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Someone once told me that time was a 
predator that stalked us all our lives. But I 
rather believe that time is a companion who 
goes with us on the journey—reminds us to 
cherish every moment, because they’ll never 
come again. 

What we leave behind is not as important as 
how we’ve lived. 

After all, Number One, we’re only mortal. 

—Captain Jean-Luc Picard
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Abstract 

In the electroweak sector of the Standard Model (SM), comparing precise measure-
ments with predictions built on the SM’s assumptions offers one of the principal 
avenues for indirect discoveries of new physics. The W boson mass, mW , is a key  
SM parameter that is notoriously difficult to measure at hadron colliders, and the 
lack of high-precision measurements of it limits the sector’s discovery power. Mean-
while, the SM’s fundamental property of lepton flavour universality (LFU) has been 
questioned by hints of discrepancy in recent measurements of rare B-meson decays 
and legacy tests of W-boson decays. This thesis presents two measurements using 
LHCb’s 2016 data that address these important issues: first, a proof-of-principle 
extraction of mW that paves the way for a competitive legacy measurement; and 
second, a test of the W boson’s LFU in decays to tau leptons and muons that, when 
completed, will validate and complement other recent measurements shedding light 
on previous LFU anomalies. 

The value of mW was measured to be 

mW = 80354 ± 23stat ± 10exp ± 17theory ± 9PDF MeV, 

which is consistent with previous direct measurements and indirect SM predictions. 
It is not consistent with the very recent CDF measurement, and therefore places 
LHCb in a prime position to address this high-profile disagreement with a future 
measurement using all available data. 

LHCb is currently undergoing commissioning for a fresh period of data-taking, 
which features a brand-new detector, a factor of five more collisions and a 
fully redesigned trigger system. The development of the trigger validation tool 
HltEfficiencyChecker is also presented, which plays a crucial role in facili-
tating trigger optimization that fully exploits the new detector, whilst also conforming 
to its constraints. This tool helped the collaboration decide that the new first-level 
trigger should be implemented with GPUs, and is now widely used in LHCb, as 
exemplified in the development of trigger selections for electroweak processes in 
Run 3 presented here.
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Chapter 1 
Introduction 

Particle physics is the field that studies the smallest building blocks of the universe 
and how they interact with one another via the fundamental forces. Although the 
objects of interest are infinitesimally small, almost everything else about particle 
physics is remarkably large. The field is a colossal endeavour that features tens 
(perhaps hundreds) of thousands of scientists around the globe–a field of cathedral-
sized detectors, that surround atom-smashers of tens of kilometres in length which 
produce conditions similar to the moments after the Big Bang. The goals of the 
field are suitably lofty as well: particle physics is really trying to understand how 
everything works, at least on the most basic scale. What could be more grand a 
pursuit? 

Although humans have always been curious about the universe and what it is made 
of, modern particle physics emerged at the turn of the 20th century. Experiments 
began to peer into the atom and to question the duality of waves and particles, and 
suddenly humanity’s understanding of the microscopic world was revolutionized by 
the nascent theories of quantum mechanics. Particle physics since then has always 
been a highly predictive field; innovations in the mathematical theories give precise 
predictions of what particles should be seen and when they should be seen–it is then 
up to the experimentalists to devise an experiment to find them. Throughout the mid-
late 20th century, this back-and-forth between theorists and experimentalists was 
extremely productive. Dozens of particles discoveries from the 1930s to 1950s lead 
theorists to the quark model, which says that the protons and neutrons that make 
up the nuclei of all the atoms in the human body are in fact made of quarks, and 
that these–along with the electron, a lepton—are the true fundamental particles. As 
the century came to a close more quarks and more leptons arrived on the scene at 
particle physics experiments, and the field’s theorists were able to bookkeep them 
all together into one coherent and beautiful theory: the “Standard Model” of particle 
physics. 
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2 1 Introduction

The Standard Model is arguably the biggest theoretical achievement of the field. 
It describes, in just a few lines of mathematics, how all the fundamental particles 
interact with each other. Its equations have had staggering success at predicting the 
outcomes of experiments. Besides a few hints of discrepancy—some of which this 
thesis will go into—every result from every particle physics experiment 1 over the last 
half-century has aligned with the expectations of the SM. The discovery of the Higgs 
boson [ 2, 3] in 2012 by the ATLAS and CMS experiments at the Large Hadron 
Collider (LHC) was the cherry on the cake—proof of the Higgs mechanism that 
holds the SM together and gives mass to the fundamental particles. This discovery— 
although expected—was spectacular, and can count the author of this thesis as among 
the many it inspired into particle physics. 

Today, the SM stands unfazed by the ceaseless and painstaking examinations 
physicists have devised to unearth its flaws. However, for all its predictive power in 
atom-smashing experiments, there are several important features of the universe it 
cannot describe. Gravity—one of the four fundamental forces of the universe—is 
conspicuously absent. It has no answer for the origin or particle content of the “dark 
matter” that is theoretically necessary to explain both the formation of galaxies and 
their observed patterns of rotation. To the best of humanity’s knowledge, the universe 
is dominated by matter rather than antimatter, yet the SM predicts that they should’ve 
been created in equal measure by the Big Bang, and gives no mechanism to yield 
the observed matter-antimatter asymmetry. There are further theoretical problems, 
all clearly showing that something is missing, and that the SM cannot be the ultimate 
theory of the universe’s fundamental interactions. 

So where to go next? A fine question, and if you get the correct answer you will 
surely get a call from the Royal Swedish Academy of Sciences that you do not want to 
miss. There are a plethora of theories around describing how to extend, generalize or 
modify the SM to solve the problems listed above, but to prove any of them requires 
experimental confirmation of their beyond-the-Standard-Model (BSM) phenomena. 
Another angle to take is to test the SM’s predictions at ever higher precision, hoping 
to see a significant-enough deviation to suggest what theoretical direction should be 
followed—a foot in the door. A large portion of the field is dedicated to this angle 
of attack, and it is the trajectory that is taken here. The electroweak (EW) part of the 
SM (responsible for the everyday force of electromagnetism, and the nuclear weak 
force that keeps the stars shining) is a fertile ground for such high-precision tests: 
relatively-speaking, it is extremely well-understood theoretically; the physics pro-
cesses involved are comparatively simple; and it is at the centre of the SM formalism. 
For these reasons however, there is a long history of electroweak precision measure-
ments at particle colliders, and increasing the level of precision requires supreme 
effort in understanding the potential experimental biases, and constant innovation in 
theoretical predictions to match.

1 The discovery of neutrino oscillations in 1998 [ 1] provided evidence that neutrinos have mass, 
which is not strictly predicted by the SM. However, it can be easily incorporated, and as such it is 
debatable whether this is truly a beyond-the-Standard-Model phenomenon. 
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This thesis describes two high-precision tests of the EW sector of the SM: a 
measurement of the W boson mass, and a test of the W boson’s property of “lepton 
flavour universality”. The meaning of the latter property will be described in due 
course, as will the motivations for making these particular measurements. Both take 
place using data collected in 2016 by the LHCb [ 4] experiment at the LHC. LHCb was 
primarily designed as an experiment for studying the physics of hadrons containing 
charm and beauty quarks in the aim of shedding light on the aforementioned matter-
antimatter asymmetry, but has broadened since its inception into a general-purpose 
physics experiment. The measurements here contribute to an increasingly impressive 
catalogue of EW precision measurements. At the time of writing, LHCb is emerging 
from a major upgrade designed to vastly increase its physics reach. A notable part 
of that upgrade is a complete redesign of its trigger system to fully exploit the new 
detector’s capabilities and the larger rate of data that it will collect in the coming years. 
The author has played a part in this upgrade, first by developing tools to facilitate 
optimization of the new trigger system, and then in writing trigger “selections” to 
pick out those collision events that involve EW processes. The latter work ensures 
the data will be collected to allow further high-precision EW tests in the future. 

The structure of the thesis is as follows. To fully understand the measurements 
introduced, a brief primer of the required theoretical background is presented in 
Chap. 2. It was mentioned that supreme understanding of the experimental apparatus 
is required, so Chap. 3 describes the LHCb experiment. The author’s work on the 
upgraded trigger system is the subject of Chap. 4. The thesis then goes into further 
depth on the theoretical modelling aspects of precision EW physics in Chap. 5, fol-
lowed by the detector modelling strategies in Chap. 6. The author’s primary contribu-
tion to the W mass measurement was the study of muon reconstruction efficiencies, 
which is presented by Chap. 7. This is followed directly by description of the W 
mass measurement in its entirety in Chap. 8. Chapter 9 concerns the test of the W 
boson’s lepton flavour universality. Finally, conclusions of the thesis are presented 
in Chap. 10. 

1.1 Conventions and Coordinates 

Before diving deep into the theory of the SM, the reader should be aware of a number 
of conventions used throughout the thesis: 

• In the electroweak process .qq → Z/γ∗ → ℓℓ (. ℓ is a lepton, . q and . q are a quark 
and an antiquark respectively), where the interaction can be mediated by either a 
Z boson or a photon, only Z will be used to denote both, 

• In particle decays, the charge of the particles will usually be omitted, both for 
brevity and because the inclusion of both charges is usually implied, e.g. W → μν 
is used in place of both W+ → μ+νμ and W− → μ−νμ. The slightly more complex 
case of W → (τ → μνν) ν corresponds to both .W+ → (τ+ → μ+νμντ )ντ and 
.W− → (τ− → μ−νμντ )ντ ,


