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Preface 

In view of the contemporary development of the theory of .Ap
α spaces and its applications, 

it is natural and interesting to come out of the frames of the weights .(1 − r)α and consider 
.A

p
ω spaces with functional parameters . ω, which are associated with the M.M. Djrbashian 

integral operator . Lω. In some particular cases, this operator becomes the classical integral 
operators of Riemann–Liouville, Hadamard, Erdélyi–Kober, and many other ones. 

The book gives the basic results of the theory of the spaces . A
p
ω of functions holomorphic 

in the unit disc, halfplane, and in the finite complex plane, which depend on functional 
weights . ω permitting any rate of growth of functions near the boundary of the domain. 
This continues and essentially improves M.M. Djrbashian’s theory of spaces .Ap

α (1945) 
of functions holomorphic in the unit disc, the English translation of the detailed and 
complemented version of which (1948) is given in Addendum to the book. Besides, the 
book gives the .ω-extensions of M.M. Djrbashian’s two factorization theories of functions 
meromorphic in the unit disc of 1945–1948 and 1966–1975 to classes of functions delta-
subharmonic in the unit disc and in the halfplane. 

The book can be useful for a wide range of readers. It can be a good handbook for 
Master and PhD students and Postdoctoral Researchers for enlarging their knowledge and 
analytical methods, and also it can be very useful for scientists to extend their investigation 
fields. 

Yerevan, Armenia Armen M. Jerbashian 
Ghent, Belgium Joel E. Restrepo 
August, 2023
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Introduction 

The origins of investigations related to the spaces of holomorphic functions, the squares 
of modules of which are summable over the area of the unit disc .D ≡ {z : |z| < 1}, can be 
found in the paper of L. Biberbach [5] and in other references of the classical book of J.L. 
Walsh [85]. While L. Biberbach studied approximations by rational functions in the space 
of holomorphic functions, the derivatives of which satisfy the mentioned summability 
condition, W. Wirtinger [87] studied approximations in the space . H '

2 of holomorphic in the 
unit disc . D functions f which themselves satisfy the summability condition. This space is 
being denoted by . A2

0 in the modern literature: 

. A2
0 (≡ H '

2) : ||f ||2 =
ff

D

|f (z)|2dS < +∞,

where dS is for the Lebesgue area measure. In the same work, W. Wirtinger, in 
particular, proved the representation formula for the functions .f ∈ A2

0 and found the 
orthogonal projection from the same type Lebesgue space . L2

0 to . A2
0. Due to numerous 

misunderstandings on the issue in the contemporary literature, below we present the 
mentioned results of W. Wirtinger as they are given in J.L. Walsh’s book [85] (pp. 150– 
151), where . C' means the unit disc. 

. . . .Theorem 20. Let .F(z) be of class . L2 in . C'. The essentially unique function .f (z) of class 

. H '
2 such that 

. 

ff
C'

||F(z) − f (z)
||2dS

is least is given by 

.f (z) ≡ 1

π

ff
C'

F(ξ)
dS

(1 − ξz)2
, |z| < 1. (58)

xi
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The formal development of .F(z) on . C' in terms of the functions . zk is 

.

∞Σ
k=0

akz
k, ak = k + 1

π

ff
C'

F(ξ)ξ
k
dS; (59) 

this series converges to .f (z) of class .H '
2 in the mean on . C', hence (§5.8, Theorem 17) 

converges to .f (z) uniformly on any closed set interior to . C'. Interior to . C', the function 
represented by (59) is  

. f (z) ≡ 1

π

ff
C'

F(ξ)
[
1 + 2ξz + 3ξz2 + · · · ]dS, |z| < 1,

for the series in square brackets converges uniformly for .|ξ | ≤ 1 when z is fixed. This equation 
for .f (z) can be rewritten in form (58). Of course if .F(z) is an arbitrary function of class . H '

2, 
then (58) is valid with .f (z) ≡ F(z). 

Theorem 20 is due to Wirtinger [1932], by a quite different method. . . .
. . . . Theorems 20 and 21 and the remark just made extend to more general regions by the 

use of conformal mapping; compare §11.4. 
The study of extremal problems and their solution by methods of approximation is to be 

resumed in §11.3 and A 3. 
Of course one may study approximation in a multiply connected region (compare §1.6 

and 1.7) in the sense of least squares, by orthogonalizing a suitable set of rational functions; 
see Ghika [1936] and Bergman [2] . . . .

Note that the real novelty on the .A2
0 space in the mentioned work of A. Ghika 

(1936) (no publication data in [85]), also in the monograph of S. Bergman [4], where 
his results were summarized, was the consideration of the unweighted space . A2

0 in some 
multiply connected domains. The complicated nature of the considered domains permitted 
S. Bergman only to prove the existence of the corresponding reproducing kernels and 
establish an analog of W. Wirtinger’s Theorem 20. 

Later, W. Wirtinger’s projection Theorem 20 was extended by V.P. Zakaryuta and 
V.I. Yudovich [90] to the  unweighted spaces .Ap

0 (1 < p < +∞) in . D, the form of 
bounded linear functionals was revealed, and it was proved that the dual space of .Ap

0 is 
.A

q

0 .(1/p + 1/q = 1) in the sense of isomorphism. In W. Rudin’s books [72] and [73], 
the same was done in the polydisc and the unit ball of . Cn, where the extension has some 
explicit forms of kernels, evident in view of W. Wirtinger’s Theorem 20 and the result 
of V.P. Zakaryuta—V.I. Yudovich. In W. Rudin’s books, the extension of W. Wirtinger’s 
Theorem 20 was called “Bergman projection,” and after that many investigators are 
attributing the terms “Bergman projection,” “Bergman space,” “Bergma kernel,” and even 
“Bergman-Nevanlinna classes” to any result on regular functions summable over the 
area of a complex domain. In fact, this cuts off the original information sources for 
numerous specialists and causes the above-mentioned misunderstandings on the origins 
in the contemporary literature. 

Coming to weighted spaces, the earliest paper of M.M. Djrbashian [8] is to be referred, 
the English translation of the detailed and complemented version [9] of which is presented
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in Addendum of this book. The mentioned papers were aimed mainly at improving R. 
Nevanlinna’s result of 1936 (see [66], page 216) on the density of zeros and poles of 
functions f meromorphic in . D, for which the Riemann–Liouville fractional integral of 
the growth characteristic .T (r, f ) is bounded, i.e., 

. 
1

r(1 + α)

f 1

0
(1 − r)αT (r, f )dr < +∞

for a given .α > −1. This improvement results in a complete factorization formula for 
meromorphic in . D functions satisfying the above condition. The factorization formula 
contains some special Blaschke type product and a surface integral with the degree .2+α of 
the Cauchy kernel in the exponent and becomes the well-known Nevanlinna factorization 
of functions of bounded type in . D as .α → −1 + 0. The same works [8, 9] contain a large 
investigation of the similar Hardy type spaces .Hp(α) of holomorphic in .|z| < 1 functions 
for which the notation .A

p
α is used nowadays. M.M. Djrbashian [8] introduced these spaces 

by the boundedness of the Riemann-Liouville fractional primitive of the integral means 
.Mp(r, f ), i.e., by the condition 

. Hp(α) ≡ Ap
α :

f 1

0
(1 − r)αMp(r, f )rdr

≡ 1

2π

ff
|ζ |<1

(1 − |ζ |)α|f (ζ )|pdσ(ζ ) < +∞,

where .α ∈ (−1,+∞) and .p ∈ [1,+∞) are any fixed numbers and .dσ is for Lebesgue’s 
area measure. In particular, in [8,9] W. Wirtinger’s Theorem 20 was extended to the spaces 
. A2

α . Also, there are to be mentioned the paper of M.V. Keldysch [59] and the monograph 
by A.E. Djrbashian and F.A. Shamoyan [19], where they extended the W. Wirtinger–M.M. 
Djrbashian orthogonal projection theorem for .A2

α to the spaces . Ap
α (−1 < α < +∞)

and continued the M.M. Djrbashian’s theory of .A
p
α spaces by numerous new results. More 

about the prehistory of the spaces . A
p
α in . D and associated results can be found in the survey 

[56]. 
The results on weighted spaces of functions in a sense regular and area-integrable over 

the unit disc remain in considerable interest, since they find development and application 
in numerous contemporary investigations some of which are described and referred in the 
survey [56]. 

Part I of the present book is devoted to the construction of a theory continuing and 
essentially improving the theory of M.M. Djrbashian of 1945–1948. The spaces .Ap

ω of 
functions holomorphic in the unit disc . D, upper halfplane .G+ ≡ {z : Im z > 0}, and in 
the whole finite complex plane . C are investigated. These spaces depend on a functional 
parameter . ω which compensate any growth of several integral means of functions near the 
boundaries of the considered domains. Thanks to this, the spaces .Ap

ω in the unit disc and 
.A2

ω in the whole complex plane cover the whole sets of functions holomorphic in these
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domains. Besides, the factorization result of [8] is extended to some .ω-weighted classes 
of functions delta-subharmonic in the unit disc and similar classes in the upper halfplane, 
and the classes in the unit disc cover all functions delta-subharmonic in that domain. 

In the period of 1966–1975, an application of the Riemann—Liouville fractional 
integrodifferentiation and a more general operator depending on a functional parameter 
. ω directly to the considered functions led M.M. Djrbashian (see [11], Ch. IX and 
[10, 12, 13, 16, 20–22]) to the factorization theory of his Nevanlinna type .N{ω} classes, 
the union of which coincides with the whole set of functions meromorphic in the unit disc. 
Because of this comprehensiveness of the theory, M.M. Djrbashian first designated the last 
letter . ω of the Greek alphabet for the functional parameter. 

The new theory in a sense was more elegant, since it contains the Blaschke product and 
the classical formulas of Nevanlinna factorization, Jensen-Nevanlinna, Poisson–Jensen, 
and the Jensen inversion formula in the particular case .ω ≡ 1. The classes .N{ω} were 
introduced in [13] by application of a general Riemann–Liouville type operator .Lω [12]; 
see also in the monograph of S.G. Samko et al. [74] and many contemporary investigations. 
In a particular case, this operator takes the simple form 

. Lω log |f (z)| = −
f 1

0
log |f (tz)|dω(t), |z| < 1,

when applied to the logarithm of the modulus of a meromorphic in . D function. In the later 
extension of this theory [39] to the set of all functions delta-subharmonic in the unit disc . D, 
a growth condition was posed on .Lωu with an arbitrary delta-subharmonic in . D function 
u which replaced .log |f |. This led to a very explicit understanding of the Nevanlinna type 
. Tω characteristic and .Nω classes. 

Part II of the present book gives an extension of the M.M. Djrbashian factorization 
theory to a Riesz type representation theory of functions delta-subharmonic in the unit 
disc . D and the construction of a similar theory in the upper halfplane. Also, it contains 
some results on Banach spaces of functions delta-subharmonic in the unit disc and in the 
upper halfplane. 

August, 2023 Armen M. Jerbashian 
Joel E. Restrepo
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Part I 

Omega-Weighted Classes of Area Integrable 
Regular Functions



1Preliminary Results 

1.1 M.M. Djrbashian Operators Lω and His Omega-Kernels 

We start by reducing M.M. Djrbashian’s general integrodifferential operator .Lω used in 
his factorization theory of functions meromorphic in the unit disc [12, 13, 16, 20–22] to  
some simple forms, which are used in this book. 

In the mentioned theory, a function . ω is said to be of the class . o, if .ω > 0 in .[0, 1), 
.ω(0) = 1 and .ω ∈ L1[0, 1]. Further, for any .ω ∈ o it is set 

.p(0) = 1 and p(t) ≡ t

f 1

t

ω(x)

x2 dx, 0 < t < 1, (1.1) 

and for a measurable in .|z| < R ≤ +∞ function u it is introduced the operator 

.Lωu(reiϕ) ≡ − d

dr

⎧
r

f 1

0
u(treiϕ)dp(t)

}
. (1.2) 

This formula for . Lω was used by M.M. Djrbashian, since it writes his fractional integration 
and differentiation operator in a united form for the cases .ω(1−0) = 0 and . ω(1−0) = +∞
and even for .ω ≡ 1 when .Lω becomes the identical operator. 

Now, we introduce some classes .o(D) and .∼o(D) of parameter-functions . ω, for which  
the operator .Lω of (1.2) can be written in some simplified forms. 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
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4 1 Preliminary Results

Definition 1.1 

.1◦. .o(D) is the class of all positive, strictly decreasing, continuously differentiable in 
.[0, 1) functions . ω, such that .ω(0) = 1 and for some . α > 0

.ω(t) ≤ O(1 − t)α as t → 1 − 0. (1.3) 

.2◦. .∼o(D) is the set of all functions .ω(t) in .[0, 1), such that: 

(i) .ω > 0 and is continuous and non-decreasing in .[0, 1), 

(ii) .ω(0) = 1 and .(1 − t)ω(t) → 0 as .t → 1 − 0, 

(iii) . ω satisfies the Lipschitz condition with .λt ∈ (0, 1] at all points .t ∈ [0, 1). 

Lemma 1.1 

.1◦. Let .ω ∈ o(D), and let u be a subharmonic function in .|z| < R ≤ +∞. Then, the 
function .Lωu of the form (1.2) coincides with 

.Lωu(z) ≡ −
f 1

0
u(tz)dω(t) (1.4) 

almost everywhere in .|z| < R. 

.2◦. Let .ω ∈ ∼o(D), and let .u(z) be a harmonic function in .|z| < R ≤ +∞. Then, the 
function .Lωu of the form (1.2) in .|z| < R coincides with 

.Lωu(z) ≡ u(0) + Lω1U(z), (1.5) 

where .Lω1 is of the form (1.4) and is applied to the harmonic function 

.U(z) = |z| ∂

∂|z|u(z), and ω1(t) =
f 1

t

ω(x)

x
dx. (1.6) 

Proof 

.1◦. By (1.1), .ω(t) = p(t) − tp'(t). Thus, for any .z = reiϕ with . |z| = r < R

.

f r

0
Lωu(xeiϕ)dx = −

f 1

0

⎛f r

0
u(txeiϕ)dx

⎞
d
⎡
p(t) − tp'(t)

⎤
, (1.7)
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where the integrals are absolutely convergent. Denoting 

. J (teiϕ) = tp'(t)
f r

0
u(txeiϕ)dx, 0 < t ≤ 1,

where the last integral obviously is a continuous function for .0 ≤ t ≤ 1, with at most 
a logarithmic singularity at .t = 0, observe that 

. tp'(t) = t

f 1

t

ω(x)

x2 dx − ω(t) = t

f 1

t

ω'(x)

x
dx.

Therefore by (1.1) and (1.3) we easily get .J (teiϕ) → 0 as .t → 1 − 0 and .t → +0. 
Consequently, by (1.7) 

. 

f r

0
Lωu(xeiϕ)dx = −

f 1

0

⎡ f r

0
u(txeiϕ)dx

⎤
dp(t) −

f 1

0
tp'(t)d

⎡ f r

0
u(txeiϕ)dx

⎤

= −
f 1

0
p'(t)d

⎡
t

f r

0
u(txeiϕ)dx

⎤
= −r

f 1

0
u(treiϕ)dp(t),

and our statement holds by differentiation. 

.2◦. Integrating by parts, for any .z = reiϑ with .|z| = r < R we get 

. − r

f 1

0
u(treiϑ )dp(t) = ru(0) + r

f r

0

⎡
∂

∂t
u(teiϑ )

⎤
p
⎛ t

r

⎞
dt.

Hence 

. Lωu(reiϑ ) = u(0) + ∂

∂r

⎧
r

f r

0

⎡
∂

∂t
u(teiϑ )

⎤
p
⎛ t

r

⎞
dt

}

= u(0) +
f r

0

⎡
∂

∂t
u(teiϑ )

⎤⎧
p
⎛ t

r

⎞
− t

r
p'⎛ t

r

⎞}
dt,

and the equality .p(x) − xp'(x) = ω(x) leads to formulas (1.5) and (1.6). nu

Remark 1.1 The general integral operator .Lω (1.4) in particular cases becomes the 
classical integral operators of Riemann–Liouville, Hadamard [32], Erdélyi [24]–Kober 
[60] and many other operators.
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It is easy to verify that in both cases .ω ∈ o(D) and .ω ∈ ∼o(D) the application of the 
operator .Lω to a holomorphic in a disc .|z| < R ≤ +∞ function means multiplication of 
its Taylor series coefficients by the moments .A0 = 1, .Ak = k

f 1
0 xk−1ω(x)dx, .k ≥ 1, i.e. 

if 

. f (z) =
∞Σ

k=0

akz
k, then Lωf (z) =

∞Σ
k=0

akAkz
k,

where the function .Lωf is holomorphic in the same disc, since .limk→∞ k
√

Ak = 1. Indeed, 

.
k
√

Ak ≤ k
√

k
k

/f 1

0
ω(x)dx → 1 as k → ∞. (1.8) 

On the other hand, for any . δ ∈ (0, 1)

.
k
√

Ak ≥ k

/
k

f 1

δ

xk−1ω(x)dx ≥ δ1− 1
k

k

/f 1

δ

ω(x)dx → δ as k → ∞, (1.9) 

and the passage .δ → 1 − 0 gives .lim infk→∞ k
√

Ak ≥ 1. 
This means that .Lω transforms the holomorphic in a neighborhood of the origin 

functions to functions of the same kind, and this mapping is one-to-one, since the converse 
transform means just a division of the Taylor coefficients by . Ak , which again does not 
change the convergence radius. 

Further, for .ω(x) = (1 − x)α/r(1 + α) (−1 < α < +∞) the operator .Lω becomes 
the classical Riemann–Liouville fractional integrodifferentiation with integration over the 
complex interval .[0, z]. Namely, for any .z = reiϑ formulas (1.4) and (1.5) respectively 
take the forms 

. L(1−x)α

r(1+α)

u(reiϑ ) = r−α

r(α)

f r

0
(r − t)α−1u(teiϑ )dt, 0 < α < +∞,

L (1−x)α

r(1+α)

u(reiϑ ) = u(0) + r−α

r(1 + α)

f r

0
(r − t)α

∂

∂t
u(teiϑ )dt, −1 < α < 0.

The next theorem proves that the operator .Lω is a one-to-one mapping in some wider 
sets of functions in starshaped, regular domains.1 Namely, we shall apply .Lω to delta-
subharmonic functions, i.e., differences of two subharmonic functions. Note that the 
equality .u = v of two delta-subharmonic functions .u = u1 − u2 and .v = v1 − v2 means

1 A domain .G ⊂ C is said to be starshaped, if it contains the closed straight line interval .[0, z] along 
with any point .z ∈ G. For the definition of regular domains, see [33], Section 2.6.2, also formula 
(0.5). For a simpler case, see [31], Chapter 1, formula (1.6), also Theorem 1.1. 
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the equality .u1 + v2 = v1 + u2. Besides, the subharmonic functions are a generalization 
of .log |f | of holomorphic functions f , while the delta-subharmonic functions are a 
generalization of .log |f | of meromorphic functions f . 

Theorem 1.1 Let .D ⊆ C be a star-shaped, regular domain. Then the following statements 
are true: 

. 1◦. Let .ω ∈ o(D) and let . Lω be defined by (1.4), then: 

(i) If u is a harmonic function in D, then also the function .Lωu is harmonic in G. 
Besides, .Lωu ≡ 0 in D if and only if .u ≡ 0 in D. 

(ii) If u is a subharmonic function in D, with an associated Riesz measure . ν such that 
.minζ∈supp ν |ζ | = d0 > 0, then the function .Lωu is continuous and subharmonic 
in D. 

(iii) If u and v are delta-subharmonic in D and the supports of their Riesz measures 
are distanced from the origin by some .d0 > 0, then .Lωu and .Lωv are delta-
subharmonic in D and .Lωu ≡ Lωv in D if and only if .u ≡ v in D. 

. 2◦. Let .ω ∈ ∼o(D) and let . Lω be that defined by (1.5) and (1.6). 

.(i') If u is a harmonic function in D, then also the function .Lωu is harmonic in D. 
Besides, .Lωu ≡ 0 in D if and only if .u ≡ 0 in D. 

.(ii') If u is a subharmonic function in D, with an associated Riesz measure . ν
such that .minζ∈supp ν |ζ | = d0 > 0, then the function .Lωu is continuous and 
superharmonic in .D \ supp ν. 

Proof 

. 1◦. (i) If u is a real, harmonic function in D, then the function .f = u+iv, where v is the 
harmonic conjugate of u, is holomorphic in D, and it is easy to verify the validity 
of the Cauchy–Riemann polar equations for .Lωf at any point .z ∈ D. Thus, . Lωf

is holomorphic and .Lωu is harmonic in D. Further, evidently f is holomorphic 
in a neighborhood .|z| < ρ of the origin, where also .Lωf is holomorphic, and the 
identity .Lωu ≡ Re Lωf ≡ 0 in .|z| < ε implies .f ≡ iC, and .u ≡ 0 in D.



8 1 Preliminary Results

(ii) Assuming that u is subharmonic in D, . ν is its associated Borel measure and 
.min{|ζ | : ζ ∈ suppν} = d0 > 0, observe that for any .δ ∈ (0, 1) and . R ∈ (0,+∞)

the Riesz representation is true in the domain .δDR = {δz : z ∈ D, |z| < R}: 

. u(z) = −
ff

δDR

G(z, ζ )dν(ζ ) + 1

2π

f
∂δDR

u(s)
∂G(s, z)

∂n
ds, z ∈ δDR,

where G is the Green function of the domain .δDR , .∂/∂n is differentiation along 
the outer normal and ds is the curve length element (see, e.g. [31], Ch. I, Sec. 2). 
Since . ν is bounded in .δDR , we can write the latter formula also in the form 

.u(z) =
ff

δDR

log
⎪⎪⎪1− z

ζ

⎪⎪⎪dν(ζ )+U(z) ≡ P ∗(z)+U(z), z ∈ δDR, (1.10) 

where .P ∗ is subharmonic and U is harmonic in .δDR , and hence also .LωU is 
harmonic in .δDR . Besides, .P ∗ is harmonic in .δDR \ supp ν, since its integral 
is absolutely and uniformly convergent inside any compact . K ⊂ δDR \ supp ν

due to the obvious inequality .
⎪⎪ log |1 − z/ζ |⎪⎪ ≤ M1 < +∞ in . K , where .M1 is a 

constant depending on the distance from . K to .δDR \ supp ν. 
Assuming now that .K ⊂ δDR is any compact, we shall prove that the function 

.LωP ∗ is continuous in . K and 

.LωP ∗(z) =
ff

ζ∈δDR

Lω log
⎪⎪⎪1 − z

ζ

⎪⎪⎪dν(ζ ), z ∈ δDR. (1.11) 

To this end, observe that for any .ζ ∈ δDR , .|ζ | ≥ d0 > 0, the function 

.J (z) ≡ Lω log
⎪⎪⎪1 − z

ζ

⎪⎪⎪ = −
f 1

0
log

⎪⎪⎪1 − tz

ζ

⎪⎪⎪dω(t) (1.12) 

is continuous in .δDR . Indeed, if the compact . K does not intersect with the infinite 
interval .lζ ≡ {z : arg z = arg ζ, |ζ | ≤ |z| < +∞}, then . log

⎪⎪1 − tz/ζ | ≤ M2 <

+∞ (0 ≤ t ≤ 1), where .M2 is a constant depending solely on the distance from 
. K to the mentioned interval. Hence, J is harmonic in . K and, consequently, in 
.δDR \lζ . For proving the continuous extension of J to . lζ , by integration by parts 
we get 

.Lω log
⎪⎪⎪1− z

ζ

⎪⎪⎪ = −Re
f 1

0

ω(t)

ζ/z − t
dt = −Re

f 1

0

ω(t)

λ − t
dt, λ = ζ

z
, (1.13) 

where the last Cauchy -type integral is understood in the sense of its principal 
value for .λ ∈ [0, 1]. When a complex . λ tends to a point of .(0, 1], then . z = ζ/λ

tends to a point of . lζ , and the continuity of the Cauchy- type integral when .λ
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crosses . lζ holds by the properties of .ω ∈ o(D) and the well-known properties 
of the Cauchy-type integrals (see, eg., [29], Sec. 4.2, 4.4, 8.1). So, the function 
.Lω log |ζ−z| is continuous in .δDR and harmonic in .δDR\lζ . Besides, . Lω log |ζ−
z| is subharmonic in .δDR , which is easy to verify by applying . Lω to both sides of 
the inequality for .log |ζ −z|, its integral mean and changing the integration order. 

To prove formula (1.11), observe that this formula holds at least in . |z| < d0

by applying . Lω to . P ∗, due to the absolute convergence of its integral inside . |z| <

d0. On the other hand, .P ∗ is harmonic outside of the support of . ν, and hence, 
.LωP ∗ is harmonic in the star-shaped domain .DR \ Uζ∈supp ν lζ , and the right-
hand side integral is harmonic in the same domain and continuous in .δDR , due to 
its absolute and uniform convergence of its integral inside the mentioned domain 
and the already proved properties of .Lω log |ζ − z|. Hence, formula (1.11) is true 
in .DR \ Uζ∈supp ν lζ by the uniqueness of harmonic function, it is true also in 
the whole .δDR , where .P ∗ has a continuous extension. Thus, the proof of the 
statement (ii) is complete by the arbitrariness of . δ and R. 

(iii) If u and v are subharmonic in D and .Lωu ≡ Lωv in D, then for u and v 
the Poisson-Jensen formula is true in the finite, regular, starshaped domain . δD. 
Besides, in . δD, there are decompositions .u = U + P1 and .v = V + P2, where 
U and V are harmonic functions and .P1,2 are Green potentials. Consequently, 
.Lω

(
U − V

) ≡ Lω

(
P2 − P1

)
in . δD, where .Lω

(
U − V

)
is a harmonic function, 

while .Lω

(
P2 − P1

)
is not harmonic in .δD for . δ close enough to 1 and the 

associated measures of u and v are different. So, .P1 ≡ P2. Hence, . Lω

(
U −V

) ≡
Lω

(
P2 − P1

) ≡ 0, which implies .U ≡ V in .δD by the already proved statement 
(ii), and consequently .u ≡ v in . δD. Exhausting D by the domains . δD, where we 
let .δ → 1 − 0, we get .u ≡ v in the whole D. Further, for two delta-subharmonic 
functions .u = u1 − u2 and .v = v1 − v2, the identity .u ≡ v is understood 
in the sense that .u1 + v2 ≡ v1 + u2. Hence, the identity .Lωu ≡ Lωv means 
.Lω

(
u1 + v2

) ≡ Lω

(
v1 + u2), where .u1 + v2 and .v1 + u2 are subharmonic in D. 

Consequently .u = u1 − u2 ≡ v1 − v2 = v, i.e. .u ≡ v. 

. 2◦. (i. ') The proof is the same as that of the statement . 1◦(i). 
(ii. ') The proof is almost the same as that of . 1◦(ii). Therefore, we show only the 

differences. Applying the operator of the form (1.5)–(1.6) to .log |1 − z/ζ |, 
we get the same formula (1.13) with the only differences that . ω(t) ∈ ∼o(D)

and the last integral is with the sign “+.” This excludes continuity at the point 
.z = ζ (λ = 1), since .ω(t) does not vanish as .t → 1 − 0. The rest of 
the proof differs from that of . 1◦(ii) only by a change of the domain .δDR by 
.δDR,ε = δDR \ Uζ∈supp ν{ζ : |z − ζ | < ε}, where the superharmonicity of 
.LωP ∗ in D is true due to the mentioned integral sign difference, and then letting 
.δ → 1 − 0 and .ε → +0. nu

The next lemma gives a decomposition of the operator . Lω.
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Lemma 1.2 Let .ω1,2 ∈ o(D) and additionally, let .ω2(x) ≡ 1 for .0 ≤ x ≤ ε < 1 with a 
fixed . ε. Then 

.ω3(x) ≡ −
f 1

x

ω2

⎛x

t

⎞
dω1(t) = −

f 1

x

ω1

⎛x

t

⎞
dω2(t) ∈ o(D) (1.14) 

and 

.ω'
3(x) = −

f 1

x

ω'
2

⎛x

t

⎞
ω'

1(t)
dt

t
= −

f 1

x

ω'
1

⎛x

t

⎞
ω'

2(t)
dt

t
. (1.15) 

Besides, if a function u is subharmonic in a starshaped domain D, and the associated 
Borel measure of u is supported in a ring .0 < d0 ≤ |ζ | < 1, then 

.Lω3u(z) = Lω1Lω2u(z) = Lω2Lω1u(z), z ∈ D. (1.16) 

Proof The second equality in (1.14) holds by an integration by parts and a simple change 
of variable. Further, the integrals in (1.14) are uniformly convergent with respect to . x ∈
[0, 1], and hence .ω3(0) = 1. If  x sufficiently close to 1, then by (1.3) 

. ω3(x) =
f 1

x

ω2(t)dω1

⎛x

t

⎞
≤ ω1(x) ≤ O(1 − x)α1 ,

where .α1 > 0 is that of (1.3) for . ω1. Further, changing the variable as .λ = x/t , by a  
well-known differentiation formula we get equalities (1.15): 

. ω'
3(x) = −ω2

⎛x

λ

⎞
ω'

1(λ)

⎪⎪⎪⎪
1

λ=x

−
f 1

x

ω'
2

⎛x

λ

⎞
ω'

1(λ)
dλ

λ
= −

f 1

x

ω'
2

⎛x

λ

⎞
ω'

1(λ)
dλ

λ
.

Hence, .ω'
3 < 0 in .[0, 1) and is continuous in .[0, 1], and the equalities (1.14) hold. At last, 

the equalities (1.16) are easy to verify by (1.15). nu

As we have seen, to get a holomorphic in . D function, which becomes f after the 
application of . Lω, it is just necessary to divide the Taylor coefficients of f by . Ak . This is  
the way in which the M.M. Djrbashian Cauchy and Schwarz type .ω-kernels are introduced 
in . D: 

.Cω(z) =
∞Σ

k=0

zk

Ak

, and Sω(z) = 2Cω(z) − 1, z ∈ D, (1.17)
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where 

.A0 ≡ 1. Ak ≡ k

f 1

0
xk−1ω(x)dx, k ≥ 1, (1.18) 

or 

.Ak = −
f 1

0
xkdω(x) (k ≥ 0), if ω(0) = 1 and ω(1) = 0. (1.19) 

Note that the functions .Cω and . Sω are holomorphic in . D because of the relations (1.8) 
and (1.9), besides for any . α ∈ (−1,+∞)

.C(1−x)α

r(1+α)

(z) ≡ Cα(z) = 1

(1 − z)1+α
, S (1−x)α

r(1+α)

(z) ≡ Sα(z) = 1 − 2

(1 − z)1+α
(1.20) 

and 

. LωCω(z) = C0(z) = 1

1 − z
, LωSω(z) = S0(z) = 1 + z

1 − z
.

In this book, also an analog of the operator . Lω with infinite integration contour is used for 
constructing in a sense similar theory in the upper halfplane . G+ = {z = x + iy : 0 < y <

+∞}, where the Taylor series apparatus is replaced by that of the Laplace transform. It is 
natural to use the notation .Lω also for the new operator and again call it M.M. Djrbashian 
operator. 

For any acceptable functions u in . G+, . ω in .(0,+∞) and .ω1(t) = f t

0 ω(λ)dλ we set 

.Lωu(z) ≡
f +∞

0
u(z + it)dω(t) or Lωu(z) ≡ Lω1

⎛
− ∂

∂y
u(z)

⎞
. (1.21) 

The way in which this operator acts to Laplace transforms is very similar to that in which 
the considered before .Lω was acting to Taylor series. Namely, if for some acceptable 
functions . ω and . μ in . (0,+∞)

. f (z) =
f +∞

0
eizt dμ(t), then Lωf (z) =

f +∞

0
eizt

⎛
t

f +∞

0
e−tλω(λ)dλ

⎞
dμ(t)

for any .z ∈ G+. The properties of this operator are more complicated than those of . Lω for 
the unit disc theory. Their study is given in those chapters of the book where they are used. 
We just notice that the introduced operator is a generalization of the Liouville fractional
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integrodifferentiation, which holds as a particular case. Namely, for an acceptable function 
.u(z) ≡ u(x + iy) given in . G+

. L tα

r(1+α)
u(z) = 1

r(α)

f +∞

y

(t − y)α−1u(x + it)dt, 0 < α < +∞,

L tα

r(1+α)
u(z) = L t1+α

r(2+α)

⎛ ∂

∂y
u(z)

⎞
, −1 < α < 0.

Also, we introduce a Cauchy-type kernel .Cω in . G+, which again is natural to call M.M. 
Djrbashian kernel. To introduce this kernel, we give some definitions. 

Definition 1.2 .oα(G+) .(−1 ≤ α < +∞) is the class of functions . ω given in . [0,+∞)

and such that: 

(i) .ω - (is non-decreasing) in .(0,+∞), .ω(0) = ω(+0) and there exists a sequence 
.δk ↓ 0 such that .ω(δk) ↓ (is strictly decreasing); 

(ii) .ω(t) x t1+α for .A0 ≤ t < +∞ and some .A0 ≥ 0. 

Note that .f x g means that .m1f ≤ g ≤ m2f for some constants .m1,2 > 0. Evidently, if 
.ω ∈ oα(G+) (α ≥ −1), then (ii) is true for any .A ∈ (0,A0]. 

Definition 1.3 .oN
α (G+) is the set consisting of .ω ≡ 1 and all decreasing, continuous 

functions .ω > 0 in .(0,+∞), such that 

. ω(x) x xα for some − 1 < α < 0 and any x ≥ A0 > 0,

where . A0 is a fixed number. Besides, we set 

. ω1(x) =
f x

0
ω(t)dt < +∞, 0 < x < +∞.

Assuming that .ω ∈ oα(G+) (α ≥ −1) or .ω ∈ oN
α (G+) .(−1 < α < 0), we define 

.Cω(z) =
f +∞

0
eitz dt

Iω(t)
, Iω(t) = t

f +∞

0
e−txω(x)dx, z ∈ G+, (1.22) 

where we may write 

.Iω(t) =
f +∞

0
e−txdω(x), if ω(0) = 0. (1.23)
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Note that, being an obvious generalization of the ordinary Cauchy kernel in the one-
dimensional case of . D, the .ω-kernel .Cω was first used A.H. Karapetyan in [57], where 
it was constructed in the multidimensional case of tube domains. 

Further, note that for .ω ∈ oα(G+) the function .Cω and for .oN
α (G+) the functions 

.Cω and .Cω1 are holomorphic in . G+. Indeed, for any .k ≥ 1 the integral of .Cω uniformly 
converges in .G+

δk
= {z : Im z > δk} because of the estimate 

. 
⎪⎪Iω(t)

⎪⎪ ≥
⎪⎪⎪⎪
f δk−1

δk

e−txdω(x)

⎪⎪⎪⎪ ≥ e−tδk
⎪⎪ω(δk−1) − ω(δk)

⎪⎪ > 0, k ≥ 1,

and the same estimate with . ω1. Besides, one can see that for any . α > −1

.C tα

1+α
(z) ≡ C0(z) = 1

(−iz)1+α
and LωCω(z) = C0(z) = 1

−iz
, z ∈ G+. (1.24) 

1.2 Evaluation of M.M. Djrbashian Cω-Kernels 

This section gives some useful asymptotic estimates of .Cω-kernels in the unit disc and in 
the halfplane. 

As M.M. Djrbashian often stated, one of the most significant problems related to his 
factorization theory is the evaluation of the .Cω-kernels. The main assumption was that 
under some additional conditions on the behavior of the parameter-functions . ω in .(0, 1) or 
in .(0,+∞), the following estimates have to be true: 

.|Cω(z)| ≤ M

|(1 − z)2ω'(|z|)| (z ∈ D), |Cω(z)| ≤ M

|z2ω'(Im z)| (z ∈ G+) (1.25) 

which are natural to expect because of the equalities (1.20) and (1.24). 
Here, in the first subsection, we use a united evaluation method to prove (1.25) for 

both kernels, which we use under some conditions in which the derivative of . ω in . (0, 1)

(or .(0,+∞)) decreases as .x → 1 − 0 (or .x → +0) not more rapidly than the function 
.(1 − x)α (or . xα). The found estimates are exact on the positive radius .z = r ∈ (0, 1) and 
on the imaginary half-axis .z = iy, .y ∈ (0,+∞). 

In the second subsection, the .Cω-kernels are evaluated for certain scales of . ω, which are 
exponentially decreasing as .x → 1 − 0 (or .x → +0). These estimates differ from (1.25), 
though they also are exact on the positive radius of . D and on the imaginary half-axis of 
. G+.
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1.2.1 ω Decreases Not More Rapidly than a Power Function 

We start by the “model” argument on evaluation of the .Cω-kernel for the halfplane. 
Beforehand some necessary technical apparatus is to be prepared. 

We shall use the below easily verifiable inequalities, with . - and . - meaning the 
non-decreasing and non-increasing of a function. Namely, for any monotone in . (0,+∞)

function . ϕ > 0

.

f +∞

1/y

e−tyϕ(t)dt

/f 1/y

0
e−tyϕ(t)dt

⎧⎨
⎩

≥ M1, if ϕ -
≤ M2, if ϕ -

, y > 0, (1.26) 

where .M1,2 are some positive constants. Besides, for small enough values . v > 0

.

f +∞

1/v

e−tvϕ(t)d[t]
/f 1/v

+0
e−tvϕ(t)d[t]

⎧⎨
⎩

≥ M3, if ϕ(t) -
≤ M4, if ϕ(t) -

, (1.27) 

where . [t] means the integral part of t and .M3,4 > 0 are some constants. We shall often use 
also the inequality 

. 
t

1 + t
< 1 − e−t <

4

3

t

1 + t
, 0 < t < +∞.

The main tool of this section is the following, perhaps known statement. 

Lemma 1.3 Let .ϕ > 0 be a function defined in .(0,+∞). 

.1◦. If . ϕ(t) - but . t−αϕ(t) - in . (0,+∞) for some . α > 0, then 

.

f +∞

0
e−txϕ(t) dt x ϕ(1/x)

x
, 0 < x < +∞. (1.28) 

.2◦. If .ϕ(t) - but .(1 − e−t )−αϕ(t) - for some .α > 0, then for small enough . v > 0

.

f +∞

+0
e−tvϕ(t) d[t] x ϕ(1/v)

v
. (1.29) 

.3◦. If . ϕ(t) - in . (0,+∞) but .tδϕ(t) - or . (1 − e−t )δϕ(t) - for a . δ ∈ (0, 1) , 
then (1.28) and (1.29) are true, respectively.
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Proof 

.1◦. Evidently 

. 

f +∞

0
e−txϕ(t)dt ≥ xαϕ(1/x)

f 1/x

0
e−tx tαdt = ϕ(1/x)

x

f 1

0
e−λλαdλ.

On the other hand, by (1.26) 

. 

f +∞

0
e−txϕ(t)dt ≤

⎛
1+ 1

M1

⎞ f +∞

1/x

e−txϕ(t)dt ≤
⎛

1+ 1

M1

⎞ϕ(1/x)

x

f +∞

1
e−λλαdλ.

.2◦. If .v > 0 is small enough, then 

. 

f +∞

+0
e−tvϕ(t)d[t] ≥

f 1/v

+0
e−tvϕ(t)d[t] ≥ M 'ϕ(1/v)

f 1/v

+0
e−tv

⎛
t

1 + t

⎞α

d[t]

> M ''ϕ(1/v)

f 1/v

1/2
e−tvd[t]

= M ''e−vϕ(1/v)
⎡
1 + ev + · · · + e−v([1/v]−1)

⎤

= M ''e−vϕ(1/v)
1 − e−v[1/v]

1 − e−v
> M ''' ϕ(1/v)

v
.

On the other hand, if .v > 0 is small enough, then by (1.27) 

. 

f +∞

+0
e−tvϕ(t)d[t] ≤

⎛
1 + 1

M3

⎞ f +∞

1/v

e−tvϕ(t)d[t]

≤
⎛

1 + 1

M3

⎞ ⎛
1 − e−1/v

⎞−α

ϕ(1/v)

f +∞

1/v

e−tv(1 − e−t )αd[t]

≤ MIV ϕ(1/v)

f +∞

1/v

e−tvd[t] ≤ MV ϕ(1/v)

v
.

.3◦. The proof is similar and even more simple. nu

We start the evaluations by the case of the halfplane kernel .Cω of (1.22).
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Theorem 1.2 Let .ω > 0 be a non-decreasing, continuously differentiable function in 
.(0,+∞), such that 

.1◦. .ω(+0) = 0 and . lim
x→+∞ e−εxω(x) = 0 for any . ε > 0, 

.2◦. (i) .ω'(x) - but . x−αω'(x) - for some . α > 0 or, alternatively, 

(ii) .ω'(x) - but . xδω'(x) - for some . δ ∈ (0, 1), 

then 

.Cω(iy) x 1

y2ω'(y)
, 0 < y < +∞. (1.30) 

If along with . 1◦ and . 2◦(i) we have 

.3◦. . ω'(+∞) = +∞ and .x−1ω'(x) - or .x−1ω'(x) - but .x−δω'(x) - for some . δ ∈
(0, 1), then there is a constant .M (≡ Mω) > 0 for which 

.|Cω(z)| ≤ M

|z|2ω'(y)
, z = x + iy ∈ G+. (1.31) 

Proof If . 2◦(i) is true, then by (1.22)–(1.23) and (1.28) 

.Cω(iy) x
f +∞

0
e−yt t

ω'(1/t)
dt, 0 < y < +∞. (1.32) 

But .t[ω'(1/t)]−1 - and .x−αω'(x) -. Hence 

. 
1

(1/t)−αω'(1/t)
= t−α

ω'(1/t)
= t−(1+α) t

ω'(1/t)
- .

Thus, the function .t[ω'(1/t)]−1 satisfies the condition . 1◦ of Lemma 1.3, and (1.30) follows 
from (1.32) by (1.28). Under the assumption . 2◦(i), (1.30) is proved similarly. 

For proving (1.31), observe that the function .ϕ(t) = tnω'(t) satisfies the condition . 1◦
of Lemma 1.3 for any .n ≥ 0. Hence, an integration by parts gives 

.Cω(z) = 1

(iz)2

⎧f +∞

0
eizt

f +∞
0 e−σ tσ 2ω'(σ )dσ⎡f +∞
0 e−σ tω'(σ )dσ

⎤2 dt

− 2
f +∞

0
eizt

⎡f +∞
0 e−σ tσω'(σ )dσ

⎤2

⎡f +∞
0 e−σ tω'(σ )dσ

⎤3 dt

}
≡ 1

(iz)2
{I1 − I2} ,


