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Preface 

To the planet Earth: our Environment. 

Control theory has been intensively used in Engineering, but recently has moved 
to other sciences, such as Medicine, e.g., for optimizing therapeutic regimens in 
oncology (see, e.g., Jarrett, A. J., et al., Optimal control theory for personalized 
therapeutic regimens in oncology: Background, history, challenges, and opportuni-
ties. J. Clin. Med. 2020, 9, 1314; doi:10.3390/jcm9051314; see also [140, 186]). 
The current COVID-19 pandemic has revealed the inadequacy of usual methods of 
control not supported by the required body of expertise integrating mathematics, 
biology, physics, engineering, logistics, etc. This has been the main motivation 
for producing a monograph addressing the mathematical problem of controlling 
a dynamical system modelled by ordinary and/or partial differential equations; a 
problem which is common to a variety of real-life problems. It is neither a tract nor a 
recipe book as such; rather, it aims to providing an account of fundamental concepts 
as they are required in relevant modern applications and in existing literature. A 
set of significant case studies provide a substantial motivation to the knowledge 
of the proposed mathematical and computational methods. The originality of the 
approach presented in this monograph is in its “leit motiv": regional control. In 
many real structured populations, it is practically impossible, due to anyhow limited 
resources, to control the relevant system by global interventions in the whole 
habitat. In geographical epidemiology (for human populations, or in agriculture), 
this might also be due to unavoidable logistic restrictions. This has motivated, about 
20 years ago, two of the authors [SA and VC] to propose regional control methods, 
along the principle of “Think Globally, Act Locally." They have shown that, under 
suitable assumptions, it is possible to eradicate an epidemic in the whole habitat by 
interventions only in a bounded subset of it. 

For age-dependent populations, a similar problem, arisen in connection with 
social distancing and vaccination policies, concerns the optimal selection of the age 
segments on which to act for a fast and effective eradication of an epidemic. This 
problem has been of crucial importance in connection with COVID-19 vaccination 
strategies. 

In geographical economics, a recent key issue concerns the interplay of economic 
growth and the induced environmental pollution.

v



vi Preface

We make no pretense of its being complete. Indeed, we have omitted many results 
that we feel are not directly related to the main theme or that are available in easily 
accessible sources. 

Consistent with the concept of “learning by doing,” we intend to guide the 
reader on how to treat control problems, starting with modelling, and continuing 
with mathematical concepts and methods from control theory, including their 
computational aspects. 

Special attention has been paid on case studies concerning the control of relevant 
examples of epidemic phenomena, and the impact of human production activities 
on environmental pollution. 

We may compare our book with a couple of other excellent books in the literature 
devoted to the control in mathematical biology: Lenhart S. , Workman J.T., Optimal 
Control Applied to Biological Models, Chapman and Hall/CRC, 2007; Schättler 
H., Ledzewicz U., Optimal Control for Mathematical Models of Cancer Therapies, 
Springer, 2015. In addition, there are several very good monographs devoted to the 
general theory of optimal control or to controllability and stabilizability problems 
(see, e.g., [40] and references therein). 

We have not restricted ourselves to usual optimal control, controllability, and sta-
bilizability problems, but we have considered some nonstandard control problems 
as well. 

Indeed, our plan is to guide the reader on the modelling of some realistic and 
affordable control problems, including the way one may derive information about 
the structure of the control. All supported by analytical (whenever possible) and 
computational experiments. A special feature of the book is its focusing on regional 
control problems for structured populations, in particular age and space structured 
populations, that is models described by partial differential equations. 

The plan is to present optimal control, as well as stabilization and controllability 
problems. Preventing the spread of a pest population or of an epidemic via a control 
is another type of problem which has been discussed. 

As already mentioned above, due to practical limitations/constraints, in real-
world applications, controls usually act only on subsets of a habitat or on subsets 
of the relevant age interval; this is the main reason why we have paid particular 
attention to regional control problems, which means not only to address the 
magnitude of the relevant control, but also the location and geometry of the region 
where the controls acts. 

We aim to addressing three main groups of readers: first, mathematicians working 
in a different field; second, other scientists and professionals from a private or 
academic background; third, graduate or advanced undergraduate students of a 
quantitative subject related to the analysis and applications of dynamical systems 
and their control. This topic has become increasingly popular in terms of current 
research output and applications; many pure as well as applied mathematicians 
have become interested in learning about the fundamentals of control theory and 
modern applications. We have tried to write this volume in a language that all 
addressed groups can understand and in its content and structure will allow them 
to learn the essentials profoundly and in a time-efficient manner. Other scientist-
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practitioners and academics from fields like biology, medicine, and economics 
might be very familiar with a less mathematical approach to their specific fields 
and thus be interested in the mathematical methods required for modelling their 
applications. Furthermore, this book would be suitable as a textbook accompanying 
a graduate or advanced undergraduate course or as secondary reading for students 
of mathematical or computational sciences. 

The book is divided into four main parts. In Part I, comprising Chapters 1 
and 2, we consider spatially structured epidemics, with a particular attention to 
man–environment epidemics and vector-borne epidemics. In particular, in Chapter 
1, we introduce the main ideas related to our paradigm of “THINK GLOBALLY, 
ACT LOCALLY” which is the leit motiv of the whole book. General concepts 
about eradicability and control of a paradigmatic epidemic model are presented, 
with a view to the existence of endemic states, their stability, and the existence 
of travelling waves. Within this excursus, a challenging open problem has been 
raised, concerning the possibility to control the advance of a travelling front, for 
which some interesting computational experiments have been presented. Moreover 
it has been reported about the use of nonlocal diffusion operators as an alternative 
to the Laplace operator which models random diffusion; anyhow a diffusion 
approximation of nonlocal operators is presented too. 

In Chapter 2, an extension of the spatially structured epidemic model discussed 
in the previous chapter is presented concerning malaria as an example of vector-
borne epidemics. In this chapter, the regional control problem has been analyzed, 
with respect to both the parameters of the model, and with respect to the region of 
intervention. All has been supported by a set of numerical simulations, based on the 
gradient method. 

In Part II, comprising Chapters 3 and 4, we investigate the regional control for 
some optimal harvesting problems related to population dynamics. We consider the 
problem of maximizing the profit for structured populations with respect to both the 
harvesting effort and the selected subregion where the control acts. 

In Chapter 3, we treat the regional optimal harvesting problem for space-
structured population dynamics with a logistic term (nonlocal as well as local). 
Chapter 4 concerns two regional control problems related to continuous models 
for age-dependent populations. The first problem is devoted to an optimal control 
problem when the harvesting effort acts only on an age subinterval. The second 
one is related to a nonlinear model in a time-periodic environment. The attention 
is focused on the determination of the position and length of the time-subinterval 
when the harvesting is allowed/prohibited. 

In Part III, comprising Chapters 5 and 6, recent results concerning the possible 
control of a devastating epidemic in olive orchards have been presented. This is an 
additional case of vector-borne disease in which the role of the human population 
is taken by olive trees, and the vector is a pest insect. In Chapter 5, the main  
three steps are presented, i.e., (i) the mathematical modelling of the population 
dynamics of the ecosystem in presence of the infection, (ii) possible strategies 
for the eventual eradication of the disease, and (iii) computational experiments 
supporting the theoretical outcomes. In Chapter 6, the role of a predator is analyzed
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as a possible biocontrol agent of epidemics in agriculture. The limits of this strategy 
are discussed with respect to specialist and generalist predators. 

In Part IV, comprising only Chapter 7, as an additional application of the methods 
presented in this volume, we introduce an environmental issue concerning the 
control of the pollution produced by human activities. Based again on a spatially 
structured reaction diffusion model, the optimal control problem concerning the 
role of taxation for reducing the amount of produced pollution by human activities 
has been analyzed. A set of challenging open problems are submitted to interested 
readers. 

All chapters lead to challenging open problems for the interested reader. 
The Appendix includes two chapters. 
In Appendix A, we have collected and deduced some mathematical definitions 

and results concerning Rayleigh’s formula and Krein–Rutman theorem and their 
applications related to the principal eigenvalue and eigenvectors of elliptic and 
integro-elliptic problems, as well as some comparison results for integro-parabolic 
equations. 

In Appendix B, we introduce a non-expert reader to the field of numerical approx-
imation of partial differential equations with low-order finite element methods and 
to their implementation. We do not enter into the theoretical details, since our focus 
is to provide a simple tutorial for the implementation of the algorithms adopted 
throughout the book. We assume that the reader has some basic notions of numerical 
linear algebra. 

The chosen computational platform has been MATLAB (www.mathworks.com), 
that has successfully emerged as one of the most used programming and numerical 
computing platforms for scientific computing. The MATLAB codes of most of the 
numerical simulations are available at the web site: 

https://github.com/sn-code-inside/Mathematical-Modeling-and-Control-in-Life-
and-Environmental-Sciences 

Chapter by chapter, it is also provided a direct link to the code used for the 
corresponding numerical simulations. In the computational section of each chapter, 
we have also included a comprehensive description of the numerical methods 
implemented in the codes used for the numerical simulations. 

It is worth reporting here a statement (abridged) taken from a very recent paper 
[156] concerning the possible role of our investigations: 

a model is only an approximate interpretation of reality and it is always wrong in some small 
or relevant elements. The destiny of the model presented here is to be rapidly improved 
thanks to novel knowledge coming from new observations and better assumptions. The 
Authors hope that many and more brilliant minds will read the present pages, will identify 
and highlight putative mistakes, will get inspiration for their research, and will produce 
better, more complete, and useful models........ If the speculations presented here on 
implications for surveillance, control, and therapy will contribute, even only minimally, to 
save ..... [human life - environment]........., then the Authors have accomplished their small 
mission.
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Fig. 1 Notes by Jacques L. Lions concerning a first discussion on regional control 

We are indebted to many colleagues for discussions which have led to significant 
improvements of our results in the years. 

But it is a particular duty to acknowledge the role played by the late Jacques L. 
Lions (see e.g. Figure 1) and by Viorel Barbu for having recognized the importance 
of regional control for reaction-diffusion systems, and for their consequent encour-
agement. 

It is our duty and pleasure to acknowledge the editorial assistance of Dr. Rossana 
Caselli, to whom we are grateful in particular for the thorough revision of the 
bibliography. 

Iaşi, Romania Sebastian Aniţa 
Milan, Italy Vincenzo Capasso 
Milan, Italy Simone Scacchi 
September, 2023
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Nomenclature 

“increasing” is used with the same meaning as “nondecreasing”; “decreasing” is 
used with the same meaning as “nonincreasing.” In strict cases, “strictly increas-
ing/strictly decreasing” is used. 

.:= Equal by definition 

.≡ Coincide 

.∅ Empty set 

.∇ Gradient 

.∂A Boundary of a set A 

.□ End of a proof 

.|a| Absolute value of a number . a, or modulus of a complex 
number . a, or Euclidean norm on . Rn

.||x|| Norm of a vector x 

.〈f, g〉 Scalar product of two elements f and g in a Hilbert  
space 

.〈g, f 〉V,V ∗ , .〈f, g〉V ∗,V The duality between V and . V ∗

.{x ∈ E : P(x)} set of elements of E, satisfying property . P

.Ā Closure of a set . A, depending upon context 

.A' Transpose of matrix . A, depending upon context 

.A \ B Set of elements of A that do not belong to B 

.C(A) Set of continuous functions from A to . R

.C(A;B) Set of continuous functions from A to B 

.Ck(A) Set of functions from A to . R with continuous derivatives 
up to order k

xv



xvi Nomenclature

.Lp(Ω) Set of equivalence classes of a.e. equal p-integrable func-
tions with respect to the Lebesgue integral 

.‖ · ‖p or .‖ · ‖Lp(Ω) the usual norm in . Lp(Ω)

.L∞(Ω) Set of equivalence classes of a.e. equal (with respect to the 
Lebesgue measure) essentially bounded functions 

.‖ · ‖∞ or .‖ · ‖L∞(Ω) the usual norm in . L∞(Ω)

.IA Characteristic function associated with a set A, i.e., . IA(x) =
1, if .x ∈ A, otherwise . IA(x) = 0

a.e. Almost everywhere 

.exp {x} or .exp(x) Exponential function . ex

.f ∗ g Convolution of functions f and g 

. f −, .f + Negative (positive) part of f , i.e., .f − = max {−f, 0} (. f + =
max {f, 0}) 

.sign {x} or .sign(x) Sign function: . 1, if .x > 0; . 0, if .x = 0; .−1, if . x < 0

.sgn {x} or .sgn(x) The multivalued sign function: . 1, if .x > 0; .[−1, 1], if . x =
0; . −1, if . x < 0

.C Complex plane 

.N Set of natural nonnegative integers 

.N
∗ Set of natural (strictly) positive integers 

.R
n n-dimensional Euclidean space 

.R+ Set of positive (nonnegative) real numbers 

.R
∗+ Set of (strictly) positive real numbers 

.A Infinitesimal generator of a semigroup 

.DA Domain of definition of an operator A 

.Δ Laplace operator 

.divx divergence with respect to the variable x 

.δx Dirac delta function localized at x



Part I 
Regional Control of Spatially Structured 

Epidemics



Chapter 1 
Regional Control for a Class of Spatially 
Structured Epidemics: Think Globally, 
Act Locally 

1.1 Man–Environment Epidemics: A Nonlocal 
Reaction–Diffusion System 

A widely accepted model for the spatial spread of epidemics in a habitat . Ω , via  
environmental pollution produced by an infective population, e.g., via the excretion 
of pathogens in the environment, is the following one, as proposed in [66, 67] 
(see also [69] and the references therein). The model below is a more realistic 
generalization of a previous model proposed in [73, 75, 76] to describe fecal-orally 
transmitted diseases (cholera, typhoid fever, infectious hepatitis, etc.) which are 
typical for the European Mediterranean regions; anyhow it can be applied to other 
infections and other regions, which are propagated by similar mechanisms (see, e.g., 
[90]); schistosomiasis in Africa is a typical additional example [160]. 

. (E)

⎧
⎪⎨

⎪⎩

∂u1

∂t
(x, t) = d1Δu1(x, t) − a11u1(x, t) +

∫

Ω

k(x, x')u2(x', t)dx',
∂u2

∂t
(x, t) = −a22u2(x, t) + g(u1(x, t)),

(1.1) 

in .Ω ⊂ R
N (N ≥ N

∗), a nonempty bounded domain with a sufficiently smooth 
boundary . ∂Ω; for .t ∈ (0,+∞), where .a11 ≥ 0, .a22 ≥ 0, and .d1 > 0 are constants. 

In this volume by “domain” we have meant a nonempty open and connected set; 
by the wording “sufficiently smooth” we have meant that the required regularity is 
satisfied, depending on the context. 

.• .u1(x, t) denotes the concentration of the pollutant (pathogen material) at a spatial 
location .x ∈ Ω and a time .t ≥ 0. 

.• .u2(x, t) denotes the spatial distribution of the infective population. 

. • The terms .−a11u1(x, t) and .−a22u2(x, t) model natural decays. 
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. • The total susceptible population is assumed to be sufficiently large with respect 
to the infective population, so that it can be taken as constant. 

As an example, for fecal-orally transmitted infectious diseases, the infectious 
agent is multiplied by the infective human population and then sent to the envi-
ronment (sea, lakes, ponds, etc.) mainly through sewage; because of the peculiar 
habits of the population of these regions, the agent may return via some diffusion-
transport mechanism to any point of the habitat . Ω, where the infection process is 
further activated; thus the nonlocal operator 

. 

∫

Ω

k(x, x')u2(x', t)dx'

expresses the fact that the pollution produced at any point .x' ∈ Ω of the habitat is 
made available at any other point .x ∈ Ω; when dealing with human pollution, this 
may be due to either malfunctioning of the sewage system or improper dispersal 
of sewage in the habitat. The linearity of the above integral operator is just a 
simplifying option. 

The Laplace operator takes into account the pure random dispersal of the 
infectious agent in the habitat . Ω, due to uncontrolled additional causes of dispersion 
(we take a constant diffusion coefficient to avoid purely technical complications). 

As a further simplification, we assume that the infective population does not 
diffuse; possible extensions of the above model might include a more general 
nonlocal dispersion mechanism (see Section 1.6). 

Under a suitable definition of its modelling ingredients, Model .(E) in System 
(1.1) can be adopted as a good model for the spatial propagation of an infection in 
agriculture and forests, as well (see the case of Xylella in Chapter 5). 

Concerning the local “incidence rate” of the human population at point . x ∈ Ω

and time .t ≥ 0, it is given by 

. (i.r.)(x, t) = g(u1(x, t)),

depending upon the local concentration of the pollutant. 

1.1.1 The “Force” of Infection 

Based on the discussion originated in [77] concerning the functional response 
g on the force of infection due to the existing infective population, in [67] the  
following generalized form has been proposed for the force of infection due to the 
environmental pollution (see also [69, 127]): 

.g(z) = k0z
p

α0 + β0zq
, k0, α0 > 0, β0 ≥ 0, p, q > 0. (1.2)
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0.8 
g(

z)
 

p > 1 
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p < 1 

Fig. 1.1 Nonlinear forces of infection [77], according to Equation (1.2), with .k0 = 0.8, . α0 =
β0 = 1, .p = q, and  .p = 2 (continuous black line), .p = 1 (dashed red line), and . p = 0.5
(dashed-dotted blue line) 

Particular cases are 

. g(z) = k0z
p, p > 0.

For the case .p = q we have the behaviors described in Figure 1.1. 
Additional shapes of .g(z), as proposed in [77], which may decrease for large 

values of z (.p < q in (1.2)) may be interpreted as “awareness” effects in the 
contact rates (see Figure 1.2). Significant contributions to this concept and related 
epidemiological issues in recent literature can be found in [100]. 

System (1.1) has been the subject of a large literature (see, e.g., [196] and the 
references therein). From now on we shall call it Model (E). 

1.1.2 Large Time Behavior 

In this section we shall report the outcomes of [67] concerning the large time 
behavior of System (1.1) in a nonempty bounded domain . Ω of .R2, with a 
sufficiently smooth boundary . ∂Ω . 

The first equation in (1.1) is subject to a boundary condition of the form 

.β(x)
∂u1

∂n
(x, t) + α(x) u1(x, t) = 0, for x ∈ ∂Ω, t > 0, (1.3) 

where . 
∂

∂n
denotes the outward normal derivative on . ∂Ω , and . α and . β are sufficiently 

smooth nonnegative functions such that .α(x) + β(x) > 0, for .x ∈ ∂Ω .
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Fig. 1.2 Force of infection with behavioral response [77], according to Equation (1.2), with . k0 =
α0 = β0 = 1, .p = 1, and . q = 2

If .α(x) = 0 (a pure Neumann condition), (1.3) means the complete isolation of 
System (1.1) at . ∂Ω . 

We shall assume that .a11 and .a22 are positive real constants and that . g :
[0,+∞) −→ (0,+∞) satisfies the following assumptions which include most of 
the cases described by (1.2): 

(i) If .z1, z2 ∈ [0,+∞), .0 < z1 < z2, then . 0 < g(z1) < g(z2).

(ii) . g(0) = 0.
(iii) g is twice continuously differentiable, and .g''(z) < 0, for .z ∈ (0,+∞). 

Furthermore we assume that the kernel 

. k : Ω × Ω −→ [0,+∞)

is a given continuous function such that if we denote 

. a12 = max
x∈Ω

∫

Ω

k(x, x')dx',

then 

. lim sup
z→+∞

g(z)

z
<

a11 a22

a12
.

Let .X := C(Ω;R2) and consider the initial–boundary value problem for (1.1), 
supplemented by the boundary condition
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.
∂u1

∂n
(x, t) = 0, for x ∈ ∂Ω, t > 0 (1.4) 

and the initial condition 

.u(·, 0) = u0 = (u01, u
0
2) ∈ X+, (1.5) 

where .u = (u1, u2) and 

. X+ := {v = (v1, v2) ∈ X : v1(x), v2(x) ≥ 0, for all x ∈ Ω}.

Definition 1.1 We say that .u = (u1, u2) is a (classical) solution to the above 
mentioned initial–boundary value problem (1.1), (1.4), (1.5) if  

. u ∈
(
C2,1(Ω × (0,+∞)) ∩ C1,0(Ω × (0,+∞))

)

. ×
(
C0,1(Ω × (0,+∞)) ∩ C(Ω × (0,+∞))

)

satisfies (1.1), (1.4), and 

. lim
t→0+ u(x, t) = u0(x), for any x ∈ Ω.

It can be shown the following existence result (see [67] and [112] for the case of 
even more general boundary conditions). 

Theorem 1.2 There exists a unique (classical) solution .u = (u1, u2) of the above 
problem. Both components of the solution are nonnegative. 

For a matter of simplicity, in (1.3) we have assumed that .α(x) = 0 and .β(x) = 1, 
for .x ∈ ∂Ω . In this case the eigenvalue problem below 

. 

⎧
⎨

⎩

−Δφ(x) = λφ(x), x ∈ Ω,
∂φ

∂n
(x) = 0, x ∈ ∂Ω

admits .λ1 = 0 as a principal eigenvalue; as a corresponding eigenfunction, we may 
choose 

. φ1 ≡ 1, x ∈ Ω.

Let us denote 

.H(u2)(x) =
∫

Ω

k(x, x') u2(x
')dx', u2 ∈ C(Ω), x ∈ Ω.
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For .φ1 ≡ 1, 

. H(φ1)(x) =
∫

Ω

k(x, x')φ1(x
')dx' =

∫

Ω

k(x, x')dx'.

We shall denote 

. H = max
x∈Ω

∫

Ω

k(x, x')dx', H = min
x∈Ω

∫

Ω

k(x, x')dx'.

We may notice that if .k(x, x') is an isotropic symmetric probability density 
function, multiplied by . a12,

. H = H = a12.

Under the above assumptions Theorem 3.1 in [67] becomes 

Theorem 1.3 If 

. θ1 := g'(0)a12
a11 a22

< 1,

then the trivial solution is globally asymptotically stable in .X+ for System (1.1). 
If .θ1 > 1, then the trivial solution is unstable for System (1.1). 

For the case of more general boundary conditions, we refer to [67]. See later for 
the possible existence of travelling waves in an unbounded domain. 

1.2 Regional Control 

Let us consider System (1.1) in  .Ω ⊂ R
2, a nonempty bounded domain with a 

sufficiently smooth boundary . ∂Ω; for .t ∈ (0, T ), where .a11 ≥ 0, . a22 > 0, d1 > 0,
and .T > 0 are constants. 

The public health concern consists of reducing the disease in the relevant habitat, 
as fast as possible, at an optimal cost. The underlying issue of our presentation is 
that very often the entire domain of interest for the epidemic is either unknown 
or difficult to manage, for an affordable implementation of suitable environmental 
sanitation programs. Think of malaria, schistosomiasis, and alike, in Africa, Asia, 
etc. 

This has led the authors [VC and SA] of this monograph to face the problem of 
an effective diminishment of an epidemic in the whole habitat . Ω by implementing 
possible control strategies only in a suitably chosen subregion .ω ⊂ Ω (Figure 1.3). 
A satisfactory mathematical treatment of this issue has been obtained in [10] (see
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Fig. 1.3 Think globally, act locally 

also [11, 14]). This practice may have an enormous importance in real cases with 
respect to both financial and practical affordability. Furthermore, since we propose 
to act on the elimination of the pollution only, this practice means an additional 
nontrivial social benefit on the human population, since it would not be limited in 
his personal and social habits. 

Let .ω ⊂ Ω be a nonempty open subset; we denote by . Iω the characteristic 
function of . ω and use the convention 

. Iω(x)w(x) = 0, x ∈ R
2 \ ω,

even if function w is not defined on the whole set .R2 \ ω. 
Our goal is to study System (1.1) subject to suitable controls, as follows: 

. 

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u1

∂t
(x, t) − d1Δu1(x, t) = −a11u1(x, t) +

∫

Ω

k(x, x')u2(x', t)dx'

−γ1(x, t)Iω(x)u1(x, t), (x, t) ∈ Q,
∂u2

∂t
(x, t) = −(a22 + γ2(x, t)Iω(x))u2(x, t)

+(1 − γ3(x, t)Iω(x))g(u1(x, t)), (x, t) ∈ Q,

subject to suitable boundary and initial conditions. Here .Q = Ω × (0, T ), . Σ =
∂Ω × (0, T ).

The idea underlying the controls is the following: 

. γ1(x, t)u1(x, t)Iω(x)

represents the sanification of the environment, say by the combined action of 
different chemical and/or mechanical practices, in the subregion .ω; .γ1(x, t)u1(x, t)
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represents the corresponding reduction of the polluting agent at location .x ∈ Ω and 
time .t > 0. 

. γ2(x, t)u2(x, t)Iω(x)

describes the medical treatment of the infected population in the subregion . ω;
.γ2(x, t)u2(x, t) is then the corresponding healed population at location .x ∈ Ω and 
time .t > 0. 

. γ3(x, t)Iω(x)

is the reduction of the contact rate of humans–environment by means of behavioral 
and/or distancing practices, implemented in the subregion . ω. 

Each of the above-mentioned control practices implies a cost to be taken into 
account in the total cost functional for optimal control problems. Below we have, 
respectively, denoted by .ζ1(γ1) the cost for obtaining the actual control . γ1, by  
.ζ2(γ2u2) the cost of the treatment per individual, and by .ζ3(γ3) the cost for obtaining 
the actual control . γ3.

When the costs of the controls to reduce the epidemic of the damages produced 
by the disease and of the intervention in the subset . ω in the time interval .[0, T ] are 
considered, then we get the total cost function: 

. J (γ, ω) =
∫ T

0

∫

Ω

C(x)ζ1(γ1(x, t))Iω(x)dx dt

+
∫ T

0

∫

Ω

ζ2(γ2(x, t)u2(x, t))γ2(x, t)u2(x, t)Iω(x)dx dt

+
∫ T

0

∫

Ω

C(x)ζ3(γ3(x, t))Iω(x)dx dt

+
∫ T

0

∫

Ω

l(u2(x, t))dx dt + α1 area(ω) + β1 perimeter(ω). (1.6) 

Here . ω is a subset of . Ω and .γ = (γ1, γ2, γ3) belongs to a suitable set . GT of feasible 
values of the . γ 's, and .C(x) is the spatial density of the total population. As far as the 

last three terms in (1.6) are concerned, the term .

∫ T

0

∫

Ω

l(u2(x, t))dx dt is meant to 

take into account the costs, over the whole domain and the total observation/control 
period, deriving from loss of work hours, hospitalization, drugs, etc., while the terms 
.α1 area(ω) + β1 perimeter(ω) take into account costs of transport of intervention 
devices (nets, chemicals, personnel, etc.) which may depend on the geometry of the 
subregion of intervention . ω. For our scopes, the geometry of a planar set is indeed 
characterized by its area and perimeter, the coefficients . α1 and . β1 take into account 
the specific logistic structure of the habitat, and we may assume .α1, β1 ≥ 0. This 
aspect has been taken care in some detail for the malaria model in Chapter 2.
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1.3 Eradicability 

In this section we face the problem of possible eradicability of an epidemic modelled 
by System (1.1) by just reducing the concentration of the pollutant in a nonempty 
and sufficiently large subset of the spatial domain. Later, in applications, relevant 
optimal control problems will be presented, as mentioned in the previous section. 
Here we will show that, under suitable assumptions, it is indeed possible to diminish 
exponentially the epidemic process. 

Consider again the man–environment epidemic system in .Ω ⊂ R
N (N ≥ 1), a  

nonempty bounded domain with a sufficiently smooth boundary . ∂Ω . Let .ω ⊂ Ω be 
a nonempty bounded domain with a .C2-boundary, such that .ω ⊂ Ω and .Ω \ ω a 
domain. Denote by . Iω the characteristic function of . ω. We use the convention 

. Iω(x)h(x) = 0, x ∈ R
N \ ω,

even if function h is not defined on the whole set . RN \ ω.

Our goal is to study if there exists a control .v ∈ L∞
loc(ω × [0,+∞)) (which 

implies that .supp(v(t)) ⊂ ω, for  .t ≥ 0) such that the (weak) solution .(u1, u2) of 
the following system 

. 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u1

∂t
(x, t) = d1Δu1(x, t) − a11u1(x, t) +

∫

Ω

k(x, x')u2(x', t)dx'

+ Iω(x) v(x, t), (x, t) ∈ Ω × (0,+∞),
∂u2

∂t
(x, t) = −a22u2(x, t) + g(u1(x, t)), (x, t) ∈ Ω × (0,+∞),

∂u1

∂n
(x, t) + αu1(x, t) = 0, (x, t) ∈ ∂Ω × (0,+∞),

u1(x, 0) = u01(x), u2(x, 0) = u02(x), x ∈ Ω

(1.7) 

satisfies 

.u1(x, t) ≥ 0, u2(x, t) ≥ 0, a.e. x ∈ Ω, for any t ≥ 0, (1.8) 

and 

. lim
t→+∞ ‖u1(t)‖L∞(Ω) = lim

t→+∞ ‖u2(t)‖L∞(Ω) = 0. (1.9) 

Here .d1, a22 ∈ (0,+∞) and .a11, α ∈ [0,+∞) are constants. 
We work under the following assumptions: 

(H1) .g : R → [0,+∞) is a function satisfying 

.g(x) = 0, for .x ∈ (−∞, 0], 
g is Lipschitz continuous and increasing, 
.g(r) ≤ a21r, for any .r ∈ [0,+∞), where .a21 > 0 is a constant.
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(H2) .k ∈ L∞(Ω × Ω), k(x, x') ≥ 0, a.e. in .Ω × Ω , 

. 

∫

Ω

k(x, x')dx > 0, a.e. x' ∈ Ω.

(H3) .u01, u02 ∈ L∞(Ω), u01(x), u02(x) ≥ 0, a.e. in . Ω . 

Definition 1.4 We say that .(u1, u2) is a (weak) solution to (1.7) if for any . T ∈
(0,+∞), 

.u1 ∈ C([0, T ];L2(Ω))∩AC((0, T ];L2(Ω))∩L2(0, T ;H 1(Ω)) . ∩L2
loc((0, T ];

.H 2(Ω)), 
.u2 ∈ L2(Ω × (0, T )) such that for almost any .x ∈ Ω , .u2(x, ·) ∈ AC([0, T ]), 

. 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u1

∂t
(x, t) = d1Δu1(x, t) − a11u1(x, t) +

∫

Ω

k(x, x')u2(x', t)dx'

+ Iω(x) v(x, t), a.e. (x, t) ∈ Ω × (0,+∞),
∂u2

∂t
(x, t) = −a22u2(x, t) + g(u1(x, t)), a.e. (x, t) ∈ Ω × (0,+∞),

∂u1

∂n
(x, t) + αu1(x, t) = 0, a.e. (x, t) ∈ ∂Ω × (0,+∞),

u1(x, 0) = u01(x), u2(x, 0) = u02(x), a.e. x ∈ Ω.

Let us prove that Problem (1.7) admits a unique (weak) solution .(u1, u2). For an 
arbitrary but fixed .T ∈ (0,+∞), consider the space 

. V = C([0, T ];L2(Ω)) × C([0, T ];L2(Ω)),

with the distance 

. d((ζ1, ζ2), (ζ3, ζ4)) = sup
t∈[0,T ]

(
e−ξ t (‖ζ1(t)−ζ3(t)‖2L2(Ω)

+‖ζ2(t)−ζ4(t)‖2L2(Ω)
)
) 1

2
.

Here . ξ is a positive constant to be made precise later. .(V , d) is a complete metric 
space (actually it is even a Banach space). 

For any .(y1, y2) ∈ V , let .T (y1, y2) be the weak solution to 

.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u1

∂t
(x, t) = d1Δu1(x, t) − a11u1(x, t) +

∫

Ω

k(x, x')y2(x', t)dx'

+ Iω(x)v(x, t), (x, t) ∈ Ω × (0, T ),
∂u1

∂n
(x, t) + αu1(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ),

∂u2

∂t
(x, t) = −a22u2(x, t) + g(y1(x, t)), (x, t) ∈ Ω × (0, T ),

u1(x, 0) = u01(x), u2(x, 0) = u02(x), x ∈ Ω.

(1.10) 

Problem (1.10) contains a linear parabolic equation and a collection of ordinary 
differential equations. Notice that .

∫

Ω
k(x, x')y2(x', t)dx' ∈ L2(Ω × (0, T )) and
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.g(y1(x, t)) ∈ L2(Ω × (0, T )). It follows that there exists a unique weak solution to 
(1.10). 

For any .(y1, y2), (ỹ1, ỹ2) ∈ V , let  .(u1, u2) = T (y1, y2) be the weak solution 
to (1.10) and .(ũ1, ũ2) = T (ỹ1, ỹ2) be the weak solution to (1.10) corresponding to 
.yi := ỹi . We get that .(w1, w2) = (u1 − ũ1, u2 − ũ2) is the weak solution to 

. 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂w1

∂t
(x, t) = d1Δw1(x, t) − a11w1(x, t) +

∫

Ω

k(x, x') (y2 − ỹ2)(x
', t)dx',

(x, t) ∈ Ω × (0, T ),
∂w1

∂n
(x, t) + αw1(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ),

∂w2

∂t
(x, t) = −a22w2(x, t) + g(y1(x, t)) − g(ỹ1(x, t)), (x, t) ∈ Ω × (0, T ),

u1(x, 0) = 0, u2(x, 0) = 0, x ∈ Ω.

Let us multiply the equation in . w1 by . w1 and the equation in . w2 by . w2, add them, 
and integrate over .Ω × (0, t) (.t ∈ [0, T ]). We get after an easy calculation that 

. 
1

2
‖w1(t)‖2L2(Ω)

+ 1

2
‖w2(t)‖2L2(Ω)

. ≤
∫ t

0

∫

Ω

w1(x, s)

∫

Ω

k(x, x')(y2 − ỹ2)(x
', s)dx' dx ds

. +
∫ t

0

∫

Ω

w2(x, s)(g(y1(x, s)) − g(ỹ1(x, s)))dx ds

. ≤ ‖k‖L2(Ω×Ω)

∫ t

0
‖w1(s)‖L2(Ω)‖y2(s) − ỹ2(s)‖L2(Ω)ds

. + L

∫ t

0
‖w2(s)‖L2(Ω)‖y1(s) − ỹ1(s)‖L2(Ω)ds

(here L is a Lipschitz constant for g). So, there exists a positive constant C such that 
for any .t ∈ [0, T ], 

. ‖w1(t)‖2L2(Ω)
+ ‖w2(t)‖2L2(Ω)

≤ C

∫ t

0
(‖y1(s) − ỹ1(s)‖2L2(Ω)

+ ‖y2(s) − ỹ2(s)‖2L2(Ω)
)ds

. ≤ C

∫ t

0
eξt e−ξs(‖y1(s) − ỹ1(s)‖2L2(Ω)

+ ‖y2(s) − ỹ2(s)‖2L2(Ω)
)ds

. ≤ C

ξ
eξtd((y1, y2), (ỹ1 − ỹ2))

2.
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It follows that 

. d(T (y1, y2), T (ỹ1, ỹ2))
2 ≤ C

ξ
d((y1, y2), (ỹ1 − ỹ2))

2.

If we choose .ξ > C, then . T is a contraction and so by Banach’s fixed point theorem 
it has a unique fixed point. 

We may conclude that (1.7) has a unique weak solution .(u1, u2). 
Our hypothesis on v does not assure the nonnegativity of the components . u1

and . u2. However, the nonnegativity of . u1 and . u2 is a natural requirement (due to 
the biological significance of . u1 and . u2). The nonnegativity of the components of 
the weak solution follows for different choices of v via the comparison results for 
parabolic equations and applying Banach’s fixed point result in .(V+, d), where 

. V+ = {(ζ1, ζ2) ∈ V : 0 ≤ ζ1(x, t), ζ2(x, t), a.e. x ∈ Ω, for any t ∈ [0, T ]}.

Definition 1.5 We say that the disease modelled by (1.7) is  eradicable if, for any 
. u10 and . u20 satisfying (H3), there exists .v ∈ L∞

loc(ω×[0,+∞)) such that (1.7) admits 
a unique weak solution .(u1, u2) with nonnegative components (i.e., satisfying (1.8)) 
and satisfying (1.9). 

Preliminary eradicability results for System (1.7) have been obtained in [10]. For 
eradicability (stabilizability) results related to some reaction–diffusion systems in 
population dynamics, we refer to [1, 4, 10–15, 17, 27], while for general distributed 
systems see [149]. 

A strong eradicability result (which provides a stabilizing control with a simple 
structure) has been established in [4], using a different approach from the one 
we will show in this section. Here we will report the results obtained in [11], 
with simplified proofs, providing a stabilizing feedback control with a very simple 
structure. This is an easily implementable feedback control. 

1.3.1 An Eigenvalue Problem 

For an arbitrary but fixed constant .γ > 0, consider the following eigenvalue 
problem associated with Problem (1.7): 

.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−d1Δϕ(x) + a11ϕ(x) −
∫

Ω

k(x, x')ψ(x')dx'

+ Iω(x)γ ϕ(x) = λϕ(x), x ∈ Ω,
∂ϕ

∂n
(x) + αϕ(x) = 0, x ∈ ∂Ω,

−a21ϕ(x) + a22ψ(x) = 0, x ∈ Ω.

(1.11)


