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CHAPTER 1

An Introduction

What This Book Is “All About”

This book is a foundational guidebook introducing programming
embedded and IoT/IIoT (Internet of Things/Industrial Internet of Things)
applications in C using the Zephyr RTOS framework. It is for engineers and
programmers planning to embark on a project involving the use of Zephyr
RTOS, or evaluating the potential advantages of using Zephyr RTOS in an
upcoming project.

You, the reader, probably have a digital electronics and embedded
systems programming background building specialized embedded
systems applications in C and assembler. Maybe the requirements of
upcoming applications are such that a classical bare metal programming
approach may not be the best way to go. Maybe you have inherited some
poorly documented complex multitasking code and the developers or
consultants involved in developing this code have left the project and your
company is considering migrating the code to use a real-time multitasking
operating system.

The aims of this book are to show you what Zephyr is capable of and
to introduce you to the basic RTOS programming skills required before
embarking on a real-world real-time RTOS-based project. The book can also
be thought of as a guide to the rich and complex framework that makes up
Zephyr RTOS and to the examples that are part of the Zephyr code repository.

© Andrew Eliasz 2024 1
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Alternatively, you may have embedded Linux programming experience
and have to develop applications on processors that, though powerful,
are too small to run a full Linux system. Here, again, one of the things
that makes Zephyr special is that it has embraced and adapted many of
the concepts and technologies that make Linux so special, things such
as support for the POSIX API and the use of Linux technologies such as
Kconfig and devicetree.

What Is an RTOS and When and Why “Do
You Need One”?

Modern microcontrollers come in a wide variety of sizes and complexity
ranging from 8-bit microcontrollers with less than 10 kilobytes (10K)

Flash and less than 2 kilobytes (2K) RAM through to multiprocessor

64-bit microcontrollers interfacing with gigabytes of memory. There are
SoC (System on Chip) processor architectures at the lower end of the
embedded computing spectrum and SoM (System on a Module) boards at
the upper end.

For tiny systems performing a single specialized task, or a small
number of fixed tasks, such as a motor controller in a toothbrush or power
drill controlling a motor, the code can be implemented as a bare metal
application. The complexity of modern connected applications means that
they are not best suited to being implemented as bare metal applications.
Modern microcontroller vendors often provide IDEs that provide a
graphical interface for configuring peripherals and “pulling in” driver
code into the project, thus allowing developers to focus on the application
they are trying to build. Examples include Microchip’s Harmony tool and
STMicroelectronics STM32CubelDE. Embedded systems applications can
also be developed using an IDE such as Microsoft’s VS Code with suitable
plug-ins.
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An operating system can be thought of as software that provides
services that can be used for developing applications where multiple
pieces of work (tasks) have to be worked on concurrently. At the center of
an operating system is the scheduler, whose job is to decide which task is
to run next. In a cooperative multitasking operating system, a task runs till
it decides to suspend what it is doing and transfer control to the scheduler,
which will determine which task to run next. In a preemptive multitasking
operating system, a task can be preempted by the operating system at any
point. Preemption may occur because a higher priority task is ready to run,
or because the running task needs to access a resource that is currently
not available because it is being used by another task. The concept of Real
Time refers to how long it takes the system to respond to some event, such
as a button press, or arrival of data at a communications peripheral, or
completion of an ADC (Analog to Digital) conversion. A distinction is often
made between hard and soft real-time systems. In a hard real-time system,
itis an error if the time taken for a response exceeds some specified
duration. In a soft real-time system, the response time is interpreted in a
statistical sense in which most of the time the required time-to-completion
limits are met, but, occasionally, they are not.

Classical bare metal multitasking, typically, involves a combination of
a “superloop” that handles non-time-critical work, with time-critical work
being done in interrupt handlers. The classical Arduino IDE also follows
this pattern.

In the modern world of networked devices (both wired and wireless
networking) running relatively complex network protocol stacks and
doing so in a secure manner, the standard bare metal approach runs into
difficulties. A networked device may have several interfaces, for example,
wired or wireless Ethernet, USB, and serial communications such as CAN
bus, R$232, or RS485. The code involved is quite complex, and having to
handle the low-level details together with the other tasks being performed
by the device, such as, for example, taking sensor readings on a periodic
basis, adds further complexity. A networked device may have to interact
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with a number of other devices, and the communication traffic patterns
may be unpredictable. Worse still traffic may be bursty, and the system will
need to protect itself against overloading by heavy bursts of traffic.

Packet-oriented communications protocols such as TCP/IP are
multilayered, and a packet will contain multiple headers corresponding to
the various layers and the functionality they provide. It is not uncommon
for protocols to support multiplexing. For example, the TCP/IP stack
handles both UDP and TCP traffic as well as ICMP traffic, and in the case
of UDP and TCP, there may be traffic associated with different processes
running on the device each identified by a particular identifier (port
number).

From the design and implementation point of view, a multitasking
approach allows the various tasks to be worked on separately and
then combined together, courtesy of the scheduling and intertask
communication and synchronization mechanisms such as semaphores
and message queues provided by the RTOS.

The key motivation underlying the use of an RTOS to build embedded
applications is that it provides a framework and its associated abstractions,
APIs that support developing code that can handle the time, priorities,
and preemptibility of the tasks that constitute that application so
that task deadlines can be met and the system exhibits deterministic
behavior. From a developer’s point of view, an RTOS can be thought of as
providing services, not only scheduling, synchronization, and intertask
communication services but also, if required, file systems services,

communications services, and security services.

What Is an RT0S?

The OS in RTOS stands for Operating System. An operating system can
be thought of as a collection of modules (libraries) that provide task
scheduling and control services, where a task is code that carries out a
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particular piece of the overall application’s work. A modern advanced
operating system will also provide device drivers for widely used devices
and peripherals, communications protocol stacks and application layer
modules on which actual applications can be layered, security and
memory protection or memory management services, and much more
besides. The RT in RTOS stands for Real Time.

Real Time here refers to predictable and reproducible behavior. This
behavior may be predictable in a statistical sense, for example, where
the response times to some event will follow a statistical distribution
with a certain mean and variance. This is “soft” real time. For certain
applications, there may be a requirement that the response time is always
less than some specified value. Such applications are referred to as “hard”
real-time applications. It is also possible to have systems that involve both
“hard” and “soft” real-time aspects.

Using Open Source RTOS in Systems
Requiring Functional Safety

In the case of applications where a high degree of functional safety is
involved, the question also arises as to whether open source software
can be used for systems for which “functional safety” is a mandatory
requirement.

The use of RTOS code in safety-critical systems generally involves
the use of code that has been rigorously tested and validated so that it
conforms to one or more of the published safety standards. In the case of
FreeRTOS, for example, there is an open source version of FreeRTOS and a
validated version called SAFERTOS pre-certified to IEC 61508 for safety-
critical applications. Currently, there is no pre-certified version of Zephyr
RTOS. The Zephyr project is aiming to, eventually, be able to provide a
version that has been certified for use in safety-critical applications. This is
reflected in the Zephyr development and code review process.
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Issues arising in the use of open source software in systems requiring
functional safety include considerations such as those listed here:

e Open source software usually requires major
transformation before it can be used.

e Mostly such transformation happens behind closed
doors (if the license allows that).

e There may be a complete disconnect between original
source and “certified” code.

e Transformation of open source code to be functionally

safe is “expensive.”

o Following standards very early in a project life cycle is a
key factor.

e There are many standards dealing with safety-critical
systems and software, and some members of this
family are shown in the schematic partial family tree
(Figure 1-1).

Safety Standards

T

|

IEC 61508 DO178B/C ECSS Space IEC 62304
Generic Standard Aeronautics (ESA) Medical devices
f
[ I | |
IEC 61511 Industrial IEC 61513 IEC 62061 EN50126/8/9 ISO 26262
processes Nuclear industry Machine Safety Railways Automotive

Figure 1-1. Safety Standards, a partial family tree

An example of going from an open source project to a system certified
for use in safety-critical systems is FreeRTOS. SAFERTOS started with
the functional model of the FreeRTOS kernel, but the kernel code was,
then, redesigned, analyzed, and tested from a HAZOP perspective, and
implemented according to an IEC 61508-3 SIL 3 development life cycle.



CHAPTER 1 AN INTRODUCTION

An ambition of the Zephyr RTOS initiative is to, eventually, provide an
open source RTOS that can be used in safety-critical systems. Zephyr RTOS
already provides many of the features expected of a safety-critical RTOS,
but the real crux of the matter is the formal validation and testing of the
system and its development process. The next few sections consider some
of these issues.

Characteristics of an open source OS that would make it suitable for
functional safety-oriented applications include the following:

¢ Open source implementation

e Small trusted code base (in terms of LoC)

o Safety-oriented architecture

e Built-in security model

o POSIX-compliant C library

e Support for deterministic thread scheduling
e Support for multi-core thread scheduling

e Proof that ISO-compliant development was done
e Accountability for the implementation

e Industry adoption

o Certification-friendly interfaces

The mission statement for Zephyr [1] is “to deliver the best-in-class
RTOS for connected resource-constrained devices, built to be secure
and safe” The Zephyr RTOS website contains presentations describing
the various steps and approaches being followed that follow standard
procedures for developing and testing safety-critical systems software. These
include following the Verification and Validation aspects as formalized in
the V-Model of software development. A useful discussion held during Open
Source Summit Europe 2022 concerning these issues is worth viewing [2].
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Figure 1-2. Zephyr RTOS functional safety work products mapping
to IEC 61508-3 V model [1]

From the point of view of developing a safety-critical system quality
RTOS, following the V-Model open source projects runs into issues such as
the formal specification of features, producing comprehensive document,
being able to produce traceability from requirements to source code, and
being able to provide full information about the number of committers
and information about them.

From the point of view of certification authorities, there is the problem
that they are not familiar with open source development and there are no
tried and tested methods for the certification of open source software.

Currently the standards being followed by Zephyr in regard to coding
for Safety, Security, Portability, and Reliability in Embedded Systems are
MISRA C:2012 (with Amendment 1, following MISRA C Compliance:2016
guidance) and the use of SEI CERT C and JPL (Jet Propulsion Laboratory
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California Institute of Technology) as reference. As regards functional
safety, the aim is to follow IEC 61508: 2010 (SIL 3 initially, eventually
aiming to get to SIL 4). IEC 61508 is widely used by companies developing

robotics systems and autonomous vehicles.
Writing embedded C code that conforms to MISRA guidelines is, these

days, a widely accepted practice. Issues with MISRA and open source code

that arise include the following:

Some rules are very controversial; how to deal
with those?

Deciding which guidelines to deviate from and why

MISRA C is proprietary; how can it be made more
widely available?

Finding the “open source” tools that check code and
integrating these with CI

An example of a MISRA rule that is widely followed in embedded

systems development is the following Rule 15.5 - A function should have a

single point of exit at the end:

Most readable structure

Less likelihood of erroneously omitting function
exit code

Required by many safety standards
IEC 61508

ISO 26262
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Reconciling Certification with Open Source

Reconciling an open source project with many potential contributors with
a project that can produce safety-critical system certified software is tricky
and represents “work in progress.”

Various approaches are being explored and tried out. These include
the following:

o Snapshotting a Source Tree (branch), validating it
then controlling updates, which is a viable approach to
software qualification.

e Defining the supported feature set as an up-front
decision, bearing in mind that the more features
that are supported, the greater the amount of
documentation that will need to be provided and the
amount of software testing that will need to be carried
out. In this context, it will be important to automate as
much of the information tracking as possible and to
auto-generate documents from test and issue tracking
systems.

e Obtaining proof-of-concept approval from a
certification authority as early as possible.

An ideal project process that can combine the best aspects of open
source development and critical system certification will be one based
on a split development model having a flexible open instance path and
an auditable instance path [3]. Aligning the auditable path with the open
instance path will be dictated by the need to add new features and the
costs of the certification process.

10
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Zephyr As a Modular RTOS

The idea behind a modular RTOS is to develop it as a set of components
that can be combined to be able to construct an application that
incorporates only the functionality required for the application. This is not
a new approach. The early versions of Microsoft’s Windows NT operating
system were modular with the possibility of being able to build operating
system variants best suited to the task at hand.

Zephyr therefore tries to provide a solution to RTOS application
development centered around a modular open source architecture
appropriate for implementing a wide variety of use cases and design
architectures running on connected, resource-constrained embedded
controllers. Zephyr has an Apache 2.0 license, hosted at the Linux
Foundation, and has extensive support for Bluetooth and for TCP/IP.

The modular aspects of the Zephyr OS can be conceptualized as a
layered model shown in Figure 1-3 [3].

Zephyr OS

3rd Party Libraries
Application Services
Middleware Networking
Kernel

HAL

Figure 1-3. Zephyr layered modular architecture
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Zephyr As a Fully Featured RTOS

An important aspect of Zephyr to be aware of is that Zephyr is not an
ingredient - it provides a complete solution. Features supported by Zephyr
include the following:

Safety features:

e Thread isolation
o Stack protection (HW/SW)
e Quality management (QM)
e Build time configuration
e No dynamic memory allocation
o Funtional SAfety (FuSA) (2019)
Security features:
o User-space support
e Crypto support
e Software updates
Configurable and modular kernel:
e Can configure the Zephyr kernel to run in 8K RAM
e Makes for scalable application code
¢ Only need to include what is required for the application
Cross-platform capabilities:

e Zephyr supports multiple architectures (ARM Cortex
M, RISC-V, ARC, MIPS, Extensa).

o Native porting.

o Applications can be developed on Linux, Windows, and
macOS platforms.
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