
EDITED BY

Aeriel Leonard
Steven Barela

Neale R. Neelameggham
Victoria M. Miller
Domonkos Tolnai



The Minerals, Metals & Materials Series



Aeriel Leonard • Steven Barela •

Neale R. Neelameggham •

Victoria M. Miller • Domonkos Tolnai
Editors

Magnesium Technology 2024

123



Editors
Aeriel Leonard
The Ohio State University
Columbus, OH, USA

Steven Barela
Terves Inc./Magnesium-USA
Euclid, OH, USA

Neale R. Neelameggham
IND LLC
South Jordan, UT, USA

Victoria M. Miller
University of Florida
Gainesville, FL, USA

Domonkos Tolnai
Helmholtz-Zentrum Hereon
Geesthacht, Germany

ISSN 2367-1181 ISSN 2367-1696 (electronic)
The Minerals, Metals & Materials Series
ISBN 978-3-031-50239-2 ISBN 978-3-031-50240-8 (eBook)
https://doi.org/10.1007/978-3-031-50240-8

© The Minerals, Metals & Materials Society 2024

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and
retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and
regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed
to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty,
expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been
made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://doi.org/10.1007/978-3-031-50240-8


Preface

In recent decades, Magnesium (Mg) and its alloys have emerged as a sustainable structural
material owing to their high strength-to-weight ratio, excellent vibration damping, low toxi-
city, and controllable corrosion rates in dissolvable applications. The possibility to traverse
novel alloy designs that offer a distinctive combination of these properties as well as an
improvement in ductility has ignited research and development throughout the world. And as
many nations seek to reduce their carbon footprint, it is evident that Mg will play a crucial role
in these efforts by forwarding the development of sustainable technology. In applications
where light weighting is important, Mg has the potential to replace heavier conventional
materials such as steel and aluminum leading to a reduction in greenhouse gas emissions.

Coalitions of researchers, scientists, and engineers from academic institutions, industry, and
government laboratories have had tremendous success in addressing these challenges through
innovative alloy designs and methods. These collaborations have and continue to develop
roadmaps for next generation technologies that strengthen Mg as a premier structural material.
The TMS Magnesium Committee has been actively involved in providing a platform for these
institutions to disseminate the latest information, developments, and cutting-edge research and
development, and to present the latest research and development trends related to magnesium
and its alloys through the Magnesium Technology Symposium held each year at the TMS
Annual Meeting & Exhibition.

The twenty-fifth volume in the series, Magnesium Technology 2024, is the proceedings
of the Magnesium Technology Symposium held during the 153rd TMS Annual Meeting &
Exhibition in Orlando, Florida, March 3–7, 2024. The volume captures full-length manuscripts
and extended abstracts from 14 different countries. The papers have been categorized based on
topics pertaining to alloy design, fundamentals of plastic deformation, primary production,
recycling and ecological issues, characterization, joining, machining, forming, degradation and
biomedical applications, corrosion and surface protection, and computational materials
engineering.

The symposium began with keynote sessions that featured several distinguished invited-
speakers from industry, government organizations, and academia, who provided their per-
spectives on the state of the art, goals, and opportunities in magnesium alloy research and
development. Petra Maier from the University of Applied Sciences Stralsund discussed the
role corrosion plays in performance of Mg alloys in biomedical applications. Alexander Grant,
CEO of Magrathea Metals addressed the development of next generation electrolytic tech-
nology for making Mg metal. Ashley Bucsek of the University of Michigan spoke about the
role 3D diffraction microscopy has in uncovering crystallographic texture development in Mg
alloys. Jian-Feng Nie from Monash University discussed the progress made in the develop-
ment of magnesium wheels. Maria Teresa Perez Prado, IMDEA Institute, spoke about the role
alloy segregation has in suppressing deformation twinning during mechanical loading.
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In conclusion, the 2023–2024 Magnesium Committee would like to thank and express its
deep appreciation to all authors who contributed to the success of the symposium; our panel of
distinguished keynote speakers for sharing the newest developments and valuable thoughts on
the future of magnesium technology; all the reviewers for their best efforts in reviewing the
manuscripts; and the session chairs, judges, TMS staff members, and other volunteers for their
excellent support, which allowed us to develop a successful, high-quality symposium and
proceedings volume.

Aeriel Leonard
Steven Barela

Neale R. Neelameggham
Victoria M. Miller
Domonkos Tolnai
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Part I

Corrosion and Coatings



Different Analytical Methods to Determine
the Influence of Pitting on the Residual
Performance of Mg Alloys as Implant
Materials

Petra Maier

Abstract

Mg alloys are prone to pitting due to their non-uniform
protective corrosion layers, which can lead to an increase
in stress intensity based on the notch effect, pit-to-crack
transition, and thus premature failure. A small set of
analytical methods to determine the extent of pitting and
its effect on the resulting residual strength is presented.
Micrographs, 3D microscopy, or 3D analysis using CT
are used to determine the amount and geometry of pitting
—each with advantages and disadvantages. The influence
of the corrosion pits on the mechanical properties is tested
by static, quasi-static, and cyclic test methods: by tensile,
flexural, or fatigue testing—either after corrosion or
overlapping. Knowledge about the critical pit is of general
interest. Stress corrosion is discussed by applying static
tests like C-ring testing, which also plays a role in slow
strain rate tensile tests and stress corrosion cracking is
more or less influenced by corrosion pits.

Keywords

Mg–RE alloys � Pitting corrosion � 3D-µCT analysis �
Residual tensile strength � Corrosion fatigue

Extended Abstract

Mg alloys are susceptible to pitting due to their non-uniform
protective corrosion layers, which can lead to an increase in
stress intensity based on the notch effect, a transition from
pitting to cracking, and thus premature failure. To quantify

the influence of corrosion pits on residual strength, the
corrosion pit should be described as completely as possible,
see an example with a Mg–3Y–3RE alloy in Fig. 1. A pit
with a depth of about 300 µm was found to have a residual
force was found to be 90% [1]. A small set of analytical
methods for determining the extent of pitting and its effect
on the resulting residual strength is presented in this keynote
presentation at the Magnesium Technology symposium at
the TMS 2024. The Standard Guide for Examination and
Evaluation of Pitting Corrosion provides a chart to describe
the shape of pits [2]: critical are pits with a narrow and deep
shape and undercutting, less harmful are elliptical pits that
are wide and shallow. The pitting factor [3, 4] is calculated
by dividing the deepest pit by the average penetration depth,
which is usually determined by the corrosion rate
(CR) based on weight loss. The deepest pit can be deter-
mined by 3D microscopy, see Fig. 2 for a 3D confocal
image from a study on corrosion properties of extruded
Mg10Gd modified with Nd and La [5]. The study in [5] and
a similar study on Mg–Y–Nd–Gd–Dy alloys [6] show that
large corrosion pits lead to a high PF when the CR is low
and the protective corrosion layer is only very locally dis-
continuous. 3D laser confocal scanning [7] or 3D laser
profilometer measurements [8] can also be used to determine
the depth of the pits. However, the shape cannot be deter-
mined with these methods. Undercutting pits, of course,
cannot be visualized with 3D microscopy in top view.
Atomic force microscope analysis can also be used to
determine the corrosion morphology and depth of corrosion
pits, but the area and shape, according to undercutting
appearance, are limited [9].

Micrographs, see Fig. 3a, provide 2D determination of
shape and size, but only a 2D view—the selected
cross-section need not present the most critical shape of a
single pit. SEM, see image in Fig. 3c, offers imaging with a
great depth of field, but has its limitations in terms of fully
quantifying the size and shape. Cross-sectional micrographs,
however, provide the ability to determine the average
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penetration through the corroded area of individual slices
independent of the volume (weight) loss, as described in
[10]. The average penetration from corrosion rate based on
weight loss will differ from the average penetration of
cross-sections when the corrosion rate is not uniform—and
severe pitting is obviously the clearest manifestation of
non-uniform corrosion. In this case, the weight loss is a
result of only a few local spots and distorts the evaluation.

Returning to the corrosion pits in Fig. 1, the larger of the
two in Section C on the left has an elliptical shape in this
cross-section. The longitudinal cross-section, on the other

hand, shows a more pointed undercutting shape, resulting in
a higher stress intensity increase. Only in complete 3D
analysis using CT it is possible to assess the shape and size
of a corrosion pit.

The influence of the corrosion pits on the mechanical
properties is of interest under static, quasi-static, and espe-
cially under cyclic loading. Stress corrosion, slow strain rate
tensile tests, flexural, and fatigue testing can be either
applied after corrosion or simultaneously. The micrographs
in Fig. 3a show corrosion pits on a Mg–RE alloy forming
under stress corrosion [11]. It can be seen that these large

Fig. 1 Remaining cross-sectional area after corrosion of a Mg–3Y–3RE tensile sample after corrosion time of 24 h in Ringer solution at 37 °C
(left: µCT cross-sections before tensile test, right: µCT before and after tensile test), red part of green curve (sample cross-sectional area) indicates
the fractured area, based on [1]

Fig. 2 3D height map by a confocal 3D microscope, showing a corrosion pit of significant size (left) and material with higher pitting resistivity
(right)

Fig. 3 Corrosion pits presented by a cross-sectional micrographs (based on [11]) and b SEM imaging [10] and c initiating stress cracks in stress
corrosion (study presented in [12])
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pits, which are elliptically formed and have a wide opening
do not cause a crack initiation. Another is found when
testing the wires shown in Fig. 3b in three-point bending
after corrosion, the pits acting as crack initiation [10]. Under
stress corrosion even small pits transits into cracks, see
Fig. 3c [12]. In this study, it could be seen that the
near-surface material of an Mg–Dy alloy is heavily twinned
and, in combination with corrosion pits and tensile loading,
cracks form. Twin boundaries strongly influence the crack
propagation direction [12, 13]. The effect of surface rough-
ness can reduce the fatigue strength to a high degree and
corrosion fatigue cracks originate mainly from the corrosion
pits [14, 15]. Knowledge about the critical pit is of general
interest.

More and more effort is undertaken in automated detec-
tion of pitting corrosion and its effect on the mechanical
integrity [16]. The identification and description of
surface-based corrosion features are in main focus. CT
analyses also offer to calculate the CR by volume loss;
however, its segmentation is challenging. Machine learning
is applied to define residual material, degradation/corrosion
layers, bone/tissue, and background [17].
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Effect of Heat Treatment
on the Microstructure and Corrosion
Properties of Mg–15Dy–1.5Zn Alloy
with LPSO Phase

Genzhi Jiang, Yuanding Huang, Sarkis Gavras, Hui Shi,
and Norbert Hort

Abstract

The influence of the amount and type of long-period
stacking ordered (LPSO) phase on the corrosion behavior
of both the as-cast and heat-treated Mg–15Dy–1.5Zn
alloys in 0.9% NaCl solution was investigated. It was
found that the network structure 18R-LPSO phase is an
effective barrier to further corrosion of the as-cast
sample. After T4 treatment for 24 h, the dendrites
disappeared and part of 18R-LPSO dissolved in the
matrix, which weakened the corrosion protection. Mean-
while, such LPSO phase acts as a cathodic to accelerate
the corrosion of the matrix because of its potential
difference from the magnesium matrix. After T4 treat-
ment for a longer time, 18R-LPSO phase could transform
into 14H-LPSO phase which has a different effect on
corrosion. The galvanic corrosion also occurs between
the 14H-LPSO phase and the matrix. Its uniform and
dense distribution results in the formation of continuous
corrosion products on the surface, which is beneficial for
corrosion resistance.

Keywords

Mg–Dy–Zn alloy � Heat treatment � Corrosion rate �
LPSO phase � Microstructure

Introduction

Magnesium (Mg) alloys have long been an interesting
research topic in the field of biomedical applications due to
their low density, high specific strength, and good bio-
compatibility [1]. Nevertheless, the critical obstacle to their
extensive application is how to balance their integral
strength and degradation rate. Precipitation strength is one of
the most popular methods to improve mechanical properties.
Nevertheless, previous studies showed that the intermetallic
phases can act as either a continuous network barrier to
retard corrosion propagation, or as a galvanic cathode to
accelerate the corrosion of the Mg matrix, or as a
micro-anode to dissolve preferentially at the initial corrosion
stage [2].

It was reported that optimizing the size, distribution, and
morphology of long-period stacking ordered (LPSO) pha-
ses can change the corrosion behavior of Mg-RE alloys
from pitting corrosion to uniform corrosion and reduce the
corrosion rate to some extent [3, 4]. For example, the heat
treatment of Mg alloy with LPSO phase influences the
corrosion rate due to the phase transformation from the
bulk reticular LPSO phase to the lamellar 14H-LPSO
phase. The corrosion rate increased significantly after such
heat treatment since the high volume fraction of 14H-LPSO
phase changes the corrosion propagation paths and pro-
vides more galvanic corrosion points [5]. Magnesium
alloys with the co-existence of the 18R and 14H-LPSO
structures exhibited worse corrosion resistance than those
with a single LPSO structure (either 18R or 14H), which
could be attributed to the accumulation of stacking faults as
well as the enrichment of solute atoms in the phase tran-
sition zone [6]. In this work, the effects of different LPSO
phases on the corrosion behavior of Mg–15Dy–1.5Zn
alloys have been investigated.
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Experiments

The Mg–15Dy–1.5Zn alloy was prepared using permanent
mould by direct chill casting [7]. High-purity Mg (Magne-
sium electron, Manchester, UK, 99.94 wt.%) was melted in a
mild steel crucible under a protective atmosphere (Ar + 2%
SF6). Pure zinc (Zn) and pure dysprosium (Dy) were then
added to the melt at 750 °C. The melt was stirred for 30 min
at 200 rpm and then poured into a mold preheated at 680 °C

and covered with a release agent (boron nitride) [2]. Then
the filled crucible was held at 680 °C for 15 min with gas
protection (Ar + 2% SF6). Finally, the melt was solidified by
lowering the crucible into cooling water at a rate of
10 mm/s. When the melt was fully immersed in the water,
the solidification finished. Then, the as-cast Mg–15Dy–
1.5Zn alloy was heat treated at 500 °C for 24, 48, and 264 h,
followed by immediate quenching in water. These treated
alloys are thereafter termed AC, 24HT, 48HT, and 264HT

Fig. 1 BSE images of Mg–15Dy–1.5Zn alloys with different T4 treatment time at 500°C: a AC, b local magnified image of AC, c 24HT, d 48HT,
e 264HT alloys, together with f their corresponding measured volume fraction of intermetallics
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