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Preface 

The theory of partial differential equations (PDE) is a vast and exciting area of 
mathematics. PDE started with applications in mind. In the late eighteenth to early 
nineteenth centuries, through seminal works by giants such as d’Alembert, Euler, 
Lagrange, Laplace, Poisson, and Fourier, the three major linear PDE, namely, the 
wave equation, the Laplace (and Poisson) equation, and the heat equation, have been 
in place to study vibration phenomena, potential theory, and heat flow, respectively. 
These equations formed the prototype for hyperbolic, elliptic, and parabolic PDE, 
respectively. The contributions of PDE to mathematics, however, extended well 
beyond their ubiquitous applicability, about which plenty has already been said. 
The theory of PDE in fact developed hand in hand with many important areas of 
mathematics, such as complex analysis, harmonic analysis, functional analysis, and 
calculus of variations, and contributed significantly to other areas of mathematics 
such as differential geometry as well as theoretical physics. 

The rigorous study of PDE probably started in the late nineteenth century. In the 
last decade of the nineteenth century, Poincaré completed a series of rigorous study 
of elliptic PDE, which played a fundamental role in the modern development of 
potential theory, spectral theory, and nonlinear analysis. 

In the celebrated problems that Hilbert posed at the start of the twentieth century, 
2 out of 23 were directly devoted to PDE, specifically nonlinear elliptic PDE, 
namely, Problem 19 which concerns the regularity of solutions and Problem 20 
which concerns the existence of solutions and their variational properties. 

For a fascinating account of the development of PDE, the reader is referred to 
the article “PDE in the 20th Century” by H. Brezis and F. Browder (Adv. Math. 
135(1998), 76–144). 

In this book, we focus on boundary value problems of second-order nonlinear 
elliptic partial differential equations and systems. In particular, we mainly concern 
ourselves with the existence of solutions, more specifically non-constant positive 
solutions, as well as the uniqueness, stability, and asymptotic behavior of such 
solutions. We concentrate on two major approaches to the study of existence of 
solutions, namely, the upper and lower solutions method and the topological degree 
method.

v
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Theoretically, the upper and lower solutions method appears straightforward. 
It relies on comparison principles and the monotone iterative method. However, 
its successful application hinges on the construction of suitable upper and lower 
solutions, which often requires some degree of ingenuity. We illustrate this method 
in detail through many concrete examples. The topological degree method, on 
the other hand, involves the computation of fixed point indices, which is often 
technically highly demanding. A significant value of this book is the development 
of an effective framework for the computation of fixed point indices for the 
homogeneous Neumann boundary value problem for elliptic systems (Chap. 6). 
This framework bypasses the complicated estimates of eigenvalues and facilitates 
the computation of fixed point indices by simply determining the sign of the roots 
of some simple polynomials. This is based on the authors’ work (Strategy and 
stationary pattern in a three-species predator-prey model, J. Differential Equations 
200(2004), 245–273). 

A key feature of this book is the thorough treatment of these two methods. For 
the upper and lower solutions method, we deal with single equations (Chap. 3) and 
systems (Chap. 4). We delve into different boundary conditions, different equation 
types, and different domains. More importantly, we strive to illustrate the method in 
many concrete examples. On the other hand, for the topological degree method, we 
focus on the theory of topological degree in cones and its applications to Dirichlet 
boundary value problems (Chap. 5), while Neumann boundary value problems are 
treated separately (Chap. 6). For the topological degree method, the approach of 
illustration using concrete examples persists. 

To provide a foundation for the two methods, we included a chapter on 
eigenvalue problems of the second-order linear elliptic operators (Chap. 2). We then 
extended the treatment to p-Laplace equations and systems in Chap. 7. 

We are very much aware that our focus on eigenvalue problem, upper and lower 
solutions method, and topological degree method clearly does not do full justice 
to the theory of nonlinear elliptic PDE, as many other methods such as variational 
methods are not given due coverage. We must admit that we have not been motivated 
by comprehensiveness, and simply wished to illustrate some methods that we have 
found useful. 

As mentioned repeatedly above, the illustration of the theories and methods 
using concrete examples is core to the design of this book. Because of the authors’ 
own preference and previous work, examples from mathematical biology are often 
chosen. However, we note emphatically that this is not a book on mathematical 
biology. Indeed, we have not included the biological background of the examples 
(to which we refer the reader to the original papers contained in the bibliography). 
These examples are chosen ultimately for their merit in illustrating the theories and 
methods. 

This book is primarily intended as a textbook for intermediate to advanced 
graduate students who have already had an introductory course on PDE and some 
familiarity with functional analysis and nonlinear functional analysis. We have 
summarized briefly some basic results of Sobolev spaces and nonlinear functional
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analysis, and basic theory of elliptic equations, in the two appendices. These two 
appendices provide a good gauge of the prerequisites for this book. 

While we have not intended to make this book entirely self-contained, we have 
attempted to include some basic results. Some of these materials are based on 
and rewritten from Nonlinear Elliptic Partial Differential Equations (Science Press, 
Beijing, 2010) by M.X. Wang [187] (published in Chinese). 

With the focused theoretical content, the ample illustrative examples and inclu-
sion of exercises, we hope that this book will be of use to graduate students. 

While working on this book, the first author was partially supported by NSFC 
Grants 11371113, 11771110, and 12171120. We would also like to take this 
opportunity to thank many colleagues and students, especially those at the Harbin 
Institute of Technology, who have provided feedback to drafts of this work. 

Jiaozuo, China Mingxin Wang 
Singapore, Singapore Peter Y. H. Pang
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Chapter 1 
Preliminaries 

In this chapter we first lay down some notations, conventions and basic assumptions. 
Then, for later applications, we briefly review some basic theories and results of the 
calculus in Banach spaces and unconditional local extrema, which are elementary 
knowledge of variational methods. Finally, we give two applications which will be 
used in Chap. 7. 

1.1 Notations, Conventions and Basic Assumptions 

Given two sets .A,B ⊂ R
n, we use . A to represent the closure of A, and use . d(A,B)

or .dist(A,B) to represent the distance between A and B. The notation .A c B means 
that A is bounded and .A ⊂ B. 

Given a set .A ⊂ R
n and a function .f : A → R

m, we use  .f (A) to represent the 
image of A under f . 

Given a set .A ⊂ R
n, we use . |A| to represent the measure of A. 

For a given function u, we define the positive and negative parts of u by 

. u+ = max{u, 0}, u− = min{u, 0}.

Clearly .u = u+ + u− and .|u| = u+ − u−. 
Let .k > 0 be an integer and .0 < β < 1 be a constant. We say that a domain 

.Ω ⊂ R
n is of class .Ck+β , or . Ω has a .Ck+β boundary . ∂Ω if for each point . x0 ∈ ∂Ω

there exist a neighborhood U of . x0 and a function .Φ ∈ Ck, β(U) such that 

(1) the inverse function .Φ−1 exists and .Φ−1 ∈ Ck, β(Φ(U)), and 
(2) if we set .y = (y1, . . . , yn) = Φ(x), then . Φ(∂Ω ∩ U) ⊂ {y ∈ R

n : yn = 0}
and .Φ(Ω ∩ U) ⊂ {y ∈ R

n : yn > 0}. 
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We say that a domain . Ω has the interior ball property at the point .x ∈ ∂Ω , if  
there exists a ball B with radius .r > 0 for which .B ⊂ Ω and .B ∩ ∂Ω = {x}. 
If . Ω has the interior ball property at each point .x ∈ ∂Ω , then we say that . Ω has 
the interior ball property. When . Ω is of class . C2, it must have the interior ball 
property. However, if . Ω is only of class .C1+α with .0 < α < 1, then it may not have 
the interior ball property. For example, the curve .x2 = |x1|1+α does not have the 
interior ball property at the point .(0, 0). 

Let . Ω be a bounded domain of . Rn, k be a positive integer and .p > 1. The  
function space .Wk,p(Ω) is the standard Sobolev space, and .Ck

0 (Ω) is the function 
space composed of k-times continuously differentiable functions with compact 
support in . Ω . We denote the closure of .C∞

0 (Ω) in .Wk,p(Ω) by .Wk,p

0 (Ω), and 
use the notation .Lp(Ω) instead of .Lp(Ω). 

When the domain . Ω is fixed, to simplify notations and save space, we will write 

. | · |i+α = | · |i+α,Ω = || · ||Ci+α(Ω), i = 0, 1, 2,

|| · ||j, p = || · ||j, p,Ω = || · ||Wj,p(Ω), j = 1, 2; || · ||p = || · ||p,Ω = || · ||Lp(Ω),

f
Ω

f =
f

Ω

f (x) =
f

Ω

f (x)dx for f ∈ L1(Ω).

Let X be a Banach space, and .f, g ∈ X. We caution that the symbol .||f, g||X may 
denote .||f ||X+||g||X in some places and .max{||f ||X, ||g||X} in others; the usage will 
be clear from the context. 

Throughout this book, unless it is clearly stated otherwise, we shall adopt the 
following conventions (standing assumptions): 

• All functions are real-valued, and we usually refer to a vector-function (and also 
a matrix of functions) briefly as a function. 

• The symbol .fk → f means that . fk converges strongly to f , while . fk - f

means that . fk converges weakly to f . 
• The constant .0 < α < 1 may be different in different places. 
• We use C, . C' and . Ci to represent the generic constants. 
• .Ω ⊂ R

n is a bounded domain and is of class . C2, . n is the outward normal vector 
of . ∂Ω , and . ∂n is the outer normal derivative . ∂

∂n
. 

• .1 < p < ∞ as a constant. 
• .aijDij := En

i,j=1 aijDij , and .biDi := En
i=1 biDi . 

• .u ∈ Cα(Ω) means that .u ∈ Cα
loc(Ω), i.e., .u ∈ Cα(Ω0) for any subdomain 

.Ω0 c Ω . 

Throughout this book, unless it is clearly stated otherwise, we will make the 
following assumptions: 

(A) The second order linear operators 

.L = −aij (x)Dij + bi(x)Di + c(x)
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and 

. Ld = −Dj

(
aij (x)Di

) + c(x)

are strongly elliptic, i.e., .aij (x) = aji(x) in . Ω for all .1 < i, j < n, and there 
exist positive constants . χ and . Λ such that 

. χ |y|2 < aij (x)yiyj < Λ|y|2, ∀ y ∈ R
n, x ∈ Ω.

Operators . L and .Ld are called the non divergence and divergence type, 
respectively. 

(B) .aij ∈ C(Ω), .bi, c ∈ L∞(Ω). 
(C) The boundary operator .Bu = a∂nu + b(x)u, where 

(i) .a = 0, .b(x) ≡ 1, or  
(ii) .a = 1, .b(x) > 0 and .b ∈ C(∂Ω). 

Moreover, whenever we use the . Lp theory, our default assumptions are that . Ω is of 
class . C2, .b ∈ C1(∂Ω) and the condition (B) holds. 

The following assumption will be used in some places. 

(B. α) .aij , bi, c ∈ Cα(Ω). 

Whenever, we use the Schauder theory, our default assumptions are that . Ω is of 
class .C2+α , .b ∈ C1+α(∂Ω) and (B. α) holds. 

We define 

. ω(R) = max
i,j

sup
|x−y|<R
x, y∈Ω

|aij (x) − aij (y)| → 0 as R → 0.

The function .ω(R) is called the modulus of continuity of . aij . 

1.2 Calculus in Banach Spaces 

Let X and Y be two Banach spaces, .U ⊂ X be an open set, and the mapping 
.f : U → Y be continuous. Denote by .B(X, Y ) the set of bounded linear operators 
from X to Y . 

1.2.1 Fréchet Derivative 

Definition 1.1 We say that f is Fréchet differentiable at the point x0 ∈ U if there 
exists A ∈ B(X, Y ) such that 

. ||f (x0 + y) − f (x0) − Ay|| = o(r) as ||y|| < r → 0.

In this case, the operator A is called the Fréchet derivative of f at x0.
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We list some basic properties of the Fréchet derivative A. 

(1) If A exists, then it must be unique; it is denoted by fx(x0), Df (x0) or f '(x0); 
(2) If Df (x) : x ∈ U → B(X, Y ) is a continuous map, we say that f ∈ C1(U). 

Inductively, we may define Ck mappings for k = 1, 2, . . .. A mapping f ∈ 
Ck (U) means that 

. Dkf : U → B(X,B(X, · · ·,B(X, Y ) · · ·))' '' '
k

is continuous in U,

where Dk f = D(Dk−1f ); 
(3) Chain rule: Let  X, Y and Z be three Banach spaces, U ⊂ X and V ⊂ Y be 

open sets, and f : U → Y and g : V → Z be two mappings. Suppose that 
x0 ∈ U , y0 = f (x0) ∈ V , and f and g are Fréchet differentiable at x0 and y0, 
respectively. Then the composite mapping g ◦f is also Fréchet differentiable at 
x0, and (g ◦ f )'(x0) = g'(y0)f '(x0). 

Lemma 1.1 Assume that the mapping f : X → Y is C1 and compact in a 
neighborhood of x0. Then f '(x0) is also compact. 

Proof On the contrary, suppose that A = f '(x0) is not compact. Then there exist 
{xi} with ||xi|| = 1 and ε >  0 such that 

. ||Axi − Axj|| > ε, ∀ i /= j.

Take δ >  0 sufficiently small such that 

. ||f (x0 + δxi) − f (x0) − δAxi|| < εδ/4, ∀ i.

Without loss of generality, suppose x0 = 0. Then, for i /= j , 

. 

εδ/2 > ||f (δxi) − f (δxj ) − δAxi + δAxj||
> ||δAxi − δAxj|| − ||f (δxi) − f (δxj )||
> εδ − ||f (δxi) − f (δxj )||,

i.e., 

. ||f (δxi) − f (δxj )|| > εδ/2, ∀ i /= j.

This is a contradiction to the compactness of f . nu
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We end this subsection by recalling the mean value formula: let  U be an open 
convex set and f ∈ C1(U). Then, for any x, x' ∈ U , 

. f (x') − f (x) =
f 1

0

d

dt
f (tx' + (1 − t)x)dt

=
f 1

0
fx(tx

' + (1 − t)x)dt (x' − x). (1.1) 

1.2.2 Gâteaux Derivative 

Definition 1.2 Let f : U ⊂ X → Y , and x0 ∈ U . If, for any h ∈ X satisfying 
x0 + th  ∈ U when t is sufficiently small, the limit 

. lim
t→0

f (x0 + th) − f (x0)

t

exists, then we say that f is Gâteaux differentiable at x0, and call such a limit the 
Gâteaux derivative of f at x0 in the direction h, and denote it by fG(x0)h. If  f is 
Gâteaux differentiable at each point of U , we say that f is Gâteaux differentiable in 
U . 

If fG(x0) ∈ B(X, Y ), we say that f has a (bounded, linear) Gâteaux derivative 
at the point x0. 

For the Gâteaux derivative, we have a similar chain rule to that for the Fréchet 
derivative. The following result concerns the relationship between the Fréchet and 
Gâteaux derivatives. 

Theorem 1.1 Let X and Y be two Banach spaces, U ⊂ X be an open set, x0 ∈ U 
and f : U → Y . 

(1) If f is Fréchet differentiable at x0, then f admits a (bounded, linear) Gâteaux 
derivative and f '(x0) = fG(x0), i.e., the Fréchet and Gâteaux derivatives of f 
are equal at x0; 

(2) If f has a (bounded, linear) Gâteaux derivative fG(x) in a neighborhood of x0 
and fG(x) is continuous at x0, then f is Fréchet differentiable at x0, and the 
two derivatives are equal. 

Proof 

(1) By the assumption, it is easy to see that for any h ∈ X, h /= 0, when |t | is 
sufficiently small, we have 

.f (x0 + th) − f (x0) − tf '(x0)h = ω(x0, th),
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where ω(x0, h)  satisfies 

. lim||h||→0

||ω(x0, h)||
||h|| = 0.

Therefore, 

. 
f (x0 + th) − f (x0)

t
− f '(x0)h = ω(x0, th)

t
.

As 

. lim
t→0

||||||||ω(x0, th)

t

|||||||| = lim
t→0

||ω(x0, th)||
||th|| ||h|| = 0,

it follows that 

. lim
t→0

f (x0 + th) − f (x0)

t
= f '(x0)h.

This shows that f is Gâteaux differentiable at x0, and has the Gâteaux derivative 
f '(x0). 

(2) Since the Gâteaux derivative fG(x) is continuous at x0, for any given ε >  0, 
there is a constant δ >  0 such that, when ||h|| < δ, 

.||fG(x0 + h) − fG(x0)|| < ε. (1.2) 

We claim that, when 0 < ||h|| < δ, 

.||f (x0 + h) − f (x0) − fG(x0)h|| < ε||h||, (1.3) 

from which it follows that f is Fréchet differentiable at x0, and f '(x0) = 
fG(x0). 

To see the claim, fix h such that 0 < ||h|| < δ. We may assume that f (x0 + 
h)−f (x0)−fG(x0)h /= 0; otherwise, (1.3) holds evidently. By the Hahn-Banach 
theorem, there exists φ ∈ Y ∗ such that ||φ|| =  1 and 

.φ
(
f (x0 + h) − f (x0) − fG(x0)h

) = ||f (x0 + h) − f (x0) − fG(x0)h||. (1.4) 

Considering the function 

.ϕ(t) = φ
(
f (x0 + th)

)
, 0 < t < 1,
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it is clear that ϕ'(t) = φ
(
fG(x0+th)h

)
. By the mean value formula, there exists 

θ ∈ [0, 1] such that ϕ(1) − ϕ(0) = ϕ'(θ), i.e., 

.φ
(
f (x0 + h) − f (x0)

) = φ
(
fG(x0 + θh)h

)
. (1.5) 

It follows from (1.4), (1.5) and (1.2) that 

. ||f (x0 + h) − f (x0) − fG(x0)h|| = φ
(
f (x0 + h) − f (x0) − fG(x0)h

)
= φ

(
fG(x0 + θh)h − fG(x0)h

)
< ||φ|| · ||fG(x0 + θh) − fG(x0)|| · ||h||
= ||fG(x0 + θh) − fG(x0)|| · ||h||
< ε||h||.

This completes the proof. nu

1.3 Unconditional Local Extremum 

In this book, we shall be making substantial reference to extreme value problems for 
functionals. However, we will not develop the variational method systematically, but 
simply cover the essential topics so as to achieve self-containment. 

Definition 1.3 Let X be a Banach space and .U ⊂ X. We say that a functional 
.f : U → R is lower semi-continuous (weakly lower semi-continuous) in  U if 
.U e xi → x ∈ U (U e xi - x ∈ U) implies .lim infi→∞ f (xi) > f (x). 

Analogously, a functional .f : U → R is said to be upper semi-continuous 
(weakly upper semi-continuous) in  U if . U e xi → x ∈ U (U e xi - x ∈ U)

implies .lim supi→∞ f (xi) < f (x). 

Definition 1.4 Let X be a Banach space. We say that a functional . f : U ⊂ X → R

achieves the unconditional local minimum (unconditional local maximum) at the  
point .x0 ∈ U if there is a neighborhood .Σ(x0) of . x0 such that, for all .x ∈ U∩Σ(x0), 

. f (x) > f (x0)
(
f (x) < f (x0)

)
.

Definition 1.5 Let X be a Banach space, .U ⊂ X, and .f : U → R be a functional 
that is bounded from below. A sequence .{xi}∞i=1 ⊂ U is called a minimizing 
sequence if .limi→∞ f (xi) = infx∈U f (x). 

Theorem 1.2 Let X be a Banach space and .U ⊂ X be an open set. Suppose that 
the functional f achieves an unconditional extremum at the point .x0 ∈ U , and that 
f is Gâteaux differentiable at . x0. Then, for any .h ∈ U , .fG(x0)h = 0.
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Proof We may assume that f achieves an unconditional local minimum at .x0 ∈ U . 
Then there is a neighborhood .Σ(x0) of . x0 such that 

. f (x) > f (x0), ∀ x ∈ U ∩ Σ(x0).

Given .h ∈ X, we note that the function .Fh(t) := f (x0 + th) is well defined for . |t |
sufficiently small, and achieves its minimum at .t = 0. Hence .F '

h(0) = 0, and 

. fG(x0)h = lim
t→0

f (x0 + th) − f (x0)

t
= lim

t→0

Fh(t) − Fh(0)

t
= F '

h(0) = 0.

The proof is complete. nu
The following theorem is a generalization of the Weierstrass theorem: 

Theorem 1.3 Let X be a Banach space, the set .U ⊂ X be weakly compact. Suppose 
that the functional .f : U → R is weakly lower semi-continuous in U . Then f is 
bounded from below and achieves an infimum in U , i.e., there exists .x0 ∈ U such 
that 

. f (x0) = inf
x∈U

f (x).

This . x0 is called a minimizer of f in U . 

Proof If .c := infx∈U f (x) = −∞, then there exists .{xn}∞n=1 ⊂ U such 
that .f (xn) < −n. Since U is weakly compact, we may assume that . xn -

x0 ∈ U . Owing to the weak lower semi-continuity of f , we have  . f (x0) <
lim infn→∞ f (xn) = −∞. This contradiction tells us that f is bounded from below 
in U , and hence f admits an infimum. Let .{xi}∞i=1 ⊂ U be a minimizing sequence, 
i.e., .f (xi) → c as .i → ∞. Since U is weakly compact, we may assume that 
.xi - x0 ∈ U . The weak lower semi-continuity of f gives 

. c < f (x0) < lim inf
i→∞ f (xi) = lim

i→∞ f (xi) = c,

i.e., .f (x0) = c. The proof is complete. nu
Corollary 1.1 Let X be a reflexive real Banach space, .K ⊂ X be a weakly closed 
set, and f be a weakly lower semi-continuous functional in K . Moreover, if K is 
unbounded, we assume further that f satisfies . lim

x∈K, ||x||→∞ f (x) = ∞. Then f 

achieves an infimum in K , i.e., there exists a minimizer .x0 ∈ K such that . f (x0) =
infx∈K f (x). 

Proof When K is bounded, it must be weakly compact since X is reflexive, and the 
assertion follows from Theorem 1.3.
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Now we suppose that K is unbounded. As . lim
x∈K, ||x||→∞ f (x) = ∞, one can find 

.x∗ ∈ K and a constant .r > 0 such that .f (x∗) > 0, and .f (x) > f (x∗) when 

.x ∈ K and .||x|| > r . As a closed ball of a reflexive Banach space is weakly compact 
and K is weakly closed, and so .U = K ∩ Br(0) is weakly compact. Hence, by 
Theorem 1.3, there exists .x0 ∈ U such that .f (x0) = infx∈U f (x). It is obvious that 
.x∗ ∈ U . Therefore, 

. f (x0) < f (x∗) < f (x), ∀ x ∈ K \ U,

and hence .f (x0) = infx∈K f (x). This finishes the proof. nu
Theorem 1.4 Suppose that X is a reflexive real Banach space, and the functional 
f is bounded from below and weakly lower semi-continuous in X. If there exists a 
bounded minimizing sequence, then f achieves the minimum in X. 

Proof Since f is bounded from below, it has an infimum. Let .{xi}∞i=1 ⊂ X be the 
bounded minimizing sequence, i.e., .limi→∞ f (xi) = infx∈X f (x) and there exists a 
positive constant C such that .||xi|| < C for all i. Taking into account the reflexivity 
of X, it follows that .{xi}∞i=1 is a weakly sequentially compact set. We may assume 
that .xi - x0 ∈ X. Thanks to the weak lower semi-continuity of f , we have  

. inf
x∈X

f (x) < f (x0) < lim inf
i→∞ f (xi) = lim

i→∞ f (xi) = inf
x∈X

f (x).

Thus, .f (x0) = infx∈X f (x). The proof is complete. nu

1.4 Applications 

We will give two examples of applications to the study of quasi-linear boundary 
value problems. These results will be used in Chap. 7. 

Example 1.1 Let .1 < p < ∞, and define . p∗ as follows: 

. p∗ = np

n − p
if p < n, p∗ = ∞ if p > n.

Consider the boundary value problem 

. − Δpu = |u|q−2u in Ω, u = 0 on ∂Ω, (1.6) 

where .p > 1, .1 < q < p∗, .q /= p, and . Δp is the p-Laplacian defined by . Δpu =
div(|∇u|p−2∇u).
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A function .u ∈ W
1,p
0 (Ω) is said to be a weak solution of (1.6) if 

. 

f
Ω

|∇u|p−2∇u · ∇φ =
f

Ω

|u|q−2uφ, ∀ φ ∈ W
1,p
0 (Ω).

According to the Poincaré inequality, .||∇u||p is the norm of .W 1,p
0 (Ω). The  

imbedding theorem indicates that .W 1,p
0 (Ω) is imbedded in .Lq(Ω) compactly. Thus, 

there exists a positive constant C so that 

.||u||q < C||∇u||p, ∀ u ∈ W
1,p
0 (Ω). (1.7) 

Define 

. A(u) = 1

p

f
Ω

|∇u|p, B(u) = 1

q

f
Ω

|u|q,

Y = {
u ∈ W

1,p
0 (Ω) : B(u) = 1

}
.

Theorem 1.5 The problem (1.6) admits at least one non-trivial and non-negative 
weak solution. 

Proof We first prove that the set Y is weakly closed. Suppose .um ∈ Y and . um - u

in .W 1,p
0 (Ω). Then the sequence .{um}∞m=1 is bounded in .W 1,p

0 (Ω) and compact in 
.Lq(Ω). We can find a subsequence .{umi

}∞i=1 ⊂ {um}∞m=1 so that .umi
→ u in .Lq(Ω). 

Since .B(umi
) = 1, we have .B(u) = 1, i.e., .u ∈ Y . 

It is clear that .A(u) is weakly lower semi-continuous in Y (for the weak lower 
semi-continuity of norms, refer to Exercise . 1.2) and . lim||∇u||p→∞ A(u) = ∞. By  

Corollary 1.1, there exists a minimizer .u0 ∈ Y such that 

. A(u0) = inf
u∈Y

A(u) := σ.

Thanks to (1.7), there is a constant .α > 0 such that .A(u) > α for all .u ∈ Y . 
Consequently, .σ > α > 0. 

Note that both .A(u) and .B(u) are Fréchet differentiable at . u0, and 

. A'(u0)φ =
f

Ω

|∇u0|p−2∇u0 · ∇φ, ∀ φ ∈ W
1,p
0 (Ω),

B '(u0)φ =
f

Ω

|u0|q−2u0φ, ∀ φ ∈ W
1,p
0 (Ω).

Also, .A(u) and .B(u) are both Gâteaux differentiable at . u0, and these Gâteaux 
derivatives are equal to the Fréchet derivatives. In view of the expression of . B(u)

and the definition of the Gâteaux derivative, it follows that, for any .μ > 0, .ε ∈ R
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and .φ ∈ W
1,p
0 (Ω), 

. B(μu0 + εμφ) = μqB(u0 + εφ)

= μq
[
B(u0) + εB '(u0)φ + o(ε)

]

= μq
[
1 + εB '(u0)φ + o(ε)

]
.

Now, there exists .0 < ε0(φ) << 1 such that .1 + εB '(u0)φ + o(ε) > 0 when . |ε| <

ε0(φ). Furthermore, we can find an .μ = μ(ε) > 0 so that . μq
[
1 + εB '(u0)φ +

o(ε)
] = 1, i.e., .B(μu0 + εμφ) = 1. 

For any fixed .φ ∈ W
1,p
0 (Ω), constants .|ε| < ε0(φ) and . μ = μ(ε) > 0

determined as above, we have 

. σ < A(μu0 + εμφ) = μpA(u0 + εφ)

=
( 1

1 + εB '(u0)φ + o(ε)

)p/q

A(u0 + εφ)

=
(
1 − ε

p

q
B '(u0)φ + o(ε)

)[
A(u0) + εA'(u0)φ + o(ε)

]

=
(
1 − ε

p

q
B '(u0)φ + o(ε)

)[
σ + εA'(u0)φ + o(ε)

]

= σ + ε
(
A'(u0)φ − σ

p

q
B '(u0)φ

)
+ o(ε).

It follows that 

. A'(u0)φ = σ
p

q
B '(u0)φ.

Noting that .A(|u|) = A(u), B(|u|) = B(u) and .|u0| ∈ W
1,p
0 (Ω), we have  

. |u0| ∈ Y, A(|u0|) = σ = inf
u∈Y

A(u).

Similar to the above, we can prove .A'(|u0|)φ = σ
p
q
B '(|u0|)φ. Clearly, the function 

.u = λ|u0|, with .λ = (q/(σp))1/(p−q), is in .W
1,p
0 (Ω) and satisfies 

. A'(u)φ = B '(u)φ, ∀ φ ∈ W
1,p
0 (Ω).

This shows that u is a non-trivial and non-negative solution of (1.6). nu
Remark 1.1 The author of [144] proved Theorem 1.5 by a different method, and 
Theorem II of [144] asserts that the solution u is in .L∞(Ω), and satisfies . ||u||∞ <
ed , where
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. d = p∗ − p

p(p∗ − q)

[
q ln ||u||q + pp∗

p∗ − p
ln

[
K(q − k−)

] + p∗
( p

p∗ − p

)2
ln

p∗
p

]
,

k = p∗(q − p)

p∗ − p
, p∗ =

{
p∗ = np/(n − p) if p < n,

2max{p, q} if p = n,

and K is the imbedding constant from .W
1,p
0 (Ω) to .Lp∗(Ω), .k− = min{k, 0}. 

Making use of Theorems 7.2 and 7.3 in Chap. 7, we can see that the non-trivial 
and non-negative solution of (1.6) is in .C1+α(Ω) and must be positive. 

Example 1.2 Let .1 < p < ∞, .p' = p/(p − 1) and .f ∈ Lp'
(Ω). Consider the 

boundary value problem 

. − Δpu + g(x, u) = f (x) in Ω, u = 0 on ∂Ω. (1.8) 

Denote the primitive function of g by 

. G(x, u) =
f u

0
g(x, s)ds.

Suppose that 

(G1) The function .G : Ω × R → [0,∞) is measurable with respect to x, and is 
lower semi-continuous in u; 

(G2) The set 

. K := {
u ∈ W

1,p
0 (Ω) : G(x, u) ∈ L1(Ω)

} /= ∅.

A function .u ∈ W
1,p
0 (Ω) is said to be a weak solution of (1.8) if 

. 

f
Ω

|∇u|p−2∇u · ∇φ +
f

Ω

g(x, u)φ =
f

Ω

f φ, ∀ φ ∈ W
1,p
0 (Ω).

Theorem 1.6 Under the above assumptions (G1) and (G2), the problem (1.8) has 
at least one weak solution .u ∈ W

1,p
0 (Ω). 

Proof Define a functional 

. J (u) = 1

p

f
Ω

|∇u|p +
f

Ω

G(x, u) −
f

Ω

f u.

By virtue of the assumption (G1), the Sobolev inequality and Young inequality, it 
is easy to see that .J (u) is bounded from below in K . Denote its infimum by M and 
a minimizing sequence by .{ui}∞i=1 ⊂ K . As above, there is a positive constant C,
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independent of i, such that .
f
Ω

|∇ui |p < C. As  .W 1,p
0 (Ω) is reflexive, there exist a 

subsequence of .{ui}∞i=1, denoted by itself, and a function .u ∈ W
1,p
0 (Ω), such that 

.∇ui - ∇u and .ui → u in .Lp(Ω). 
Using the lower semi-continuity of .G(x, u) in u and Fatou’s lemma, it follows 

that 

. 

f
Ω

G(x, u) < lim inf
i→∞

f
Ω

G(x, ui).

Since .G(x, u) > 0, the above inequality implies that .u ∈ K . Applying the weak 
lower semi-continuity of the functional .I [u] = f

Ω
|∇u|p, we get .J (u) < M . Thus, 

.J (u) = M , i.e., .J (u) = infy∈K J (y). 

In view of Theorem 1.2, it can be deduced that, for any given .φ ∈ W
1,p
0 (Ω), 

. 

f
Ω

|∇u|p−2∇u · ∇φ +
f

Ω

g(x, u)φ =
f

Ω

f φ.

This shows that .u ∈ W
1,p
0 (Ω) is a weak solution of (1.8). nu

Notes 

The materials in Sects. 1.2 and 1.3 are standard and can be found in textbooks on 
nonlinear functional analysis such as [78]. The contents of Sect. 1.4 are standard 
applications of critical point theory and the weak convergence method. 

Exercises 

1.1 Prove the mean value formula (1.1). 
1.2 Prove that the norm is weakly lower semi-continuous.



Chapter 2 
Eigenvalue Problems of Second Order 
Linear Elliptic Operators 

Eigenvalue problems have a wide range of applications. In particular, the existence 
of positive solutions to second order semi-linear and quasi-linear elliptic equations 
and systems depends critically on the principal eigenvalue (the first or smallest 
eigenvalue) of a corresponding eigenvalue problem. In this chapter, we introduce 
the theory of eigenvalue problems for second order linear elliptic operators. These 
results will be used extensively in the later chapters. In the last chapter, we will also 
introduce the eigenvalue problem for the p-Laplace operator. 

We first discuss the eigenvalue problem of a second order linear elliptic operator 
in general form: 

.L u = λu in Ω, Bu = 0 on ∂Ω, (2.1) 

where the operators . L and . B satisfy the conditions (A)–(C) (see pp. 2, 3), and . λ is 
a (real or complex) number. As the operator .(L ,B) is asymmetrical, its eigenvalue 
structure is very complex. However, in applications, we are usually only concerned 
with the principal eigenvalue. Hence we will only focus on that here. 

After discussing the general form, we shall focus on the special case of the second 
order linear elliptic operator in divergence form: 

.Ldu = λu in Ω, Bdu = 0 on ∂Ω, (2.2) 

where . Ld satisfies the condition (A) and .aij , c ∈ L∞(Ω), and . Bd is 

.Bdu = u, (2.3) 

or 

.Bdu = aij (x)Diu cos(n, xj ) + b(x)u, b(x) > 0. (2.4) 
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Here, we note that the operator .(Ld ,Bd) is symmetrical, and its eigenvalue 
structure can be fully explicated. 

A number . λ is called an eigenvalue of (2.1) or (2.2) if the problem (2.1) or (2.2) 
has a non-trivial solution for such . λ, and the corresponding non-trivial solution u 
is called the corresponding eigenfunction to . λ. In this case, the pair .(λ, u) is called 
the eigenpair of (2.1) or (2.2). If the corresponding eigenfunction is positive or 
negative, such an eigenvalue is called the principal eigenvalue. Let . λ be a principal 
eigenvalue and . φ be the corresponding positive eigenfunction. The pair .(λ, φ) is 
called the principal eigenpair. 

2.1 Principal Eigenvalue of the Non-divergence Operator 

In this section we will introduce the existence and uniqueness of principal eigen-
value of the eigenvalue problem (2.1), and equivalent forms of the maximum 
principle. 

2.1.1 The Existence and Uniqueness of Principal Eigenvalue 

We first recall the Krein-Rutman theorem, which concerns the existence of positive 
eigenfunctions. 

Let E be a Banach space. A set .P ⊂ E is called a cone if it has the following 
properties: 

(1) .x, y ∈ P implies .x + y ∈ P ; 
(2) for any .x ∈ P and .λ > 0, we have .λx ∈ P ; 
(3) if .x ∈ P and .x /= 0, then .−x /∈ P . 

Suppose that P is a closed cone in E. If .P − P = E, i.e., the set . {u − v : u, v ∈
P } is dense in E, then P is said to be a total cone. If a cone has a nonempty interior 
. P ◦, then it is said to be a solid cone. 

Let . A be a linear operator. If .A(P ) ⊂ P , we say that . A is positive with respect 
to P . If .A(P \ {0}) ⊂ P ◦, we say that . A is strongly positive with respect to P . 

Let . A be a bounded linear operator and .σ(A) be the spectrum of . A. The number 

. r(A) = sup
{|λ| : λ ∈ σ(A)

}

is called the spectral radius of . A. Note that when . A is a compact linear operator 
then 

.r(A) = sup
{|λ| : λ is an eigenvalue of A

}
.
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Theorem 2.1 (Krein-Rutman Theorem (the Weak Version) [96, 46]) Let E be 
a Banach space and P a total cone in E. Let .A : E → E be a positive compact 
linear operator with respect to P , and .r(A) > 0. Then .r(A) is an eigenvalue of . A, 
with the corresponding eigenvector .u ∈ P . 

Theorem 2.2 (Krein-Rutman Theorem (the Strong Version) [96, 46, 203]) Let 
E be a Banach space and P a solid cone in E. Let .A : E → E be a strongly 
positive compact linear operator with respect to P , and . A∗ be its adjoint. Then, 

(1) .r(A)> 0 is a geometrically simple eigenvalue of . A pertaining to an eigenvector 
.u ∈ P ◦; 

(2) .r(A) is algebraically simple; 
(3) for any eigenvalue . μ of . A, .μ /= r(A) implies .|μ| < r(A); 
(4) eigenvectors corresponding to the other eigenvalues are not in P ; 
(5) .r(A) is an algebraically simple eigenvalue of . A∗, with an eigenvector . u∗

0 which 
is a strictly positive functional: .<u∗

0, u> > 0 for any .u ∈ P ◦; moreover, any 
eigenvector of . A∗ in .(P \ {0})∗ corresponds to .r(A). 

In the applications to differential equations, E is usually a function space, . A the 
inverse of a linear differential operator, and P a positive cone consisting of non-
negative functions of E. 

We first give a technical lemma. 

Lemma 2.1 Let . Ω be of class . C1, .u, v ∈ C1(Ω) with .u|∂Ω = 0, v|∂Ω > 0, . u > 0
in . Ω , and .∂nu|∂Ω < 0. Then there exists a constant .ε > 0 such that .u + εv > 0 in 
. Ω . 

Proof Since .u, v ∈ C1(Ω) and .∂nu|∂Ω < 0, we have  .∂n(u + ε1v)|∂Ω < 0 when 
.0 < ε1 << 1. Noting that .(u + ε1v)|∂Ω > 0, there is a subset .Ω0 c Ω such that 
.u + ε1v > 0 in .Ω \ Ω0. As .u > 0 in . Ω0, we can find .ε2 > 0 such that . u + ε2v > 0
in . Ω0. Take .ε = min

{
ε1, ε2

}
. Then we reach the desired conclusion. nu

Now we investigate the principal eigenvalue of (2.1). We first look at the 
Dirichlet boundary condition: .Bu = u. 

Take .E = {u ∈ C1(Ω) : u|∂Ω = 0}. We first assume  that  .c(x) > 0. For any 
given .u ∈ E, the linear problem 

. L v = u(x) in Ω, v = 0 on ∂Ω

admits a unique solution .v ∈ C1+α(Ω) ∩ E. Define .Au = v. Since the imbedding 
.C1+α(Ω) c→ C1(Ω) is compact, we see that . A is a linear compact operator. Define 

.P = closure
{
u : u ∈ E, u|Ω > 0, ∂nu|∂Ω < 0

}
.
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Then P is a closed cone in E, and the interior .P ◦ /= ∅. In fact, by virtue of 
Lemma 2.1, it is easy to prove that 

. P ◦ = {u : u ∈ E, u|Ω > 0, ∂nu|∂Ω < 0
}
.

According to the strong maximum principle and Hopf boundary lemma, it is clear 
that .Au ∈ P ◦ for all .u ∈ P \ {0}, i.e., . A is strongly positive with respect to P . 
Theorem 2.2 indicates that there exists a unique function .v ∈ P ◦ with . ||v|| = 1
such that .Av = r(A)v, while the other eigenvalues . μ of . A satisfy .|μ| < r(A). 
Therefore, 

. v = L (Av) = r(A)L v, i.e., L v = 1

r(A)
v,

and hence .λ1 = 1/r(A) > 0 is an eigenvalue of 
(2.1), and the corresponding eigenfunction .v > 0 in . Ω . 
From the above investigation we see that eigenvalues of (2.1) and eigenvalues 

of . A have a one-to-one, reciprocal relationship (note that 0 is not an eigenvalue 
of either). As .c(x) > 0, by the maximum principle, it is easy to deduce that the 
real eigenvalues of (2.1) are positive, and thus so are the real eigenvalues of . A. 
Since the other eigenvalues . μ of . A satisfy .|μ| < r(A), we see that the other 
eigenvalues . λ of (2.1) satisfy .|λ| > λ1. As  .r(A) is a simple eigenvalue of . A, so  
is . λ1 for (2.1). Moreover, the eigenfunction corresponding to . λ1 has no zero in . Ω , 
while the eigenfunctions corresponding to the other eigenvalues must change sign 
if they are real. It can also be proved that . λ1 has the smallest real part among all 
eigenvalues ( [54, Theorem 1.2]). 

For the general case, take a constant .C > 0 so that .C + c(x) > 0 in . Ω . Rewrite 
the eigenvalue problem (2.1) as 

. L u + Cu = (λ + C)u in Ω, u = 0 on ∂Ω.

Summing up the above discussion we have the following theorem. 

Theorem 2.3 (Existence and Uniqueness of Principal Eigenvalue) The eigen-
value problem (2.1) has a unique principal eigenvalue which is simple, real and 
has the smallest real part among all eigenvalues. Moreover, the eigenfunctions 
corresponding to the other eigenvalues must change sign in . Ω when they are real. 
By the spectral theory for compact operators, (2.1) has at most countably many 
eigenvalues. 

When the boundary condition is .∂nu + b(x)u = 0, we have the analogous 
conclusions. 

If . Ω is of class .C2+α and the coefficients of . L are Hölder continuous, i.e., the 
condition (B. α) (see p.3) holds, then the eigenfunction belongs to .C2+α(Ω) for the 
boundary condition .Bu = u. If, in addition, .b ∈ C1+α(Ω), then the eigenfunction 
belongs to .C2+α(Ω) for the boundary condition .Bu = ∂nu + bu.
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Theorem 2.4 Suppose that .b ∈ C(∂Ω), and b, .c > 0. Let .λ1(L ,B) be the 
principal eigenvalue of (2.1). If either  .c(x) /≡ 0 or .b(x) /≡ 0, then .λ1(L ,B) > 0. 
If .c(x) ≡ b(x) ≡ 0, then .λ1(L ,B) = 0. 

For the existence of principal eigenvalue, we have the following more general 
results. 

Theorem 2.5 (Existence and Uniqueness of Principal Eigenvalue [9, Theorem 
12.1], [11, Theorem 2.2]) Let . L be strongly elliptic in . Ω with .aij ∈ C(Ω), 
.bi, c ∈ L∞(Ω), and . Ω be of . C2. Assume that . Γ0 and . Γ1 are two disjoint open and 
closed subsets of .∂Ω with .Γ0 ∪ Γ1 = ∂Ω . Consider the eigenvalue problem 

.L u = λu in Ω, B∗u = 0 on ∂Ω, (2.5) 

where 

.B∗u =
{

u on Γ0,

∂nu + b(x)u on Γ1,
(2.6) 

and .b ∈ C(Γ1) with .b(x) > 0. Then, (2.5) has a unique simple and real eigenvalue, 
denoted by . λ1, its corresponding eigenfunction is positive in . Ω . Thus, . λ1 is the 
principal eigenvalue. Moreover, . λ1 is the eigenvalue having the smallest real part. 

Let’s consider the case of bounded coefficients. 

Theorem 2.6 (Existence and Uniqueness of Principal Eigenvalue [54, Theorem 
2.7]) Let .aij ∈ C(Ω) ∩ L∞(Ω), .bi, c ∈ L∞(Ω). Suppose that . L is strongly 
elliptic in . Ω , and . Ω has Lipschitz boundary. Then the following conclusions hold 
for .p > n. 

(1) There exist a real number . λ1 and a function .ϕ1 ∈ W
2,p
loc (Ω) ∩ C(Ω), .ϕ1 > 0 in 

. Ω , such that 

. L ϕ1 = λ1ϕ1 in Ω, ϕ1 = 0 on ∂Ω;

(2) If .ψ ∈ W
2,p
loc (Ω) ∩ C(Ω) with .ψ > 0 in . Ω , .λ ∈ C and satisfy 

. L ψ = λψ in Ω, ψ = 0 on ∂Ω,

then .λ = λ1, and . ψ is a multiple of . ϕ1; 

(3) If .ψ ∈ W
2,p
loc (Ω) ∩ C(Ω) (possibly complex-valued) with .ψ /≡ 0, .λ ∈ C and 

satisfy 

. L ψ = λψ in Ω, ψ = 0 on ∂Ω,

then .λ /= λ1 implies Re.λ > λ1. 

These show that . λ1 is the principal eigenvalue and it exists uniquely.
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Before ending this section, we shall mention the eigenvalue problem with signed 
weight function 

.L u = λm(x)u in Ω, Bu = 0 on ∂Ω, (2.7) 

where . Ω is a bounded and smooth domain in . Rn. 
Similar to the above, using Theorem 2.1 we can prove the following theorem. 

Theorem 2.7 Let .c(x) ≥ 0, .m ∈ L∞(Ω) and .m(x) > 0 in . Ω . Then the conclusion 
of Theorem 2.3 holds for (2.7). Moreover, if either .c(x) /≡ 0 or .b(x) /≡ 0, then the 
principal eigenvalue of (2.7) is positive. 

2.1.2 Equivalent Forms of the Maximum Principle 

We have already mentioned above that the principal eigenvalue of corresponding 
eigenvalue problems plays an important role in the study of elliptic partial differen-
tial equations. To underscore this, in this section we study the relations between 
the principal eigenvalue, maximum principle and positive strict upper solution 
for second order linear elliptic equations. We first consider the case with smooth 
coefficients and the general boundary operator . B∗, i.e., the coefficients of . L satisfy 
the condition (B. α), and the operator . B∗ is defined by (2.6) with .b ∈ C1+α(∂Ω). 

Definition 2.1 An operator .(L ,B∗) is said to have the strong maximum principle 
property if, for any function .u ∈ C(Ω ∪ Γ0) ∩ C1(Ω ∪ Γ1) ∩ C2(Ω), from  

. L u > 0, u /≡ 0 in Ω, B∗u > 0 on ∂Ω,

one can conclude .u > 0 in . Ω . 

Definition 2.2 A function .u ∈ C(Ω ∪ Γ0) ∩ C1(Ω ∪ Γ1) ∩ C2(Ω) is said to be an 
upper solution (a lower solution) of the operator .(L ,B∗) if 

. L u > (<) 0 in Ω, B∗u > (<) 0 on ∂Ω.

It is called a strict upper solution (strict lower solution) if it is an upper solution (a 
lower solution) but not a solution. 

Theorem 2.8 (Equivalent Forms of the Maximum Principle [54, Theorem 2.4]) 
Let . L be strongly elliptic in . Ω , the condition (B. α) hold, and let the boundary 
operator .B∗ be given by (2.6). Suppose that .∂Ω ∈ C2+α and .b ∈ C1+α(Γ1). 
Then the following statements are equivalent: 

(1) .(L ,B∗) has the strong maximum principle property when restricted to the 
function space .C1(Ω) ∩ C2(Ω);


