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Research is fundamentally altering the daily practice of acute care surgery (trauma, 
surgical critical care, and emergency general surgery) for the betterment of patients 
around the world. Management for many diseases and conditions is radically differ-
ent than it was just a few years previously. For this reason, concise up-to-date infor-
mation is required to inform busy clinicians. Therefore, since 2011 the World 
Society of Emergency Surgery (WSES), in a partnership with the American 
Association for the Surgery of Trauma (AAST), endorses the development and pub-
lication of the “Hot Topics in Acute Care Surgery and Trauma,” realizing the need 
to provide more educational tools for young in-training surgeons and for general 
physicians and other surgical specialists. These new forthcoming titles have been 
selected and prepared with this philosophy in mind. The books will cover the basics 
of pathophysiology and clinical management, framed with the reference that recent 
advances in the science of resuscitation, surgery, and critical care medicine have the 
potential to profoundly alter the epidemiology and subsequent outcomes of severe 
surgical illnesses and trauma.
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1History of Traumatic Brain Injury 
and the Evolution of Neuromonitoring: 
An Overview

Leonardo J. M. De Macedo Filho, Buse Sarigul, 
and Gregory W. J. Hawryluk

1.1  Introduction

Traumatic brain injury (TBI) is a frequent and important wounding mechanism 
affecting humans now and throughout history. Thanks to medical and technological 
advancements, even severe brain injury is now survivable in the majority of cases. 
Although it is often said that the brain injury field has been slow to advance and that 
it is behind other areas of medicine, the past century has seen tremendous improve-
ment in our understanding of the condition, the resources for patient care, and in 
patient outcomes. Here we discuss the evolution of brain injury care and the modern 
neuromonitoring resources that are the end result of these advances.

Key modern advancements include the development of the Glasgow Coma Scale 
(GCS) and the advent of computed tomography (CT) scanning as well as the devel-
opment of supportive intensive care. More recently, clinical practice guidelines and 
neuromonitoring have improved our care of brain-injured patients. Inspired by the 
landmark Monro-Kellie doctrine, modern therapeutic interventions have focused on 
decreasing intracranial pressure (ICP) and optimizing cerebral perfusion. This 
approach and relevant best practices have been central to the Brain Trauma 
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Foundation’s (BTF) influential guidelines first published in 1996. Use of these 
guidelines, now in their fourth edition, has been associated with improved out-
comes. This chapter focuses on the evolution of TBI management from ancient 
times to recent advances in neurocritical care.

1.2  History of TBI

Historically, moderate and severe TBI (sTBI) were rarely survivable. Efforts to treat 
TBI date back to antiquity. Trepanation, the oldest known neurosurgical procedure, 
dates back to at least 10,000 BC. Human skulls with bony flaws that had the same 
shape as primitive surgical instruments from the same time period are well described 
[1–4]. Trepanation (from the Greek trypanon, drilling, opening a hole) is a surgical 
procedure that consists of removing a portion of the skull. This technique was 
widely used in antiquity and in the Middle Ages, continuing into the eighteenth and 
nineteenth centuries for therapeutic purposes, mainly in TBI. Trepanned skulls have 
also been found in prehistoric human cultures dating to the Neolithic period [1–4]. 
Evidence of bone remodeling in some archeologic specimens suggests that these 
efforts occasionally met with some success.

The Edwin Smith Surgical Papyrus, dated to 1700 BC, was discovered in 1862 
but remained unpublished until 1930, when the Egyptologist James Breasted pub-
lished an extensive, annotated translation of its contents. This papyrus is composed 
of 48 clinical cases, systematically described, starting with the head and descending 
through the thorax and spine, where the document is interrupted. Some of these 
cases describe head and skull trauma and injuries in a standardized format that 
includes a clinical description of the case, diagnosis, and a glossary that seeks to 
clarify technical terms [2, 4].

Hippocrates, known as “the father of medicine,” documented procedures for 
management of skull fractures and contusions [5]. Three hundred years later, Aulus 
Aurelius Cornelius Celsus of Alexandria described epidural and subdural hema-
toma evacuation via trepanation. There is a long pause in the historical record in 
terms of subsequent descriptions of brain injury management, with the exception of 
Avicenna’s discovery of cerebral vessel blockage in stroke and management modal-
ities for acute stroke [6].

During the ancient and medieval eras, civilizations developed intricate amalga-
mations of logic and mythical/religious thoughts. Thus, concepts about the body, 
mind (or soul), illness, and health were intertwined with religious and cultural con-
cepts [2–4, 7]. Moreover, in the medieval era, as a result of the decline of the west-
ern Roman Empire, the Arab world preserved the medical knowledge of the Greeks 
and Romans. Neuroanatomy, neurophysiology, neuropathology, and surgical tech-
nique studies returned in the eleventh century with the work of Roger of Salermo 
during the Renaissance [3, 4]. At the end of the thirteenth century, Lanfrancus 
(−1310) elaborated the concept of concussion. In the fifteenth century, Berengario 
da Carpi (1465–1527) divided brain injuries into lacerations, contusions, and perfo-
rations. In addition, he described postconcussion headache [8].

L. J. M. De Macedo Filho et al.
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Investigations by early Egyptian physicians, Hippocrates, Galen, Aulus Cornelius 
Celsus, and Paul of Aegina led to a better understanding of neurological anatomy, 
physiology, and therapeutics [9–11]. Their studies also improved our knowledge 
about cerebrospinal fluid (CSF). Modern concepts of ICP were first introduced by 
Monro and Kellie in the eighteenth century [10–13].

CSF is an ultrafiltrate produced by the choroid plexus and is present in the cere-
bral ventricles and subarachnoid space. It is in close relationship to CNS tissue and 
meninges [12, 13]. CSF was first identified by Nicola Massa in 1538 [13, 14] and 
was observed by Domenico Felice Cotugno in 1764 beneath the dura mater, within 
the brain’s ventricles, and around the spinal cord [13, 15]. Moro Secundus 
(1733–1817) described the intraventricular foramen which provides a connection 
between the lateral ventricles and the third ventricle [11, 14, 16]. The CSF circula-
tion and the correct direction of the flow were confirmed by Francois Magendie 
(1783–1855) who discovered that the continuation of CSF flow from the ventricular 
system to subarachnoid space was through the mid-region of the fourth ventricle 
[13, 17]. Alexander Bochdalek (1801–1883) described the lateral recesses of the 
fourth ventricle in 1849 and Hubert von Luschka (1820–1875) discovered the con-
nections with the subarachnoid space—known as the foramina of Luschka—and 
confirmed the presence of the foramen of Magendie [13, 18]. The explanation of 
how CSF is secreted by the choroid plexus, flows through the ventricular system, 
and is reabsorbed via subarachnoid villi and Pacchionian granulations was added by 
Retzius and Key in 1875 [13, 19]. The link between CSF and ICP was defined by 
Harvey Cushing when he considered CSF to be the third circulatory system [13].

The Monro-Kellie doctrine established that the brain resides in an inelastic and 
rigid skull. The total intracranial volume has to remain constant. Moreover, along 
with the consistent volume of blood inside the cranium, the venous blood should be 
drained perpetually and replaced via arterial oxygenated blood [10, 13, 16]. An 
increase in the volume of intracranial CSF, brain tissue, or blood should be compen-
sated by a decrease in other components. Otherwise, an increase in ICP is inevitable 
[10, 13, 16].

During the nineteenth century three major innovations made possible great 
advances in neurosurgery: anesthesia, antisepsis and aseptic technique, and brain 
topography [20]. These innovations resulted primarily from a period of consecutive 
wars and efforts to treat and reduce morbidity and mortality of TBI [8]. The notable 
brain injury of Phineas Gage in the 1800s brought attention to the localization of 
function in the brain after he survived an accident in which an iron rod penetrated 
his head and destroyed a good portion of his left frontal lobe, leading to marked 
behavioral change [21]. As the twentieth century began, the “neuron theory” was 
described by Santiago Ramon y Cajal (1852–1934). He postulated that the nervous 
system constitutes independent cells and defined the nervous system to include neu-
rons that are in contiguity but not continuity [22]. Cajal was the first to use the term 
“plasticity” in a Congress held in Rome in 1894 in which he described the potential 
of the brain to adapt to the environment as a force of internal differentiation and 
plasticity. Until the 1960s, it was considered that the adult nervous system was inca-
pable of generating new neurons. However, Joseph Altman and Gopal Das used 

1 History of Traumatic Brain Injury and the Evolution of Neuromonitoring…
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thymidine-H autoradiography to discover newly formed cells, which suggested new 
neuronal production to the olfactory bulb and the dentate gyrus of the rat hippocam-
pus. These ideas became controversial until two decades later, when Arturo Alvarez- 
Buylla made his discoveries on neurogenesis and adult neural stem cells via 
experiments on songbirds and mammals [23]. However, these new discoveries have 
still not been applied to therapeutic advances in TBI.

The development of neurosurgery accelerated in the first half of the twentieth 
century. Harvey Cushing (1869–1939) is credited with significant reductions in 
complications and mortality in cranial surgery. Among his many contributions, he is 
credited with techniques used to treat head injuries such as subtemporal decompres-
sion, which is still frequently used today [8].

Other important developments in the twentieth century were the creation of the 
GCS and dramatic advances in brain imaging [8, 24]. Also, in the last decades of the 
twentieth century, the mortality rate for sTBI fell by almost 50% as a result of 
advancements in supportive care [25].

The BTF, founded in 1986, developed the first evidence-based clinical practice 
guidelines produced by any surgical specialty. The identification and proliferation 
of best practices has been repeatedly credited with marked improvement in out-
comes from sTBI. The BTF has subsequently produced guidelines on many TBI 
subtopics including pediatric injuries, prehospital care, prognostication, combat 
injuries, and concussion. To date, the BTF has published over 15 major guideline 
projects/editions (Fig.  1.1). Compliance with these guidelines is integral to the 
American College of Surgeons’ trauma center accreditation program and has 
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HISTORY OF TBI

Fig. 1.2 History of TBI—timeline. The x-axis shows important contributions to the understand-
ing of TBI over the centuries and eras, from the Neolithic to the present day, with emphasis on the 
BTF guidelines and studies on the subject. (Credits: (1) Anterior aspect of Squiers, Inca Skull, 
showing trephining. Wellcome Collection. Attribution 4.0 International (CC BY 4.0); (2) Les mer-
veilles de l’industrie ou, Description des principales industries modernes/par Louis Figuier. - Paris: 
Furne, Jouvet, [1873–1877].  - Tome III. PublicDomain; (3) Cranial operation from BL Sloane 
1977, Image taken from f. 2 of Chirurgia. Written in French. British Library. Public Domain; (4) 
Portrait of Gustaf Retzius, extracted from the article Gustaf Retzius som etnograf in Fataburen 
Kulturhistorisk tidskrift (1919). Nordiska Museet. Public Domain; (5) HarveyWilliams Cushing. 
Photograph, 1938. Created 1938. Harvey Cushing (1869–1939). Wellcome Collection. Attribution 
4.0 International (CC BY 4.0))

intensified discussions on improving the outcome of TBI patients [26–30]. 
Development and widespread adoption of the BTF guidelines is only a recent 
advance in the long history of TBI treatment (Fig. 1.2).

1.3  Evolution of Neuromonitoring

1.3.1  Historical Evolution of Intracranial Pressure Monitoring

In 1891, the German physician Heinrich Quincke published the first description of 
the lumbar puncture technique as well as subsequent investigations of CSF and CSF 
pressure in relation to various neurological diseases (Fig. 1.3). He determined that a 
pipette of glass should be affixed to the puncture needle, and through the water 
column it was possible to measure the CSF pressure [11, 31]. This technique of 
repetitive CSF opening pressure measurement for assessment of ICP became widely 
used, becoming the first method for clinical assessment of ICP [11, 31]. However, 
this method led to the death of some patients with high ICP, presumably by inciting 
transtentorial herniation [11].
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HISTORICAL EVOLUTION OF THE
INTRACRANIAL PRESSURE MONITORING

1951
1977

1980’S 2000’S

1891

1960’S

1984 1990’S

Guillaume and Janny released the first
reports of a continuous intracranial

pressure monitor using an
electromangentic transducer for

measuring changes in ventricular fluid
pressure signals.

Heinrich Quincke published the first
studies on the lumbar puncture

technique and investigation of CSF as
a propaedeutic diagnosis for

neurological diseases. He determined
that a pipette of glass should be

affixed to the needle, and
through the water column it was

possible to measure the CSF pressure.

Lundberg and his colleagues measured
cerebral ventricular fluid pressure using
a polyethylene catheter coupled with a

pressure transducer. Their work
established intraventricular ICP
monitoring as a valid and safe

measurement.

The air-filled balloon system was
introduced and designed for epidural

ICP monitoring.
In 1973, Vries et al. introduced the

subarachnoid screw bolt (or Richmond
bolt), a fluid-based system, later

modified by Swann and Codman in
1984.

Multimodal monitors can provide
appropriate display and data synthesis

to help clinicians identify significant
physiological trends and optimal

clinical responses to interventions.

Various types of sensors with coupled
transducers and telemetry monitors
have emerged in the last decades.

Technologies based on fiber sensors
became widely used. In the 1980s, the

first commercially available
micortransducer was initially designed

for intraparenchymal ICP measurement.

Becker and MIller introduced
ventricular catheters for continuous
ICP monitoring in TBI patients. They
demonstrated the clinical importance

of ICP monitoring, along with the
importance of early treatment for

reducing mortality and morbidity rates
in intracerebral hemorrhage (ICH) and

acute expansie intracranial lesions.

Fig. 1.3 Historical evolution of intracranial pressure monitoring—timeline. The x-axis shows 
contributions from the first studies by Quincke in the nineteenth century to the current multimodal 
monitors used in TBI

In 1951, Guillaume and Janny released the first reports of a continuous ICP mon-
itor that used an electromagnetic transducer for measuring changes in ventricular 
fluid pressure signals. They used a U-tube manometer in which the CSF continues 
to flow until it is equalized by a reverse pressure [10, 11, 13, 32]. ICP monitoring 
was further advanced in the 1960s by Lundberg and his colleagues, who measured 
cerebral ventricular fluid pressure using a polyethylene catheter coupled to a pres-
sure transducer. Their work established monitoring of intraventricular pressure as a 
valid and safe alternative [33–35]. The aim of Lundberg’s thesis was to provide a 
method for ventricular cannulation that was minimally traumatic, feasible, had a 
low risk of infection and leakage, and facilitated recording with continuous flow of 
the ICP. In addition, he described three ICP wave patterns associated with intracra-
nial pathologies [11, 33–35]. “A” waves represented increase in ICP to levels of 50 
to 100 mmHg that maintained a plateau for 5–20 min, followed by an abrupt drop. 
“B” waves were abrupt rises in ICP up to 50 mmHg, with a frequency of 0.5–2 
waves per minute. These waves could be directly related to cerebral blood flow 
(CBF) and vessel diameter but were of uncertain origin and relevance. “C” waves, 
also known as Mayer’s wave, represented arterial wave reflexes and were associated 
with cardiac and respiratory cycles [11, 33–35].

In 1977, Becker and Miller introduced ventricular catheters for continuous ICP 
monitoring in TBI patients. They demonstrated the clinical importance of ICP mon-
itoring, along with the importance of early treatment for reducing mortality and 
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morbidity rates in intracerebral hemorrhage (ICH) and acute expansile intracranial 
lesions. The clear evidence of good results among patients in whom ICP elevation 
could be quickly recognized and treated contributed to the popularization of the 
method [11, 36, 37]. Between the 1980s and 2000s, ICP monitoring became wide-
spread. However, even today, it is not being used routinely in all ICUs. Also, cost 
and access limit use in low- and middle-income countries [27–30, 38, 39].

Recommendations that focus on the reduction of ICP and maintenance of ade-
quate cerebral perfusion are central to the BTF guidelines, which review the varying 
levels of evidence for three types of monitoring in sTBI patients: ICP, cerebral per-
fusion pressure (CPP), and brain oxygenation [27–30]. Additional monitoring 
modalities mentioned in the recent guidelines regarding their use for diagnostic, 
therapeutic, and prognostic purposes include electroencephalography (EEG), par-
tial pressure of brain tissue oxygen (PbtO2), CBF, transcranial Doppler ultrasonog-
raphy (TCD) for cerebral autoregulatory status, and cerebral microdialysis [11].

1.3.2  ICP Monitoring in Modern Era

1.3.2.1  Invasive ICP Monitoring
ICP can be measured via either invasive or noninvasive methods. Invasive methods 
include fluid-based systems and implantable microtransducers. Invasive ICP moni-
toring techniques consist of the insertion of a catheter, which varies in intracranial 
location and in the pressure transduction method. The devices are typically inserted 
in the intraventricular or intraparenchymal spaces. Regarding pressure transduction 
methods, catheters can be connected to an external ventricular drain (EVD) or a 
microtransducer [11, 13, 40].

The ventricular catheter is traditionally considered as the “gold standard” for 
reliability in ICP monitoring. The superiority of this technique when compared to 
others is that it allows CSF drainage for control of the ICP as well as biochemical, 
cytological, and microbiological CSF sample analysis [11, 13, 40, 41]. In 1973, 
Vries et al. introduced the subarachnoid screw bolt (or Richmond bolt) [42], a fluid- 
based system, later modified by Swann and Codman in 1984 [11, 43] in an attempt 
to reduce the infection rates of ventricular catheters at that time. However, the screw 
still presented a high risk of infection without allowing CSF drainage. It also had a 
tendency to underestimate ICP, which inspired the development of newer technolo-
gies [11, 13, 41].

Various types of sensors with coupled transducers and telemetry monitors have 
emerged in the last decades. Technologies based on fiberoptics, strain gauges, and 
pneumatic sensors are now widely used [11]. In the 1980s, the first commercially 
available microtransducer was introduced. This was the Honeywell MTC-P5F®, ini-
tially designed for intraparenchymal ICP measurement [44]. The first equipment to 
be used more widely were the Camino [45] and Codman [46] devices. Available 
technologies for ICP monitoring are made by a relatively small number of manufac-
turers. Each product or technology has its own benefits and weaknesses related to 
the technology itself or to the manufacturing process [11, 13, 30, 41, 47–50].
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ICP monitoring also affords the opportunity to determine CPP, which represents 
the vascular pressure gradient that drives oxygen delivery to cerebral tissue. It is 
calculated as the difference between mean arterial pressure (MAP) and 
ICP. Decreases in CPP may contribute to secondary brain injury through cerebral 
hypoperfusion and/or ischemia. The BTF recommends (Level IIB) targeting a CPP 
between 60 and 70  mmHg—depending upon autoregulatory status—to optimize 
survival and favorable outcome [11, 27–30].

An ideal monitor for tracking ICP must be easy to use, accurate, reliable, repro-
ducible, inexpensive, and must be associated with minimal infections and bleeding 
complications. Invasive transducers are reliable and accurate; however, cost and 
access to the technology are issues that limit its widespread use [11, 13, 50]. EVD 
catheters are the gold standard for monitoring ICP, despite having a higher risk of 
hemorrhage and infection than microtransducers [11, 13, 50].

1.3.2.2  Noninvasive ICP Monitoring
A noninvasive ICP monitor can be defined as a technique that provides information 
on ICP or the neurological consequences of increased ICP, such as reduced CBF 
and metabolic changes, without penetrating the skin or skull, thus minimizing the 
risks to the monitored individuals [51, 52]. Noninvasive modalities may represent 
the future of ICP monitoring because of their lower risk and greater cost efficiency 
[11, 13, 50–52]. Noninvasive monitoring methods are divided into two groups, 
those that use physiological parameters related to intracranial compartments, and 
those based on extracranial compartments that are anatomically connected to intra-
cranial compartments [52].

Since the 1970s, there has been a strong effort to develop noninvasive monitoring 
to avoid complications associated with invasive ICP monitoring techniques. 
Consequently, many different noninvasive modalities have been developed in recent 
decades and are being studied [11, 13, 50]. The most popular noninvasive ICP mon-
itoring techniques in TBI are brain imaging analysis; optic nerve sheath diameter 
(ONSD); TCD; tympanic membrane displacement; EEG; near-infrared spectros-
copy (NIRS); pupillometry; microdialysis; pressure on the anterior fontanelle via 
fontanometry; venous ophthalmodynamometry; tonometry; acoustoelasticity; and 
otoacoustic emissions [11, 13, 50, 53, 54].

Fontanometry
Over the 1970s and 1980s, many studies were conducted to investigate the correla-
tion between anterior fontanelle pressure and ICP in children with open fontanelles 
[50, 54–56]. Fontanometry is a method developed to measure the pressure beneath 
the fontanelle and thus provide information about ICP. It is based on placing sensors 
over the patent anterior fontanelle of children younger than 2 1/2  years. Device 
attachment has been an important and persistent concern with this technique. The 
best-known of these devices is the Rotterdam® transducer, which has been used in 
clinical practice [50, 54–56].
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Optic Nerve Sheath Diameter
In 1964, Hayreh et al. [57] showed that, due to the communication of the subarach-
noid space with the intracranial cavity, changes in CSF pressure can be transmitted 
along the optic nerve sheath. Therefore, when there is an increase in CSF pressure, 
the optic nerve sheath diameter (ONSD) can expand [54, 57]. The optic nerve sheath 
is continuous with the brain dura mater and is surrounded by the subarachnoid 
space, which contains the CSF [41]. ONSD expansion may be accompanied by 
papilledema, but unlike papilledema, ONSD expansion occurs almost immediately 
after an acute increase in ICP [54, 58]. ONSD sonographic measurement is a rapid 
modality for monitoring ICP increase. However, measuring ONSD is an operator- 
dependent technique, and conditions including tumors, inflammation, sarcoidosis, 
and Graves’ disease can affect ONSD measurements. It is also difficult to measure 
ONSD in patients with orbital or optic nerve injuries [50, 54, 59].

Ophthalmodynamometry
Ophthalmodynamometry was originally described by Baurmann [60] in 1925 and 
consists of measuring the pressure in the ophthalmic artery and vein through an 
application of known pressure to the eyeball. In 2000, Firsching et al. observed that 
the venous outlet pressure has a close linear relationship with ICP [61]. The central 
retinal vein passes through the optic nerve and is surrounded by CSF, and changes 
in ICP can affect the optic nerve and central retinal vein. Like other ophthalmic ICP 
monitoring techniques, venous ophthalmodynamometry can be used to screen 
patients with a suspected increase in ICP before performing an invasive technique. 
It cannot replace invasive techniques. However, it can be used as a follow-up screen-
ing tool in some patients [50, 54, 61].

Tympanic Membrane Displacement
Reid et al. published the first study to compare tympanic membrane displacement 
(TMD) values with ICP measured via invasive methods in 1990 [62]. Three essen-
tial criteria are necessary to perform a tympanometry test: patent cochlear aqueduct, 
normal middle ear pressure, and intact stapedius reflex. In normal circumstances, 
the pressure in the intracranial compartment is transmitted to the perilymphatic fluid 
of the cochlea and thus displaces the stapedius, changing the acoustic reflex. 
Changes in ICP are thus transmitted through the cochlea, allowing indirect mea-
surement of ICP. When a baseline ICP is established, TMD is useful to calculate 
normal or raised ICP, and repeated TMD measurements could be used to find 
changes in ICP [50, 54, 62, 63].

Brain Imaging
A variety of brain CT scan findings, such as loss of gray and white matter differen-
tiation, midline shift, and basal cistern and ventricular effacement, have been asso-
ciated with elevated ICP, and CT still remains the most-used diagnostic modality in 
the evaluation of patients with TBI. However, present evidence suggests that CT is 
not a very sensitive tool in the sense that CT may remain normal even with a raised 
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ICP [50, 63, 64]. Conversely, Rotterdam and Marshall criteria including midline 
shift, presence of space-occupying lesions, and status of basal cisterns have been 
suggested to be predictive of ICP increase [65, 66].

The current role of brain MRI as a diagnostic and monitoring tool in neurosur-
gery far outweighs its role as a purely noninvasive technique for assessing ICP. MRI 
techniques for the assessment of ICP are based on the relationship between intracra-
nial compliance and pressure. MRI has also been used to assess optic nerve sheath 
diameter as a marker of elevated ICP and appears to be more accurate than ultra-
sound in assessing the CSF-filled subarachnoid space surrounding the optic nerve 
[63, 67, 68].

Tissue Resonance Analysis
The tissue resonance technique was developed by Michaeli [69] in 2002. It is based 
on the premise that different tissues vibrate at different frequencies when exposed 
to a particular sound wave in order to digitally obtain an echopulsogram, which 
shows a good correlation with invasive ICP. This method is a promising technique 
for noninvasive ICP monitoring, but it requires further validation [50, 54, 69].

EEG
The EEG represents the spontaneous electrical activity of the cerebral cortex 
recorded through electrodes placed on the scalp. These electrical signals are then 
amplified, filtered, and displayed in an 8- or 16-channel system [50, 54]. Aside from 
the importance of detecting the seizures and subclinical seizures that are common 
after TBI, many studies show that neurophysiological changes precede ICP changes 
[70, 71]. Moreover, certain components of EEG spectrum analysis are useful in cor-
relating with ICP. EEG power spectrum analysis was reported in 2012 by Chen. 
Power spectral analysis allows a graphical representation of EEG readings over 
time and produces an ICP index (IPI) which correlates to ICP. However, more stud-
ies are needed to establish the correlation of EEG spectrum analysis with changes 
in ICP [50, 72].

Pupillometry
Examination of the pupils has long been a part of neurological assessment. Advances 
in technology have resulted in development of infrared pupillometry to quantita-
tively measure subtle changes in pupil size in response to light stimuli, establishing 
that the velocity of pupillary constriction is sensitive to increases in ICP and that a 
10–20% reduction in pupil size is associated with intracranial hypertension [73–
75]. In 2003 Taylor et al. suggested a new point-and-shoot hand-held pupillometer 
for quantitative evaluation of pupillary function. Their study enrolled 404 subjects. 
It was concluded that pupillary changes may suggest subtle changes in ICP, and the 
velocity of pupillary constriction was sensitive to increased ICP.  A reduction of 
pupillary size by 10% was associated with ICP levels higher than 22 mmHg [74].

In 2011, Chen [76] introduced the concept of the pupillary neurological index 
using an algorithmic approach to predict changes in ICP with pupillary reactivity. 
This algorithm is produced by combining such parameters as minimum and 
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maximum pupillary diameter, the latency of the light reflex, and constriction and 
dilation velocity. The index includes a scale ranging from 0 to 5 points, and <3 is 
considered as abnormal. Quantitative pupillometry is shown to be more precise and 
more consistent than standard flashlight pupil assessment, especially in neurologi-
cal intensive care units. Conversely, pupillometry has limitations. Evaluation of agi-
tated or confused patients and patients with scleral edema, periorbital edema, 
intraocular lens replacement, and prior ocular surgery may be challenging. 
Moreover, the measurements may be affected by the light of the environment [77]. 
Although promising, the clinical applicability of this technique requires further 
investigation [50, 54].

TCD
In 1982, Aaslid [78] described TCD as a technique for evaluating cerebral hemody-
namics, and since then, it has been used to measure the blood flow velocities and the 
cerebral vasoreactivity in the basal brain arteries and in the Circle of Willis, albeit 
mainly in the context of aneurysmal subarachnoid hemorrhage and vasospasm. The 
most commonly evaluated parameters using the arterial waveform are peak systolic 
and diastolic velocity, mean velocity, resistance index, and pulsatility index [50, 54, 
69, 79, 80].

The measurement is made over regions of the skull with the thinnest bone win-
dows (temporal, transorbital, or back of head). TCD is best suited to provide a quali-
tative estimate (low, normal, or high) of ICP. It appears to be a promising modality 
for noninvasive ICP monitoring, but it cannot replace invasive monitoring. Important 
disadvantages are the requirement for a trained and qualified operator to perform 
and interpret the measurements and the limited accuracy in estimating absolute ICP 
values [50, 54, 79, 80].

Near-Infrared Spectroscopy (NIRS)
Near infrared is the name given to the region of the electromagnetic spectrum 
immediately above the visible region in terms of wavelength. NIRS is an emerging 
technology that works on the principle of differential absorption of infrared light to 
detect changes in oxygen and deoxyhemoglobin concentration of blood. NIRS 
works with wavelengths of 700–1000 nm, where the low absorption allows it to eas-
ily pass through skin and bone, resulting in deep tissue penetration that enables it to 
measure regional changes in cerebral blood oxygen saturation (rSO2) and cerebral 
blood volume. Moreover, it can be used to detect changes in CBF and ICP [50, 
54, 81–84].

In 1997, Kampfl demonstrated a significant difference in rSO2 values between 
normal and elevated ICP in sTBI patients [81], and changes in cerebral oxygenation 
correlated well with ICP vascular slow waves during CSF infusions and TBI studies 
[82]. NIRS allows the calculation of certain indices that have been correlated with 
cerebrovascular pressure reactivity in TBI patients [67]. However, it does not pro-
vide an absolute estimate of ICP or facilitate the detection of changes in ICP [50, 54, 
84]. This method shows promise, but it cannot currently be used to estimate ICP 
values [50, 54, 84].

1 History of Traumatic Brain Injury and the Evolution of Neuromonitoring…



14

1.3.3  Ancillary Monitoring

1.3.3.1  Cerebral Autoregulation and CBF
Cerebral autoregulation (CA) is defined as the mechanism by which the brain main-
tains a constant nutrient supply across a breadth of physiologic conditions. CBF is 
directly proportional to CPP and the fourth power of vascular diameter, and it is 
indirectly proportional to blood viscosity and cerebral vascular length. CPP is deter-
mined by the difference between MAP and ICP [85–87]. The CA curve was first 
described by Lassen in 1959 [88] as a triphasic curve, and it was suggested that the 
brain is capable of maintaining a constant perfusion pressure throughout a wide 
range of mean arterial pressures [85–87]. A systematic review and meta-analysis by 
de-Lima-Oliveira [86] in 2018 selected 35 studies about the relationship between 
CA and ICP since the 1980s and observed that there was a clear tendency toward 
CA impairment with increased ICP [86]. At least four mechanisms are proposed for 
autoregulation: myogenic (vascular changes), neurogenic (vascular autonomic 
nerve supply), metabolic (changes in the microenvironment such as pCO2 and H+), 
and endothelial factors (such as nitric oxide) [85]. The assessment of cerebral auto-
regulation could be static (relationships between CBF and MAP are considered con-
stant) or dynamic (assessment is based on determination of dynamic changes of 
CBF in response to dynamic changes in MAP) [85].

Cerebral autoregulatory status may also be determined via measuring the cere-
brovascular pressure reactivity index (PRx) or the CBF velocity via TCD and near- 
infrared spectroscopy [13, 54, 85–87]. Increasing CPP, in some cases, may be the 
only way to increase oxygen delivery to the brain, but this has some costs. Vascular 
regulation in the traumatized brain is often impaired, causing dissociation between 
the CBF and the cerebral metabolic demand. Therefore, measuring the CBF may be 
more important in severely traumatized patients. Thermal diffusion flowmetry and 
laser Doppler flowmetry are some methods for measuring CBF [85–87].

The concept of the PRx was introduced by Czosnyka [89] in 1997 based on the 
principle that in MAP elevations there would be cerebral vasoconstriction with a 
reduction in cerebral blood volume and, consequently, in ICP.  PRx reflects the 
smooth muscle tone of arteries and cerebral arterioles in response to changes in 
transmural pressure, forming part of the more elaborate physiological phenomenon 
of CA. The PRx indirectly reflects the CA status and may be utilized to delineate the 
optimal CPP for a patient [85–87]. In 2000, Luzius Steiner suggested the U-shape 
relationship between PRx and CPP. He and his colleagues demonstrated that the 
lowest level in this curve correlated with the CPP level that was associated with the 
best autoregulation, and this level was termed as the optimal CPP or CPPopt [90]. 
This was interpreted as the middle point of the upper and lower levels in Lassen’s 
curve. The COGiTATE trial is currently investigating whether therapy based on the 
targeted value for CPPopt improves outcome [91].

Usually, CA maintains normal CBF when MAP is between 60 and 140 mmHg. 
CBF of 50–60 mL/100 g/min at a MAP of 80–100 mmHg is normally maintained 
by vasodilation (when MAP drops to the limit of 60  mmHg) or cerebral 
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vasoconstriction (when MAP rises up to the limit of 150 mmHg), which protects the 
brain from ischemia or hyperemia despite the physiological fluctuations of 
CPP. Patients with TBI may have a decrease or loss of CA. In this case, the CBF 
becomes dependent on the MAP. So if MAP rises, CBF rises too and can cause an 
increase in brain volume. If MAP drops, CBF also decreases, reducing ICP but pos-
sibly causing ischemia and necrosis [84–87].

1.3.3.2  Cerebral Oxygenation

Jugular Venous Oxygen Saturation (SjvO2) and Arterio-Jugular Differences 
of Oxygen (AVDO2)
Brain oxygenation may be monitored via two invasive modalities: jugular bulb oxy-
gen saturation and PbtO2 by the insertion of a catheter in the brain parenchyma. 
NIRS is a noninvasive bedside monitoring technique which detects changes in oxy-
gen and deoxyhemoglobin concentration similarly to pulse oximetry [50, 54, 92]. 
Jugular bulb oximetry (SjvO2) reflects the difference between brain oxygen and 
brain metabolic rate of oxygen, assuming that arterial oxyhemoglobin saturation, 
hemoglobin concentration, and the oxygen/hemoglobin dissociation curve remain 
stable [93, 94]. Myerson [95] first described the percutaneous sampling and analysis 
of human cerebral venous blood from the jugular bulb in 1927. Gibs [96] observed 
the arteriovenous difference between oxygen, glucose, and lactate. Moreover, he 
proposed that cerebral venous blood oxygen saturation measurement allows an esti-
mate of global metabolic demand in relation to oxygen consumption [94]. 
Catheterizing the dominant internal jugular vein to correctly assess global cerebral 
oxygenation is recommended for this type of monitoring. The catheter tip should be 
positioned in the jugular bulb and placement confirmed by lateral skull radiography. 
SjvO2 provides an indirect measure of CBF. If it is low (<50% for more than 10 min 
duration), it may reflect hypoperfusion (decreased supply) or an increase in cerebral 
metabolism (increased demand) [30, 93, 94].

The arteriovenous difference in oxygen supply (AVDO2  =  CMRO2/CBF; 
CMRO2 = cerebral metabolic rate of oxygen) is the best estimate of the balance 
between brain metabolism and CBF [97]. When AVDO2 increases, the cerebral 
metabolic demand is low, and when AVDO2 decreases, this may be suggestive of 
hyperperfusion or tissue death [89]. SjvO2 levels are correlated with AVDO2 and 
may be useful in detecting ischemia or hyperemia [93, 94].

However, this method is limited by potential changes in arterial oxygen content, 
hemodilution, and position of the jugular bulb catheter, as well as by the need for 
frequent calibration and infrequent complications related to catheter insertion, such 
as infection, increased ICP, thrombosis, and pneumothorax [93, 94, 98].

Brain Tissue Oxygenation (PbtO2)
Brain hypoxia has been shown to be harmful after a TBI, and it is recognized as a 
key secondary insult after injury [92, 99, 100]. In recent years, there has been grow-
ing evidence that patient outcome is improved after the application of therapy 
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targeted at cerebral tissue oxygen pressure. In this targeted therapy, MAP and per-
centage of inspired oxygen fraction are often used to maintain this parameter at 
adequate levels [92, 100].

In 1956, Clark et al. [101] reported the possibility of monitoring oxygen ten-
sion in blood and tissue, and in 1993 Meixensberger [102] first demonstrated the 
concept of PbtO2 monitoring and its potential to assist in management of TBI 
patients [100, 101]. The use of direct PbtO2 monitors was approved by the US 
Food and Drug Administration in 2001 [100]. PbtO2 may be measured focally in 
the brain via either Licox (Integra, USA) or Neurovent (Raumedic, Germany) 
catheters, both of which have been shown to be safe and to provide accurate data. 
These devices provide information about the balance between oxygen demand 
and delivery in an injured brain. They may be affected by changes in capillary 
perfusion, distance from the capillaries in an edematous brain, and barriers to 
oxygen diffusion [103].

Recent data suggests that PbtO2 values are directly correlated with patient out-
comes. Cerebral hypoxia is an independent predictor of poor prognosis, discon-
nected from ICP, CPP, and brain imaging changes [100, 104]. PbtO2 monitoring 
devices appear to discriminate reliably between normal oxygenation, threatened 
ischemia, and critical ischemia [100]. After elevation of the fraction of inspired O2, 
PaO2 increases to supraphysiological levels, or hyperoxemia. However, the relation-
ship between hypoxemia and outcome in patients with TBI is controversial [85, 100, 
104]. The randomized, controlled, multicenter phase III BOOST-3 trial is investi-
gating the outcomes of maintaining a management protocol based on PbtO2 com-
bined with ICP [105]. For now, PbtO2 values should be interpreted in the context of 
other monitored parameters to establish optimal management in clinical practice 
[92]. Cerebral hypoxia is a known cause of worse neurological outcome in patients 
with TBI. It has been observed that a higher frequency of daily episodes of cerebral 
hypoxia and a longer duration are common in nonsurvivors. Hypoxia is defined as 
alveolar oxygen pressure (PaO2)  ≤  60  mmHg or O2 saturation  ≤  90% or 
PbtO2 < 20 mmHg [103–105].

1.3.3.3  Cerebral Microdialysis
Microdialysis consists of inserting an intraparenchymal catheter which allows dif-
fusion of water and soluble substances at the distal end of the catheter across a 
semipermeable membrane. This permits constant assessment of the biochemical 
state of the brain tissue and interstitial fluid [106]. This information can help to 
guide therapy such as MAP parameters, ventilatory rate, and pCO2 levels, and 
hyperosmolar therapy as well as the potential need for surgical interventions [106–
108]. It could predict secondary damage before detection by clinical manifestations 
and conventional monitoring [106, 108, 109].

This method was first described in animal studies measuring neurotransmitters 
by Gaddum (1961) [110] and Myers (1972) [111]. In 1966, Bitto [108, 112] 
reported a dialysis technique using small volumes of interstitial tissue (e.g., brain), 
and Delgado (1972) [113] improved it using an electrode in a solution 
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continuously perfused through a dialysis bag, later called a dialytrode. Ungerstedt 
[114, 115], in the late 1970s and early 1980s, improved the efficiency of microdi-
alysis by  enlarging the surface area of the dialysis membrane. The successful use 
of microdialysis to quantify monoamine levels in neural tissue contributed signifi-
cantly to the worldwide use of cerebral microdialysis [109].

Microdialysis can reveal the chemical composition of the interstitial fluid. Water 
and solutes diffuse between the interstitial fluid and perfused solution, which is 
called the perfusate, and the concentration gradient between these two chambers 
allows the diffusion of solutes at a constant speed, enabling their measurement in 
the dialysate. A number of metabolites have been studied and are believed to serve 
as biomarkers following TBI. The most commonly measured metabolites include 
glucose, lactate, pyruvate, glycerol, and glutamate [106–109].

Microdialysis has provided important information about TBI pathophysiology 
and continues to be an important tool as new biochemical markers are being inves-
tigated and utilized. However, further studies are necessary to clarify whether inter-
ventions based on microdialysis data may improve patient outcomes [106–109].

1.3.4  Multimodal Monitoring

Several parameters can be evaluated at the same time and can be used to establish a 
patient’s prognosis after TBI, detect secondary injuries before irreversible damage 
occurs, allowing more thorough assessment of patient condition [116–118].

Among the commonly evaluated parameters and techniques are ICP, MAP,  central 
venous oxygen saturation, TCD, ONSD, microdialysis, NIRS, continuous EEG, and 
other invasive and noninvasive physiologic trends at the bedside [116–118].

The use of a data acquisition and integration device, such as the Moberg CNS 
monitor, can provide the appropriate display and data synthesis to help clini-
cians identify significant physiological trends and optimal clinical responses to 
interventions. By condensing individual monitors and numeric feedback onto a 
single screen and formatting data into a graphical display, this system can help 
clinicians increase their understanding and recall of significant patient physiol-
ogy, thereby improving the quality of patient care [116–118].

1.4  Conclusion

Traditionally, TBI management has focused on treating increased ICP and low 
CPP.  Technological advancement has led to new tools which may provide this 
 information with greater safety. However, research has expanded our knowledge of 
pathophysiological mechanisms underlying secondary damage to the brain after 
TBI far beyond these two parameters. Multimodal monitoring holds promise for 
analyzing a broader set of physiologic parameters to enable more extensive 
 optimization of brain physiology following injury. 
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