review process.

CHAPTER 1 AN INTRODUCTION

Issues arising in the use of open source software in systems requiring
functional safety include considerations such as those listed here:

e Open source software usually requires major
transformation before it can be used.

e Mostly such transformation happens behind closed
doors (if the license allows that).

e There may be a complete disconnect between original
source and “certified” code.

e Transformation of open source code to be functionally

safe is “expensive.”

o Following standards very early in a project life cycle is a
key factor.

e There are many standards dealing with safety-critical
systems and software, and some members of this
family are shown in the schematic partial family tree
(Figure 1-1).

Safety Standards

T

|

IEC 61508 DO178B/C ECSS Space IEC 62304
Generic Standard Aeronautics (ESA) Medical devices
f
[I | |
IEC 61511 Industrial IEC 61513 IEC 62061 EN50126/8/9 ISO 26262
processes Nuclear industry Machine Safety Railways Automotive

Figure 1-1. Safety Standards, a partial family tree

An example of going from an open source project to a system certified
for use in safety-critical systems is FreeRTOS. SAFERTOS started with
the functional model of the FreeRTOS kernel, but the kernel code was,
then, redesigned, analyzed, and tested from a HAZOP perspective, and
implemented according to an IEC 61508-3 SIL 3 development life cycle.

CHAPTER 1 AN INTRODUCTION

An ambition of the Zephyr RTOS initiative is to, eventually, provide an
open source RTOS that can be used in safety-critical systems. Zephyr RTOS
already provides many of the features expected of a safety-critical RTOS,
but the real crux of the matter is the formal validation and testing of the
system and its development process. The next few sections consider some
of these issues.

Characteristics of an open source OS that would make it suitable for
functional safety-oriented applications include the following:

¢ Open source implementation

e Small trusted code base (in terms of LoC)

o Safety-oriented architecture

e Built-in security model

o POSIX-compliant C library

e Support for deterministic thread scheduling
e Support for multi-core thread scheduling

e Proof that ISO-compliant development was done
e Accountability for the implementation

e Industry adoption

o Certification-friendly interfaces

The mission statement for Zephyr [1] is “to deliver the best-in-class
RTOS for connected resource-constrained devices, built to be secure
and safe” The Zephyr RTOS website contains presentations describing
the various steps and approaches being followed that follow standard
procedures for developing and testing safety-critical systems software. These
include following the Verification and Validation aspects as formalized in
the V-Model of software development. A useful discussion held during Open
Source Summit Europe 2022 concerning these issues is worth viewing [2].

CHAPTER 1 AN INTRODUCTION

Zephyr RTOS Validation Zephyr RTOS Validated
Software

Zephyr RTOS 2

Produst : Validation mm) ZephyrRTOS
Requirements 20eE EStoe

= requirements

Zephyr RTOS

Intel IoTG HW / SW Integration testing]

Market | = 7] YOMWAIE e e -
Requirements

Zephyr RTOS
e D T e SW Integration testing

Zephyr RTOS
Module
testing

[—p Output

----- > vertcaton]

Figure 1-2. Zephyr RTOS functional safety work products mapping
to IEC 61508-3 V model [1]

From the point of view of developing a safety-critical system quality
RTOS, following the V-Model open source projects runs into issues such as
the formal specification of features, producing comprehensive document,
being able to produce traceability from requirements to source code, and
being able to provide full information about the number of committers
and information about them.

From the point of view of certification authorities, there is the problem
that they are not familiar with open source development and there are no
tried and tested methods for the certification of open source software.

Currently the standards being followed by Zephyr in regard to coding
for Safety, Security, Portability, and Reliability in Embedded Systems are
MISRA C:2012 (with Amendment 1, following MISRA C Compliance:2016
guidance) and the use of SEI CERT C and JPL (Jet Propulsion Laboratory

CHAPTER 1 AN INTRODUCTION

California Institute of Technology) as reference. As regards functional
safety, the aim is to follow IEC 61508: 2010 (SIL 3 initially, eventually
aiming to get to SIL 4). IEC 61508 is widely used by companies developing

robotics systems and autonomous vehicles.
Writing embedded C code that conforms to MISRA guidelines is, these

days, a widely accepted practice. Issues with MISRA and open source code

that arise include the following:

Some rules are very controversial; how to deal
with those?

Deciding which guidelines to deviate from and why

MISRA C is proprietary; how can it be made more
widely available?

Finding the “open source” tools that check code and
integrating these with CI

An example of a MISRA rule that is widely followed in embedded

systems development is the following Rule 15.5 - A function should have a

single point of exit at the end:

Most readable structure

Less likelihood of erroneously omitting function
exit code

Required by many safety standards
IEC 61508

ISO 26262

CHAPTER 1 AN INTRODUCTION

Reconciling Certification with Open Source

Reconciling an open source project with many potential contributors with
a project that can produce safety-critical system certified software is tricky
and represents “work in progress.”

Various approaches are being explored and tried out. These include
the following:

o Snapshotting a Source Tree (branch), validating it
then controlling updates, which is a viable approach to
software qualification.

e Defining the supported feature set as an up-front
decision, bearing in mind that the more features
that are supported, the greater the amount of
documentation that will need to be provided and the
amount of software testing that will need to be carried
out. In this context, it will be important to automate as
much of the information tracking as possible and to
auto-generate documents from test and issue tracking
systems.

e Obtaining proof-of-concept approval from a
certification authority as early as possible.

An ideal project process that can combine the best aspects of open
source development and critical system certification will be one based
on a split development model having a flexible open instance path and
an auditable instance path [3]. Aligning the auditable path with the open
instance path will be dictated by the need to add new features and the
costs of the certification process.

10

CHAPTER 1 AN INTRODUCTION

Zephyr As a Modular RTOS

The idea behind a modular RTOS is to develop it as a set of components
that can be combined to be able to construct an application that
incorporates only the functionality required for the application. This is not
a new approach. The early versions of Microsoft’s Windows NT operating
system were modular with the possibility of being able to build operating
system variants best suited to the task at hand.

Zephyr therefore tries to provide a solution to RTOS application
development centered around a modular open source architecture
appropriate for implementing a wide variety of use cases and design
architectures running on connected, resource-constrained embedded
controllers. Zephyr has an Apache 2.0 license, hosted at the Linux
Foundation, and has extensive support for Bluetooth and for TCP/IP.

The modular aspects of the Zephyr OS can be conceptualized as a
layered model shown in Figure 1-3 [3].

Zephyr OS

3rd Party Libraries
Application Services
Middleware Networking
Kernel

HAL

Figure 1-3. Zephyr layered modular architecture

11

CHAPTER 1 AN INTRODUCTION

Zephyr As a Fully Featured RTOS

An important aspect of Zephyr to be aware of is that Zephyr is not an
ingredient - it provides a complete solution. Features supported by Zephyr
include the following:

Safety features:

e Thread isolation
o Stack protection (HW/SW)
e Quality management (QM)
e Build time configuration
e No dynamic memory allocation
o Funtional SAfety (FuSA) (2019)
Security features:
o User-space support
e Crypto support
e Software updates
Configurable and modular kernel:
e Can configure the Zephyr kernel to run in 8K RAM
e Makes for scalable application code
¢ Only need to include what is required for the application
Cross-platform capabilities:

e Zephyr supports multiple architectures (ARM Cortex
M, RISC-V, ARC, MIPS, Extensa).

o Native porting.

o Applications can be developed on Linux, Windows, and
macOS platforms.

12

