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Preface 

What control strategy will transfer a space vehicle from one circular orbit to 
another in least time or, alternatively, with minimum fuel consumption? What 
should be the strategy for harvesting a renewable resource (a fish population, say) 
to maximize financial returns while satisfying sustainability constraints? In chemo-
immunotherapy for cancer, what treatment regime (concentration and frequency of 
cytotoxic drug doses) will minimize the tumour cell population while maintaining 
the blood cell population above a critical level? Mitigation strategies are available 
to counter an epidemic, including vaccination, livestock culling and host removal; 
how should we deploy these strategies while minimizing the social and economic 
costs involved? How should a batch distillation column be operated to maximize the 
yield, subject to specified constraints on product purity? 

There are a number of common features in these questions. First, they all concern 
phenomena where the relevant ‘state of nature’ (relating, for example, to the position 
of a space vehicle or the size of a diseased population) is dynamic, in the sense that 
it evolves with time. Second, the evolution of the state of nature, or state as we shall 
simply call it, is affected by the choice of a control strategy. Third, we can attach a 
cost to a control strategy and the evolving state to which it gives rise. The underlying 
problem is to choose a control strategy that minimizes the cost. 

In certain cases, problems in the classical calculus of variations (‘minimization 
of an integral functional over arcs and their derivatives’) match this description. 
Here, the independent variable is interpreted as time, the ‘state’ is the value of 
the arc at the current time and the control its rate of change. But techniques for 
their solution provided by this earlier theory fail to take account of the dynamic 
constraints that are so often encountered today, in engineering, applied science and 
economics. Here, by ‘dynamic constraints’ we mean the mathematical relations 
governing future evolution of the state, which will depend on the control strategy. 

Dynamic optimization is the name given to the systematic study of optimization 
problems with dynamic constraints. General study of optimization problems with 
dynamic constraints dates from the late 1950s, which saw several crucial advances, 
one conceptual and two technical. The conceptual advance, due by L. S. Pontryagin 
et al., was the realization that optimization problems where the dynamic constraint
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viii Preface

took the form of a controlled differential equation covered a wide range of 
engineering control problems involving mechanical systems such as space vehicles 
and, furthermore, was amenable to analysis. As for the two technical advances, one 
was Pontryagin’s maximum principle, a set of necessary conditions for a control 
strategy to be optimal. The other was dynamic programming, a procedure initiated 
by R. Bellman, which reduces the search for an optimal strategy to finding the 
solution to a partial differential equation (the Hamilton Jacobi equation). 

‘Dynamic optimization’ is synonymous with ‘optimal control’. We have chosen 
the nomenclature dynamic optimization in this book, to convey the idea that 
optimization problems with general dynamic constraints merit study in their own 
right and that the field has widespread application, within and beyond engineering. 
We seek then to avoid the specificity of ‘optimal control’, a name introduced to 
describe a branch of control engineering, in which the control design objectives 
are expressed in terms minimizing a cost, rather than, say, in terms of stability and 
robustness requirements. 

From the mid-1970s, it became apparent that progress in the study of dynamic 
optimization problems was being impeded by a lack of suitable analytic tools 
for investigating local properties of functions which are nonsmooth, i.e. not 
differentiable in the traditional sense. Nonsmooth functions were encountered at first 
attempts to put Dynamic Programming on a rigorous footing, specifically attempts 
to relate value functions and solutions to the Hamilton Jacobi equation. It was 
found that, for many dynamic optimization problems of interest, the only ‘solutions’ 
to the Hamilton Jacobi equation have discontinuous derivatives. How should we 
interpret these solutions? New ideas were required to answer this question since the 
Hamilton Jacobi equation of dynamic optimization is a nonlinear partial differential 
equation for which traditional interpretations of generalized solutions, based on the 
distributions they define, are inadequate. 

Nonsmooth functions surfaced once again when efforts were made to extend 
the applicability of necessary conditions such as the maximum principle. A notable 
feature of the maximum principle (and one which distinguishes it from necessary 
conditions derivable using classical techniques) is that it can take account of 
pathwise constraints on values of the control functions. For some practical problems, 
the constraints on values of the control depend on the vector state variable. In flight 
mechanics, for example, the maximum and minimum thrust of a jet engine (a control 
variable) will depend on the altitude (a component of the state vector). The maxi-
mum principle in its original form is not, in general, valid for problems involving 
state-dependent control constraints. One way to derive necessary conditions for 
these problems, and others not covered by the maximum principle, is to reformulate 
them as generalized problems in the calculus of variations, the cost integrands for 
which include penalty terms to take account of the constraints. The reformulation 
comes at a price, however. To ensure equivalence with the original problems, it is 
necessary to employ penalty terms with discontinuous derivatives. So the route to 
necessary conditions via generalized problems in the calculus of variations can be 
followed only if we know how to adapt traditional necessary conditions to allow for 
nonsmooth cost integrands.



Preface ix

Two important breakthroughs occurred in the 1970s. One was the end product 
of a long quest for effective, local descriptions of ‘non-smooth’ functions, based 
on generalizations of the concept of ‘subdifferentials’ of convex functions, to 
larger function classes. F. H. Clarke’s theory of generalized gradients, by achieving 
this goal, launched the field of nonsmooth analysis and provided a bridge to 
necessary conditions of optimality for nonsmooth variational problems (and in 
particular dynamic optimization problems reformulated as generalized problems in 
the calculus of variations). The other breakthrough, a somewhat later development, 
was the concept of viscosity solutions, due to M. G. Crandall and P.-L. Lions, which 
provides a framework for proving existence and uniqueness of generalized solutions 
to Hamilton Jacobi equations arising in dynamic optimization. 

Nonsmooth analysis and viscosity methods were introduced to overcome obsta-
cles in dynamic optimization. But they have come to have a significant impact 
on nonlinear analysis as a whole. Nonsmooth analysis provides an important new 
perspective: useful properties of functions, even differentiable functions, can be 
proved by examining related nondifferentiable functions, in the same way that 
trigonometric identities relating to real numbers can sometimes simply be derived 
by a temporary excursion into the field of complex numbers. Viscosity methods, 
on the other hand, provide a fruitful approach to studying generalized solutions 
to broad classes of nonlinear partial differential equations which extend beyond 
Hamilton Jacobi equations of dynamic optimization and their approximation for 
computational purposes. The calculus of variations (in its modern guise as dynamic 
optimization) continues to uphold a long tradition then, as a stimulus to research in 
other areas of mathematics. 

The main purpose of this book is to bring together as a single comprehen-
sive, up-to-date publication major advances in the theory dynamic optimization, 
with emphasis on those accomplished through the use of nonsmooth analytical 
techniques. Necessary conditions receive special attention. But other topics are 
covered as well. Material on the important topic of minimizer regularity provides 
a showcase for the application of nonsmooth necessary conditions to derive 
qualitative information about solutions to variational problems. The chapter on 
dynamic programming stands a little apart from other sections of the book, as it 
is complementary to mainstream research in the area based on viscosity methods 
(and which in any case is the subject matter of a number of substantial expository 
texts). Instead we concentrate on aspects of dynamic programming well matched 
to the analytic techniques of this book, notably the characterization (in terms 
of the Hamilton Jacobi equation) of extended-valued value functions associated 
with problems having endpoint and state constraints, inverse verification theorems, 
sensitivity relationships and links with the maximum principle. 

A subsidiary purpose is to meet the needs of readers with little prior exposure to 
modern dynamic optimization who seek quick answers to the questions: what are the 
main results, what were the deficiencies of the ‘classical’ theory and to what extent 
have they been overcome? Chapter 1 provides, for their benefit, a lengthy overview, 
in which analytical details are suppressed and the emphasis is placed instead on 
communicating the underlying ideas.
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To render this book self-contained, preparatory chapters are included on nons-
mooth analysis, measurable multifunctions and differential inclusions. Much of this 
material is implicit in the books of R. T. Rockafellar and J. B. Wets [177] and Clarke 
et al. [85], and of J.-P. Aubin and H. Frankowska [14]. It is expected, however, that 
readers, whose main interest is in optimization rather than in broader application 
areas of nonsmooth analysis which require additional techniques, will find these 
chapters helpful, because of the strong focus on topics relevant to optimization. 

Dynamic optimization is a large field and the choice of material for this is 
necessary selective. The techniques used here to derive necessary conditions of 
optimality are, for the most part, within a tradition of research pioneered and 
developed by Clarke, Ioffe, Loewen, Mordukhovich, Rockafellar, Vinter and others, 
based on perturbation, elimination of constraints and passage to the limit. The 
necessary conditions are ‘state of the art’, as far as this tradition is concerned. 
Alternative approaches, based on set separation ideas, also make an appearance, 
but principally for comparison purposes and historical perspective. We do not enter 
into the topic of higher order necessary conditions nor computational aspects of 
dynamic optimization. 

This book is similar in structure and content to the 2000 book Optimal Control 
[194]. It brings up to date this earlier publication by, in many instances, providing 
new, simpler proofs of key theorems, where these have become available, and by 
broadening the applicability of the theory. We provide, for the first time in book 
form, recent improvements to necessary conditions of optimality for problems 
for dynamic optimization problems involving a differential inclusion constraint, 
referred to as the Ioffe refinement. It draws on recent research developments, 
unavailable at the time of the earlier publication, to provide a thorough discussion 
and analysis of necessary conditions in the form of Clarke’s Hamiltonian inclusion. 
The book includes new material on necessary conditions for problems with mixed 
state/control constraints and on problems with free end-times, drawing on latest 
research in these areas. Also included is a new framework for dynamic programming 
treating dynamic constraints with discontinuous time dependence. 

Brest, France Piernicola Bettiol 
London, UK Richard B. Vinter
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Chapter 1 
Overview 

Abstract Dynamic optimization emerged as a distinct field of research in the late 
1950’s, to address new kinds of optimization problems, in aerospace, economics and 
other areas. The distinctive feature of these problems was an underlying dynamic 
constraint, typically in the form of a controlled differential equation, which placed 
these problems beyond the scope of earlier variational techniques. Rapid advances 
were made in the 1970’s and 80’s, with the discovery of the maximum principle 
and methodologies (dynamic programming) that linked optimal strategies and the 
Hamilton Jacobi equation. These were the main elements in what, today, is known as 
the classical theory of dynamic optimization. While classical dynamic optimization 
was adequate for many applications, deficiencies became apparent, leading to a new 
body of theory in the 1980’s, including Clarke’s nonsmooth maximum principle 
and generalized solutions of Hamilton-Jacobi equations, based on techniques of 
nonsmooth analysis. 

The purpose of this overview chapter is twofold. First, it provides a self-contained 
exposition of the classical theory suitable for a first course in dynamic optimization 
(at undergraduate or graduate level). It includes motivating examples, a derivation 
of the classical maximum principle, optimality conditions of dynamic programming 
type expressed in terms of solutions to the Hamilton Jacobi equation, and extensive 
discussion. Second, it gives answers to the questions: what are the shortcomings of 
the classical theory and how are they surmounted by more recent developments? 
We argue that many of the deficiencies of the earlier theory arise from the lack 
of appropriate analytic techniques for constructing useful local approximations of 
non-differentiable functions and closed sets with irregular boundaries. We then 
cover rudiments of nonsmooth analysis, which was developed precisely for this 
purpose, and show how we can use it to derive new, improved optimality conditions, 
unshackled by the restrictive hypotheses of classical dynamic optimization. We 
thereby offer readers the ‘big picture’ in preparation for later chapters, and also 
to equip them better to understand the contemporary literature. 
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2 1 Overview

1.1 Dynamic Optimization 

Dynamic optimization emerged as a distinct field of research in the 1950’s, to 
address in a unified fashion optimization problems arising in scheduling and 
the control of engineering devices, beyond the reach of earlier analytical and 
computational techniques. This field was initially called optimal control, but this 
earlier name is increasingly giving way to dynamic optimization, to convey a wider 
range of potential application, beyond control engineering. Aerospace engineering 
is an important source of such problems, and the relevance of dynamic optimization 
to the American and Russian space programmes gave powerful initial impetus to 
research in this area. A simple example is: 

The Maximum Orbit Transfer Problem A rocket vehicle is in a circular orbit. 
What is the radius of the largest possible co-planar orbit to which it can be 
transferred over a fixed period of time? The motion of the vehicle during the 
manoeuvre is governed by the rocket thrust and by the rocket thrust orientation, 
both of which can vary with time. See the Fig. 1.1. The variables involved are 

. 

r = radial distance of vehicle from attracting centre,
u = radial component of velocity,
v = tangential component of velocity,
m = mass of vehicle,
Tr = radial component of thrust,
Tt = tangential component of thrust.

Fig. 1.1 The maximum orbit 
transfer problem
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The constants are 

. 

r0 = initial radial distance,
m0 = initial mass of vehicle,
γmax = maximum fuel consumption rate,
Tmax = maximum thrust,
μ = gravitational constant of attracting centre,
tf = duration of manoeuvre.

A precise formulation of the problem, based on an idealized point mass model of 
the space vehicle, is as follows: 

. 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize − r(tf )

over radial and tangential components of the thrust history,
(Tr(t), Tt (t)), 0 ≤ t ≤ tf , satisfying

ṙ(t) = u,

u̇(t) = v2(t)/r(t)− μ/r2(t)+ Tr(t)/m(t),

v̇(t) = −u(t)v(t)/r(t)+ Tt (t)/m(t),

ṁ(t) = −(γmax/Tmax)(T
2
r (t)+ T 2

t (t))1/2,

(T 2
r (t)+ T 2

t (t))1/2 ≤ Tmax,

m(0) = m0, r(0) = r0, u(0) = 0, v(0) = √
μ/r0,

u(tf ) = 0, v(tf ) = √μ/r(tf ).

Here .ṙ(t) denotes .dr(t)/dt , etc. It is standard practice in dynamic optimization 
to formulate optimization problems as minimization problems. Accordingly, the 
problem of maximizing the radius of the terminal orbit .r(tf ) is replaced by 
the equivalent problem of minimizing the ‘cost’ .−r(tf ). Notice that knowledge 
of the control function or strategy .(Tr(t), Tt (t)), 0 ≤ t ≤ tf permits us to 
calculate the cost .−r(tf ): we solve the differential equations, for the specified 
boundary conditions at time .t = 0, to obtain the corresponding state trajectory 
.(r(t), u(t), v(t),m(t)), 0 ≤ t ≤ tf , and thence determine .−r(tf ). The control 
strategy therefore has the role of choice variable in the optimization problem. We 
seek a control strategy which minimizes the cost, from among the control strategies 
whose associated state trajectories satisfy the specified boundary conditions at time 
.t = tf . 

For the following values of relevant dimensionless parameters: 

. 
Tmax/m0

μ/r20

= 0.1405,
γmax

Tmax/
√

μ/r0
= 0.07487,

tf
√

r3/μ
= 3.32 ,

the radius of the terminal circular orbit is 

.r(tf ) = 1.5 r0.
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Fig. 1.2 A control strategy for the maximum orbit transfer problem 

In Fig. 1.2, the arrows indicate the magnitude and orientation of the thrust at times 
.t = 0, .0.1tf , .0.2tf , . . . . , . tf . As indicated, full thrust is maintained. The thrust 
is outward for (approximately) the first half of the manoeuvre and inward for the 
second. 

Suppose, for example, that the attracting centre is the Sun, the space vehicle 
weighs .10,000 lb, the initial radius is .1.50 million miles (the radius of a circle 
approximating the Earth’s orbit), the maximum thrust is .0.85 lb (i.e. a force equiva-
lent to the gravitational force on a .0.85 lb mass on the surface of the earth, which cor-
responds to .Tmax = 3.778N, the maximum rate of fuel consumption is .1.81 lb/day 
and the transit time is 193 days. Corresponding values of the constants are 

. 

Tmax = 3.778N, m0 = 4.536× 103 kg,
r0 = 1.496× 1011 m, γmax = 0.9496× 10−5 kg s−1,
tf = 1.6675× 107 s, μ = 1.32733× 1020 m3 s−2.

Then the terminal radius of the orbit is .2.44million miles. (This is the radius of a 
circle approximating the orbit of the planet Mars.) 

Numerical methods, inspired by necessary conditions of optimality akin to the 
maximum principle of Chap. 7, were used to generate the above control strategy.
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Optimal Control of a Growth/Consumption Model Dynamic optimization prob-
lems are encountered also in the field of economics. One example is the ‘growth 
versus consumption’ problem of neoclassical macro-economics, based on the 
Ramsey model of economic growth. The question here is, what balance should be 
struck between investment and consumption to maximize overall spending on social 
programmes over a fixed period time? A simple formulation of the problem is as 
follows. 

. 

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Minimize − ∫ T

0 (1− u(t))xα(t)dt

subject to
ẋ(t) = −ax(t)+ bxα(t)u(t) for a.e. t ∈ [0, T ],
u(t) ∈ [0, 1] for a.e. t. ∈ [0, T ] ,
x(t) ≥ 0 for all t ∈ [0, T ] ,
x(0) = x0 .

Here, .a > 0, .b > 0, .x0 ≥ 0 and .α ∈ (0, 1) are given constants and .[0, T ] is a given 
interval. 

It has the following interpretation: x denotes global economic output. The rate of 
financial return .r(x) from economic output x is modelled as 

. r(x) = bxα .

The term .−ax takes account of fixed costs reducing growth (wages, etc.). 
To describe the solution to this problem, we introduce the constants 

. x̂ :=
(

αb

a

) 1
1−α

and Δ := 1

aα
ln

(
1

1− α

)

and also the state feedback function .χ : [0, T ] × (0,∞) → [0, 1]: 

. χ(t, x) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if x > ȳ(t)

1 if x < ȳ(t)

α if x = ȳ(t) and t ≤ T −Δ

0 if x = ȳ(t) and t > T −Δ ,

in which .ȳ : (−∞, T ] → (0,∞) is the function 

. ȳ(t) :=
{

x̂ if t ≤ T −Δ
[

b
a
(1− e−aα(T−t)

] 1
1−α if t > T −Δ .

Techniques of dynamic programming covered in Chap. 13 provide the following 
solution to this problem: 

Given arbitrary initial data .(t0, x0) ∈ [0, T ] × (0,∞), the optimal output . x∗is 
the unique solution in the space of Lipschitz continuous functions on .[t0, T ] of the 
differential equation
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.

{
ẋ∗(t) = −ax∗(t)+ bx∗α(t)χ(t, x∗(t)) a.e. t ∈ [t0, T ],
x(t0) = x0 .

(1.1.1) 

The optimal proportion of financial return for investment . u∗is unique (w.r.t. the 
equivalence class of almost everywhere equal functions) and is given by 

. u∗(t) = χ(t, x∗(t)), for a.e. t ∈ [t0, T ] .
Notice that the solution above is expressed in state feedback form; that is, the 
optimal control . u∗ is expressed as a function of the current state. For any given 
initial state and time . t0, the optimal state expressed as a function of time, i.e. in 
open loop form, is the solution to the ‘closed loop’ state equation (1.1.1) for  the  
given initial state and time . t0. We then obtain the optimal control as a function 
of time (open loop form) by plugging the optimal state trajectory into the state 
feedback function. Notice that the feedback form captures, within a single relation, 
the optimal strategies for every initial state . x0 and time . t0. 

Intuition would suggest that if, at the start of the time interval, economic output 
is low, the optimal control should have a first phase of maximum investment during 
which economic output builds up to some critical value, followed by a second 
phase of intermediate investment over which economic output is maintained and, 
finally, a third phase over which there is no investment because the remaining 
time is too small for the benefits of investment to show through. This is indeed 
the optimal control, with the qualification that, if the initial output is high, the 
optimal control is pure consumption in the first phase. There are also values of 
the initial investment and T such that there is no first phase or no first and second 
phase. Analysis is required, of course, to determine precisely the times separating 
the phases, the critical value of output and the proportion of financial return for 
investment required to maintain it; also to identify the situations when there are 
fewer than three phases. Optimal state trajectories, for various choices of initial 
data, are illustrated in Fig. 1.3. 

Optimal Control in Anti-Cancer Treatment 

We illustrate applications of dynamic optimization in medicine. Chemotherapy is 
a treatment aimed at destroying cancer cells by means of a cocktail of drugs, 

Fig. 1.3 Optimal trajectories for the consumption/growth problem
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administered either at specific times or continuously. It is typically part of a complex 
overarching treatment plan, in which chemotherapy is following up by procedures, 
surgical or drug-based, for inhibiting renewed tumour growth. 

Traditionally, chemotherapy treatments have been based on the maximum tol-
erated dose paradigm. But a side effect of chemotherapy, a ‘two-edged sword’, 
is damage to normal cells. Modern day treatments aim to improve outcomes by 
balancing destruction of cancer cells and suppression of side effects. Empirical 
design of treatment plans based on clinical trials is time consuming and extremely 
expensive. Mathematical models of the underlying pharmaco-dynamic processes 
involved have an important role, because they can be used to simulate on the 
computer the effects of different treatment strategies, simply and at low cost. 
Dynamic optimization is the appropriate tool for designing optimal treatment 
strategies based on these models. 

The following formulation of treatment planning as a dynamic optimization 
problem is taken from [188]. The underlying dynamic model involves the time-
varying state variable components . c1, . c2, n and w and the control variable u: 

. 

c1 = concentration of administered anti-cancer drug in plasma,
c2 = active drug concentration at the tumour cellular level,
n = number of tumour cells,
w = number of white blood cells (WBCs),
u = drug dosage.

The evolution of the state variable components for some control strategy . u(t), . 0 ≤
t ≤ T , is governed by the differential equations over the fixed time interval . [0, T ]

.

ċ1(t) = −(k1 + k2)c1(t)+
(

1
V1

)
u(t)

ċ2(t) = k12

(
V1
V2

)
c1(t)− k2c2(t)

ṅ(t) = Λψ(n(t))−K max{c2(t)− Cmin, 0}
ẇ(t) = rc − V w(t)− μw(t)c1(t)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(1.1.2) 

in which . ψ is the function . ψ(n) := n loge

(
θ
n

)
.

The initial conditions on state variable components are 

. c1(0) = 0, c2(0) = 0, n(0) = n0 and w(0) = w0.

The first differential equation relates the administered drug concentration to the 
drug dosage. The second relates the active drug concentration to the administered 
drug concentration. The third is a Gompertz-type differential equation governing 
tumour growth with an exogenous term to account for the suppressive effects of 
the active drug concentration. The fourth determines how the WBC population, 
whose decrease reflects chemotherapy toxicity, responds to the administered drug 
concentration. 

The chosen values of parameters in the model are as in Table 1.1.
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Table 1.1 Values of the parameters in the model 

Par. Description Value 

.V1 Volume of distribution in first compartment 25 litres 

.V2 Volume of distribution in second compartment 15 litres 

.k1 Process of drug elimination from plasma compartment 1.6 day. −1

.k12 Link process between two compartments 0.4 day. −1

.θ Largest tumour . 1012

.n0 Initial size of tumour at .t = 0 .30× 109 cells 

.Λ Gompertz growth parameter for tumour .3× 10−3 day. −1

.Cmin Threshold below which no tumour cells are killed .0.0001 gml. −1

.K Rate of cell killing 30 g. −1 litres day. −1

.μ Delayed toxicity of drug concentration on WBCs 80 g. −1 litres day. −1

.w0 Initial physiology level of WBCs at .t = 0 .8× 109 litres . −1

.V Nominal turnover constant .0.15 day. −1

.rc Rate of WBCs production .0.2× 109 litre. −1 day. −1

.Cmax Maximum allowable drug concentration .0.01 gml. −1

.WD Absolute leukopenia level .2× 109 litres. −1

.T Terminal time 40 days 

The control problem is to minimize a weighted sum of the tumour volume and the 
total amount of drug, subject to upper and lower bounds at each time on drug toxicity 
and white blood cell population respectively, both of which affect the patient’s 
health. 

. 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize
∫ T

0 (αn(t)+ u(t))dt,

over control strategies u : [0, T ] → R

and state trajectories (c1, c2, n,w)

satisfying
u(t) ∈ [0, 1] for t ∈ [0, T ],
c1(t) ≤ Cmax for t ∈ [0, T ],
w(t) ≥ WD for t ∈ [0, T ].

The upper and lower bounds, .Cmax and . WD , are as given in Table 1.1. 
In [188] a combination of analytical and computational techniques are employed 

to determine a control strategy . ̄u which satisfies necessary conditions of optimality, 
when the weighting factor is chosen to be .α = (3/5) × 10−10. The control . ̄u gives 
rise to a quite complicated, 5-subarc state trajectory structure, involving two short 
bang-bang pulses and three subarcs, in each of which .u(t) takes a constant value. 

By neglecting the bang-bang pulses, we arrive at a simpler, and therefore more 
practical, drug treatment strategy, with only slightly increased cost. See Fig. 1.4. 
According to this strategy the dosage is held constant at a higher level over an initial 
period, reduced to a lower level for a subsequent period and finally reduced to 0 for 
the final period:



1.2 The Calculus of Variations 9

Fig. 1.4 Optimized drug 
strategy 

. ̄u(t) =
⎧
⎨

⎩

u1 for 0 ≤ t < t1

u2 for t1 ≤ t < t2

0 for t2 ≤ t < 40.

Here, .t1 = 2.2786 days, .t2 = 25.855 days, .u1 = 0.60254 and .u2 = 0.33737. 

1.2 The Calculus of Variations 

From a mathematical perspective, dynamic optimization is an outgrowth of the 
calculus of variations (in one independent variable) that takes account of new kinds 
of constraints (differential equation constraints, pathwise constraints on control 
functions ‘parameterizing’ the differential equations, etc.) encountered in advanced 
engineering design and dynamic decision making. A number of key developments 
in dynamic optimization have resulted from marrying old ideas from the calculus of 
variations and modern analytical techniques. For purposes both of setting dynamic 
optimization in its historical context and of illuminating later developments in 
dynamic optimization, we pause to review relevant material from the classical 
calculus of variations. 

The basic problem in the calculus of variations is that of finding an arc . x̄ which 
minimizes the value of an integral functional 

. J (x) =
∫ T

S

L(t, x(t), ẋ(t))dt

over some class of arcs satisfying the boundary condition 

. x(S) = x0 and x(T ) = x1.

Here .[S, T ] is a given interval, .L : [S, T ] × R
n × R

n → R is a given function, and 
. x0 and . x1 are given points in . Rn.
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Fig. 1.5 The 
Brachistochrone problem 

x
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The Brachistochrone Problem An early example of such a problem was the 
brachistochrone problem circulated by Johann Bernoulli in the late seventeenth 
century. Positive numbers . sf and . xf are given. A frictionless bead, initially located 
at the point .(0, 0), slides along a wire under the force of gravity. The wire, which 
is located in a fixed vertical plane, joins the points .(0, 0) and .(sf , xf ). What should 
the shape of the wire be, in order that the bead arrives at its destination, the point 
.(sf , xf ), in minimum time? See Fig. 1.5. 

There are a number of possible formulations of this problem. We now describe 
one of them. Denote by s and x the horizontal and vertical distances of a point on the 
path of the bead (vertical distances are measured downward). We restrict attention 
to wires describable as the graph of a suitably regular function .x(s), 0 ≤ s ≤ sf . 
For any such function x, the speed .v(s) is related to the downward displacement 
.x(s), when the horizontal displacement is s, according to 

.mgx(s) = 1

2
mv2(s) (1.2.1) 

(‘loss of potential energy equals gain of kinetic energy’). For any .s ∈ [0, sf ], we  
denote by .t (s) the time elapsed when the position of the bead is .(s, x(s)). If it is  
assumed that speed v is positive valued, the functions t and v are related by the 
equation 

. v(s)
dt

ds
(s) =

√

1+ |dx

ds
(s)|2 , for t ∈ [0, sf ] .

Denote by . tf the transit time: .tf = t (sf ). The change of independent variable 
.t (s) = ∫ s

0 v−1(s') .

√
1+ |dx(s')/ds)|2 ds' now gives the following formula for . tf : 

.tf =
∫ tf

0
dt =

∫ sf

0

√
1+ |dx(s)/ds|2

v(s)
ds.
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Using (1.2.1) to eliminate .v(s), we arrive at a formula for the transit time: 

. J (x) =
∫ sf

0
L(s, x(s), ẋ(s))ds,

in which 

. L(s, x,w) :=
√
1+ |w|2√
2gx

.

The problem is to minimize .J (x) over some class of arcs x satisfying 

. x(0) = 0 and x(sf ) = xf .

This is an example of the basic problem of the calculus of variations, in which 
.(S, x0) = (0, 0) and .(T , x1) = (sf , xf ). Suppose that we seek a minimizer in the 
class of absolutely continuous arcs. It can be shown that the minimum time . t∗ and 
the minimizing arc .(x(t), s(t)), .0 ≤ t ≤ t∗ (expressed in parametric form with 
independent variable time t) are given by the formulae 

. x(t) = a

(

1− cos

√
g

a
t

)

and s(t) = a

(√
g

a
t − sin

√
g

a
t

)

.

Here, a and . t∗ are constants which uniquely satisfy the conditions 

. x(t∗) = xf ,

s(t∗) = tf ,

0 ≤
√

g

a
t∗ ≤ 2π .

The minimizing curve is a cycloid, with infinite slope at the point of departure: it 
coincides with the locus of a point on the circumference of a disc of radius a, which 
rolls without slipping along a line of length . tf . 

Problems of this kind, the minimization of integral functionals, may perhaps have 
initially attracted attention as individual curiosities. But throughout the eighteenth 
and nineteenth centuries their significance became increasingly evident, as the list 
lengthened of laws of physics which identified states of nature with minimizing 
curves and surfaces. Some examples of rules of the minimum are as follows: 

Fermat’s Principle in Optics The path of a light ray achieves a local minimum 
of the transit times over paths between specified end-points which visit the 
relevant reflecting and refracting boundaries. The principle predicts Snell’s Laws 
of Reflection and Refraction, and the curved paths of light rays in inhomogeneous 
media. See Fig. 1.6.
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Fig. 1.6 Fermat’s principle predicts Snell’s laws 

Dirichlet’s Principle Take a bounded, open set .Ω ⊂ R
2 with boundary . ∂Ω, in  

which a static two-dimensional electric field is distributed. Denote by .V (x) the 
voltage at point .x ∈ Ω. Then .V (x) satisfies Poisson’s equation 

. ΔV (x) = 0 for x ∈ Ω

V (x) = V̄ (x) for x ∈ ∂Ω.

Here, .V̄ : ∂Ω → R is a given function, which supplies the boundary data. 
Dirichlet’s principle characterizes the solution to this partial differential equation 

as the solution of a minimization problem 

. 

{
Minimize

∫

Ω
∇V (x) · ∇V (x)dx

over surfaces V satisfying V (x) = V̄ (x) on ∂Ω.

This optimization problem involves finding a surface which minimizes a given 
integral functional. See Fig. 1.7. 

Dirichlet’s principle and its generalizations are important in many respects. They 
are powerful tools for the study of existence and regularity of solutions to boundary 
value problems. Furthermore, they point the way to Galerkin methods for computing 
solutions to partial differential equations, such as Poisson’s equation: the solution 
is approximated by the minimizer of the Dirichlet integral above over some finite 
dimensional subspace .SN of the domain of the original optimization problem, 
spanned by a finite collection of ‘basis’ functions .{φi}Ni=1, 

. SN = {
N∑

i=1
αiφi(x) : α ∈ R

N } .

The widely used finite element methods are modern implementations of Galerkin’s 
method.


