

Edited by Christoph Brabec, Ullrich Scherf,
and Vladimir Dyakonov

Organic Photovoltaics

Materials, Device Physics,
and Manufacturing Technologies

Second Edition

Edited by
Christoph Brabec,
Ullrich Scherf, and
Vladimir Dyakonov

Organic Photovoltaics

Related Titles

Scheer, R., Schock, H.

**Chalcogenide Photovoltaics
Physics, Technologies, and Thin Film
Devices**

2011

ISBN: 978-3-527-31459-1 (Also available in
digital formats)

Luque, A., Hegedus, S. (eds.)

**Handbook of Photovoltaic
Science and Engineering**

Second Edition

2011

ISBN: 978-0-470-72169-8 (Also available in
digital formats)

García-Martínez, J. (ed.)

**Nanotechnology for the Energy
Challenge**

Second Edition

2013

ISBN: 978-3-527-33380-6 (Also available in
digital formats)

*Edited by Christoph Brabec, Ullrich Scherf, and
Vladimir Dyakonov*

Organic Photovoltaics

Materials, Device Physics, and Manufacturing Technologies

Second Edition

WILEY-VCH
Verlag GmbH & Co. KGaA

The Editors

Prof. Dr. Christoph Brabec

Universität Erlangen-Nürnberg
ZAE Bayern
Martensstr. 7
91058 Erlangen
Germany

Prof. Dr. Ullrich Scherf

Bergische Universität Wuppertal
Macromolecular Chemistry group
(buwmakro), and
Institute for Polymer Technology
Gauss-Str. 20
42119 Wuppertal
Germany

Prof. Dr. Vladimir Dyakonov

Universität Würzburg
Experimentalphysik VI
Am Hubland
97074 Würzburg
Germany

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA,
Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Print ISBN: 978-3-527-33225-0

ePDF ISBN: 978-3-527-65694-3

ePub ISBN: 978-3-527-65693-6

Mobi ISBN: 978-3-527-65692-9

oBook ISBN: 978-3-527-65691-2

Cover Design Grafik-Design Schulz, Fußgönheim, Germany

Typesetting Thomson Digital, Noida, India

Printing and Binding Markono Print Media Pte Ltd, Singapore

Printed on acid-free paper

Contents

List of Contributors XIII

Part One Materials for Thin Film Organic Photovoltaics 1

1 Overview of Polymer and Copolymer Materials for Organic Photovoltaics 3
Solon P. Economopoulos, Grigoris Itskos, Panayiotis A. Koutentis, and Stelios A. Choulis

1.1 Introduction 3
1.2 Early Efforts 4
1.3 Toward Devices with 5% Efficiencies 5
1.4 Novel Thiophene-Containing Polymers 8
1.5 Fluorene-Containing Molecules 11
1.6 Carbazole-Based Copolymers 13
1.7 New Heterocyclic Polymers 15
1.8 Polymers Based on Other Types of Building Blocks 16
1.9 Conclusions 17
1.9 References 18

2 Thiophene-Based High-Performance Donor Polymers for Organic Solar Cells 27
Bob C. Schroeder, Raja Shahid Ashraf, and Iain McCulloch

2.1 Introduction 27
2.2 Bandgap Engineering 28
2.3 Charge Generation in Bulk Heterojunction Organic Solar Cells 29
2.4 Polyalkylthiophenes 31
2.4.1 Synthesis 31
2.4.2 Optical and Solid-State Properties 33
2.5 Polyalkylthiophene/PCBM Blends 35
2.6 Polythiophene Copolymers 37
2.7 Side Chain Functionalized P3AT Derivatives 38
2.8 Third-Generation Polythiophenes 39

2.9	Thiophene-Based Push–Pull Copolymers	42
2.10	Benzo[1,2- <i>b</i> :4,5- <i>b</i> ']dithiophene-Based Polymers	44
2.11	Cyclopenta[2,1- <i>b</i> :3,4- <i>b</i> ']dithiophene-Based Polymers	46
2.12	Indacenodithiophene-Based Polymers	50
2.13	Conclusion and Outlook	54
	References	55
3	Molecular Design of Conjugated Polymers for High-Efficiency Solar Cells	61
	<i>Liqiang Yang, Huaxing Zhou, Andrew C. Stuart, and Wei You</i>	
3.1	Introduction	61
3.2	Structural Features of Conjugated Polymers	63
3.3	“D–A” Approach	64
3.3.1	Rational Design of Conjugated Backbones: “Weak Donor–Strong Acceptor” Copolymer	64
3.3.1.1	“Weak Donor” Moieties to Improve V_{OC}	67
3.3.1.2	Balancing V_{OC} and J_{SC} : Interplay of Bandgap and Energy Levels	71
3.3.1.3	From BT to 4DTBT: Why is a “Soluble Acceptor” Better?	72
3.3.1.4	“Strong Acceptor” Moieties to Increase J_{SC}	73
3.3.2	Side Chains Are NOT Trivial	76
3.3.2.1	Chain Positions	76
3.3.2.2	Shape and Size	80
3.3.3	Substituents Do Matter: The Curious Case of Fluorine	83
3.4	Quinoid Approach	88
3.5	Summary and Outlook	91
	References	91
4	Solution-Processed Molecular Bulk Heterojunction Solar Cells	95
	<i>Jianhua Liu, Bright Walker, and Thuc-Quyen Nguyen</i>	
4.1	Introduction	95
4.2	Monochromophoric Molecules	96
4.2.1	Conjugated Macrocycles and Polycycles	96
4.2.2	Acenes and Heteroacenes	98
4.2.3	Oligothiophenes	103
4.3	Multichromophoric Molecules	105
4.3.1	Colorant Chromophore-Containing Derivatives	107
4.3.1.1	Diketopyrrolopyrrole and Isoindigo Derivatives	107
4.3.1.2	Squaraine Derivatives	111
4.3.1.3	Merocyanine and Borondipyrromethene Derivatives	116
4.3.2	Oligothiophene Derivatives	117
4.3.3	Benzothiadiazole Analogue Derivatives	121
4.3.4	Triphenylamine Derivatives	126
4.4	Summary and Future Directions	129
	References	133

5	Vacuum-Processed Donor Materials for Organic Photovoltaics	139
	<i>Amaresh Mishra and Peter Bäuerle</i>	
5.1	Introduction	139
5.1.1	Basic Characterization of Organic Solar Cells	140
5.2	Planar and Bulk Heterojunction Solar Cells	142
5.3	Summary and Future Prospects	166
	Acknowledgments	167
	References	168
6	Polymer–Nanocrystal Hybrid Solar Cells	171
	<i>Michael Eck and Michael Krueger</i>	
6.1	Introduction	171
6.2	Semiconductor Nanocrystals	172
6.3	Working Principles and Device Structure	177
6.3.1	Donor and Acceptor Materials	181
6.4	Evolution of Polymer–NC Hybrid Solar Cells	184
6.5	Recent Approaches for Overcoming Current Limitations	188
6.5.1	In Situ Synthesis of NCs in the Polymer Film	188
6.5.2	Nanostructured Polymer-Based Assemblies in Solution	189
6.5.3	Lower Bandgap NC Acceptors	191
6.6	Novel Concepts and Perspectives	192
6.6.1	Ternary NC Systems: Energy Level and Bandgap Tuning	192
6.6.2	NC Ligand Design	195
6.6.3	Functionalized Polymers	195
6.6.4	Inorganic Framework for Interdigitated D–A Layers	196
6.6.4.1	Porous Alumina Template-Assisted Approach	197
6.6.4.2	Nanostructured Inorganic Semiconductors as Acceptor Material	198
6.6.5	Nanostructured Polymer	199
6.6.6	Carbon-Based Acceptors and Nanocomposites	199
6.6.7	Less Toxic NC Acceptor Materials	200
6.7	Summary and Outlook	200
	Acknowledgments	201
	References	201
7	Fullerene-Based Acceptor Materials	209
	<i>Alexander B. Sieval and Jan C. Hummelen</i>	
7.1	Introduction and Overview	209
7.2	Fullerenes as n-Type Semiconductors	211
7.2.1	Electron-Accepting and Transporting Properties	211
7.2.2	Other Electronic Properties	213
7.3	Fullerene Derivatives	214
7.3.1	[60]PCBM	215
7.3.2	[60]PCBM Analogues	219
7.3.3	Substituents on the Phenyl Moiety of PCBM	221
7.3.3.1	Alkoxy Groups	221

7.3.3.2	Fluorination	222
7.3.3.3	Deuterium Labeling	222
7.3.4	Other C ₆₀ Derivatives in OPVs	223
7.4	Derivatives of C ₇₀ and C ₈₄	226
7.4.1	Derivatives of C ₇₀	226
7.4.2	Derivatives of C ₈₄	229
7.5	Fullerene Bisadducts	230
7.6	Endohedral Compounds	233
7.7	Commercialization of Fullerene Derivatives	233
	References	234
8	Polymeric Acceptor Semiconductors for Organic Solar Cells	239
	<i>Antonio Facchetti</i>	
8.1	Introduction	239
8.2	Basics Principles and Operation for Organic Solar Cells	241
8.3	Polymeric Acceptor Semiconductors	245
8.3.1	Cyanated Polyphenylenevinylanes	246
8.3.2	Perylene- and Naphthalenediimide-Based Polymers	257
8.3.3	Benzothiadiazole-Based and Other Electron-Poor Polymers	275
8.4	Conclusions and Perspective	293
	References	296
9	Water/Alcohol-Soluble Conjugated Polymer-Based Interlayers for Polymer Solar Cells	301
	<i>Fei Huang, Chengmei Zhong, Hongbin Wu, and Yong Cao</i>	
9.1	Introduction	301
9.2	The Development of Water/Alcohol-Soluble Conjugated Polymers as Interlayer Materials	302
9.3	Interface Engineering for Polymer Solar Cells	305
9.3.1	Interface Modification for Metal Electrodes	306
9.3.2	Interface Modification for Metal Oxide Electrodes	308
9.3.3	Interface Modification for Graphene and Carbon Nanotube Electrodes	311
9.4	Discussion of the Working Mechanism	311
9.5	Summary	315
	References	316
10	Metal Oxide Interlayers for Polymer Solar Cells	319
	<i>Kevin M. O'Malley, Hin-Lap Yip, and Alex K.-Y. Jen</i>	
10.1	Introduction	319
10.2	Conventional Structure	320
10.2.1	Hole-Selective Layer: Replacing PEDOT:PSS	320
10.2.1.1	Nickel Oxide	322
10.2.1.2	Vanadium, Molybdenum, and Tungsten Oxides	324
10.2.2	Electron-Selective Layer	326
10.2.2.1	Titanium and Zinc Oxides	326

10.3	Inverted Structure	329
10.3.1	Electron-Selective Layer: Reducing the Effects of Cathode Oxidation	329
10.3.1.1	Titanium, Zinc, and Cesium Oxides	331
10.3.1.2	Modification via Molecular Self-Assembly	332
10.4	Tandem Structure	333
10.5	Additional Oxides (Cr_2O_3 , CuO_x , PbO)	338
10.6	Conclusions	339
	References	339

Part Two Device Physics of Thin Film Organic Photovoltaics 343

11	Bimolecular and Trap-Assisted Recombination in Organic Bulk Heterojunction Solar Cells	<i>345</i>
	<i>Gert-Jan A.H. Wetzelaer, L.Jan Anton Koster, and Paul W.M. Blom</i>	
11.1	Introduction	345
11.2	Recombination at Open Circuit	348
11.3	Trap-Assisted Recombination at Open Circuit	351
11.4	Investigation of the Nature Recombination by Electroluminescence Measurements	353
11.5	Bimolecular Recombination Strength in Organic BHJ Solar Cells	358
11.6	Bimolecular Recombination Losses Under Short-Circuit Conditions	366
11.7	Effect of Bimolecular Recombination on Fill Factor and Efficiency	372
11.8	Conclusions	373
	References	373
12	Organic Photovoltaic Morphology	<i>377</i>
	<i>Brian A. Collins, Felicia A. Bokel, and Dean M. DeLongchamp</i>	
12.1	Introduction	377
12.2	Order in Bulk Heterojunctions	378
12.2.1	Optical Measurements of Order	378
12.2.2	X-Ray Measurement of Crystallinity	381
12.3	Nanoscale Morphology in Bulk Heterojunctions	385
12.3.1	Electron Microscopy	385
12.3.2	Small-Angle Scattering Measurements	388
12.4	Phases in a Bulk Heterojunction	390
12.5	Structure of the Interface between Phases	392
12.5.1	Inferences from Bulk Measurements	395
12.5.2	Surface-Sensitive Measurements	395
12.5.3	Measuring Buried Bilayer Interfaces	396
12.5.4	Measuring Buried Bulk Interfaces	401
12.6	<i>In Situ</i> Measurements of Morphology Development	403
12.6.1	<i>In Situ</i> X-Ray Measurements	403
12.6.2	<i>In Situ</i> Microscopy	407

12.6.3	<i>In Situ</i> Optical and Vibrational Spectroscopies	408
12.6.4	<i>In Operando</i> Measurements	412
12.6.5	The Future of <i>In Situ</i> Measurement	413
	References	413
13	Intercalation in Polymer:Fullerene Blends	421
	<i>Nichole Cates Miller, Eric T. Hoke, and Michael D. McGehee</i>	
13.1	Introduction	421
13.2	Methods for Detecting Molecular Mixing	423
13.2.1	X-Ray Diffraction	423
13.2.2	Photoluminescence Measurements	424
13.2.3	Diffusion Measurements	425
13.2.4	Transmission Electron Microscopy Techniques	427
13.2.5	Small-Angle Scattering Techniques	427
13.3	Factors Affecting Molecular Mixing	428
13.3.1	Fullerene Size	428
13.3.2	Side-Chain Attachment Distance	430
13.3.3	Side-Chain Linearity	430
13.3.4	Thermal Treatments	432
13.4	The Effect of Molecular Mixing on Electronic Properties and Solar Cells	433
13.4.1	Exciton Harvesting	434
13.4.2	Geminate Pair Separation, Charge Extraction, and Optimal Blend Ratio	436
13.4.3	Additional Device Implications	439
13.5	Conclusions	440
	References	441
14	Organic Tandem Solar Cells	445
	<i>Konstantin Glaser, Andreas Pütz, Jan Mescher, Daniel Bahro, and Alexander Colsmann</i>	
14.1	Introduction and Working Principle	445
14.2	Measurement Techniques	448
14.3	Efficient Intermediate Charge Carrier Recombination	450
14.4	Light Management	452
14.5	Choice of Materials	457
14.6	Parallel Tandem Architectures	458
14.7	New Tandem Solar Cell Concepts	459
14.8	Conclusions	460
	Acknowledgments	460
	References	461
15	Solid-State Dye-Sensitized Solar Cells	465
	<i>Jonas Weickert and Lukas Schmidt-Mende</i>	
15.1	Introduction	465
15.2	Working Principles of Solid-State Dye-Sensitized Solar Cells	467

15.2.1	Solar Cell Geometries	467
15.2.2	Light Absorption and Charge Separation	471
15.2.3	Charge Transport	475
15.3	Loss Mechanisms in Solid-State Dye-Sensitized Solar Cells	478
15.4	Solid-State Dye-Sensitized Solar Cells with Spiro-OMeTAD as Hole Conductor	483
15.5	Hybrid Solar Cells with Absorbing Hole Conductors	484
15.6	Ordered Nanostructures for Solid-State Dye-Sensitized Solar Cells	486
15.6.1	TiO ₂ Nanowires	487
15.6.2	TiO ₂ Nanotubes	488
15.7	Summary and Outlook	489
	References	490

Part Three Technology for Thin Film Organic PV 495

16	Reel-to-Reel Processing of Highly Conductive Metal Oxides	497
	<i>Matthias Fahland</i>	
16.1	Introduction	497
16.2	Materials	499
16.3	Deposition Technology	501
16.4	Equipment	503
16.4.1	Vacuum System	504
16.4.2	Winding System	505
16.4.3	Inline Measurement System	506
16.5	Alternative Approaches	507
	References	510
17	Flexible Substrate Requirements for Organic Photovoltaics	513
	<i>William A. MacDonald and Julian M. Mace</i>	
17.1	Introduction	513
17.2	Polyester Substrates	514
17.3	Properties of Base Substrates	516
17.3.1	Optical Properties	516
17.3.2	Thermal Properties	517
17.3.3	Solvent Resistance	520
17.3.4	Surface Quality	523
17.3.5	Mechanical Properties	524
17.3.6	Hydrolysis Resistance	526
17.3.7	UV Stability	527
17.3.8	Barrier	531
17.3.9	Conductive Coated Film	535
17.3.10	Adhesion	535
17.4	Concluding Remarks	536
	Acknowledgments	537
	References	537

18	Adhesives for Organic Photovoltaic Packaging	539
	<i>Markus Rojahn, Marion Schmidt, and Kilian Kreul</i>	
18.1	Introduction	539
18.2	Encapsulation Process for Organic Photovoltaics	540
18.2.1	Basic Process Information	540
18.2.2	Lamination Process Examples	542
18.2.2.1	Radiation-only Curing Process	542
18.2.2.2	Dual Curing Process	544
18.3	Chemistry Aspects of Barrier Adhesives	545
18.3.1	Radically Light Curing Adhesives	545
18.3.2	Cationically Curing Adhesives	549
18.4	Barrier Performance of OPV Adhesives	554
18.4.1	The Intrinsic Barrier Performance of OPV Barrier Adhesives	554
18.4.2	Adhesion of the OPV Barrier Adhesives to the Interfaces	556
18.5	Conclusions	558
	References	558
19	Roll-to-Roll Processing of Polymer Solar Cells	561
	<i>Dechan Angmo, Markus Hösel, and Frederik C. Krebs</i>	
19.1	Introduction	561
19.2	The Roll-to-Roll Process	562
19.3	Structure of Modules	564
19.4	Coating and Printing Techniques for PSC Materials	565
19.4.1	Slot Die Coating	565
19.4.1.1	Novel Slot Die Techniques for Use in PSCs	568
19.4.2	Gravure Printing	568
19.4.3	Knife-Over-Edge	572
19.4.4	Flexographic Printing	573
19.4.5	Screen Printing	574
19.4.6	Inkjet Printing	576
19.4.7	Offset Lithography	578
19.5	Roll-to-Roll Printing of Electrodes	579
19.6	R2R Encapsulation	580
19.7	Roll-to-Roll Characterization	581
19.8	Future and Outlook	582
	References	584
20	Current and Future Directions in Organic Photovoltaics	587
	<i>Giovanni Nisato and Jens Hauch</i>	
20.1	Scientific and Technological Aspects	590
20.2	Commercial Applications	592
20.3	Challenges and Major Hurdles	595
	Acknowledgments	597
	References	597
	Index	599

List of Contributors

Dechan Angmo

Technical University of Denmark
Department of Energy Conversion
and Storage
Frederiksborgvej 399
4000 Roskilde
Denmark

Raja Shahid Ashraf

Imperial College London
Department of Chemistry and
Centre for Plastic Electronics
South Kensington Campus
London SW7 2AZ
UK

Daniel Bahro

Karlsruhe Institute of Technology
(KIT)
Light Technology Institute
Engesserstrasse 13
76131 Karlsruhe
Germany

Peter Bäuerle

University of Ulm
Institute of Organic Chemistry II
and Advanced Materials
Albert-Einstein-Allee 11
89081 Ulm
Germany

Paul W.M. Blom

University of Groningen
Zernike Institute for
Advanced Materials
Molecular Electronics
Nijenborgh 4
9747 AG Groningen
The Netherlands

and

Max-Planck Institute for
Polymer Research
Ackermannweg 10
55128 Mainz
Germany

Felicia A. Bokel

National Institute of Standards
and Technology
Organic Electronics & Photovoltaics
Polymer Division
Electronics Materials Group
100 Bureau Drive
Gaithersburg, MD 20899
USA

Yong Cao

South China University
of Technology
Institute of Polymer Optoelectronic
Materials and Devices
State Key Laboratory of Luminescent
Materials and Devices
No. 381, Wushan Road
Tianhe district
Guangzhou 510640
China

Stelios A. Choulis

Cyprus University of Technology
Department of Mechanical
Engineering and Materials Science
and Engineering
Molecular Electronics and Photonics
Research Unit
45 Kitioú Kyprianou Str.
3603 Limassol
Cyprus

Brian A. Collins

National Institute of Standards
and Technology
Organic Electronics & Photovoltaics
Polymer Division
Electronics Materials Group
100 Bureau Drive
Gaithersburg, MD 20899
USA

Alexander Colsmann

Karlsruhe Institute of Technology
(KIT)
Light Technology Institute
Engesserstrasse 13
76131 Karlsruhe
Germany

Dean M. DeLongchamp

National Institute of Standards
and Technology
Organic Electronics & Photovoltaics
Polymer Division
Electronics Materials Group
100 Bureau Drive
Gaithersburg, MD 20899
USA

Michael Eck

University of Freiburg
Freiburg Materials Research Centre
(FMF)
Laboratory for Nanosciences
Stefan-Meier-Straße 21
79104 Freiburg
Germany

Solon P. Economopoulos

Cyprus University of Technology
Department of Mechanical
Engineering and Materials Science
and Engineering
Molecular Electronics and Photonics
Research Unit
45 Kitioú Kyprianou Str.
3603 Limassol
Cyprus

Antonio Facchetti

Northwestern University
Department of Chemistry and the
Materials Research Center
2145 Sheridan Road
Evanston, IL 60208-3113
USA

Matthias Fahland

Department Coating of Flexible
Products
Fraunhofer FEP
Winterbergstrasse 28
01277 Dresden
Germany

Konstantin Glaser

Karlsruhe Institute of Technology
(KIT)
Light Technology Institute
Engesserstrasse 13
76131 Karlsruhe
Germany

Jens Hauch

Entwicklungsamt für
Polytronics
Energie Campus Nürnberg
Tramstrasse 99
4132 Muttenz
Switzerland

Eric T. Hoke

Stanford University
Department of Applied Physics
476 Lomita Mall
Stanford, CA 94305-4045
USA

Markus Hösel

Technical University of Denmark
Department of Energy Conversion
and Storage
Frederiksbergvej 399
4000 Roskilde
Denmark

Fei Huang

South China University
of Technology
Institute of Polymer Optoelectronic
Materials and Devices
State Key Laboratory of Luminescent
Materials and Devices
No. 381, Wushan Road
Tianhe district
Guangzhou 510640
China

Jan C. Hummelen

University of Groningen
Stratingh Institute for Chemistry and
Zernike Institute for
Advanced Materials
Nijenborgh 4
9747 AG Groningen
The Netherlands

Grigorios Itskos

University of Cyprus
Department of Physics
Experimental Condensed Matter
Physics Laboratory
1678 Nicosia
Cyprus

Alex K.-Y. Jen

University of Washington
Department of Chemistry
302 Roberts Hall
Seattle, WA 98195-2120
USA

and

University of Washington
Department of Materials Science &
Engineering
302 Roberts Hall
Seattle, WA 98195-2120
USA

L. Jan Anton Koster

University of Groningen
Zernike Institute for
Advanced Materials
Molecular Electronics
Nijenborgh 4
9747 AG Groningen
The Netherlands

Panayiotis A. Koutentis

University of Cyprus
Department of Chemistry
1678 Nicosia
Cyprus

Frederik C. Krebs

Technical University of Denmark
Department of Energy Conversion
and Storage
Frederiksborgvej 399
4000 Roskilde
Denmark

Kilian Kreul

DELO Industrie Klebstoffe
Engineering Department/Process
Management OPV/CCM/Display
DELO-Allee 1
86949 Windach
Germany

Michael Krueger

University of Freiburg
Freiburg Materials Research Centre
(FMF)
Laboratory for Nanosciences
Stefan-Meier-Straße 21
79104 Freiburg
Germany

Jianhua Liu

University of California
Department of Chemistry &
Biochemistry and Center for
Polymers and Organic Solids
Santa Barbara, CA 93106-9510
USA

William A. MacDonald

DuPont Teijin Films (UK) Limited
The Wilton Centre
Redcar TS10 4RF
UK

Julian M. Mace

DuPont Teijin Films (UK) Limited
The Wilton Centre
Redcar TS10 4RF
UK

Iain McCulloch

Imperial College London
Department of Chemistry and
Centre for Plastic Electronics
South Kensington Campus
London SW7 2AZ
UK

Michael D. McGehee

Stanford University
Department of Materials Science &
Engineering
476 Lomita Mall
Stanford, CA 94305-4045
USA

Jan Mescher

Karlsruhe Institute of Technology
(KIT)
Light Technology Institute
Engesserstrasse 13
76131 Karlsruhe
Germany

Nichole Cates Miller

Stanford University
Department of Materials Science &
Engineering
476 Lomita Mall
Stanford, CA 94305-4045
USA

Amareesh Mishra

University of Ulm
Institute of Organic Chemistry II
and Advanced Materials
Albert-Einstein-Allee 11
89081 Ulm
Germany

Thuc-Quyen Nguyen

University of California
Center for Polymers and
Organic Solids (CPOS)
Santa Barbara, CA 93106-9510
USA

Giovanni Nisato

Business and technology
development senior manager
CSEM SA
Tramstrasse 99
4132 Muttenz
Switzerland

Kevin M. O'Malley

University of Washington
Department of Chemistry
302 Roberts Hall
Seattle, WA 98195-2120
USA

Andreas Pütz

Karlsruhe Institute of Technology
(KIT)
Light Technology Institute
Engesserstrasse 13
76131 Karlsruhe
Germany

Markus Rojahn

DELO Industrie Klebstoffe
Department of Chemistry/R&D and
Analytical Chemistry
DELO-Allee 1
86949 Windach
Germany

Marion Schmidt

DELO Industrie Klebstoffe
Engineering Department/Training
Management
DELO-Allee 1
86949 Windach
Germany

Lukas Schmidt-Mende

University of Konstanz
Department of Physics
Universitätsstr. 10
78457 Konstanz
Germany

Bob C. Schroeder

Imperial College London
Department of Chemistry and
Centre for Plastic Electronics
South Kensington Campus
London SW7 2AZ
UK

Alexander B. Sieval

Solenne BV
Zernikepark 8
9747 AN Groningen
The Netherlands

Andrew C. Stuart

University of North Carolina at
Chapel Hill
Department of Chemistry
125 South Road
Chapel Hill, NC 27599-3290
USA

Bright Walker

University of California
Department of Chemistry &
Biochemistry and Center for
Polymers and Organic Solids
Santa Barbara, CA 93106-9510
USA

Jonas Weickert

University of Konstanz
Department of Physics
Universitätsstr. 10
78457 Konstanz
Germany

Gert-Jan A.H. Wetzelaer

University of Groningen
Zernike Institute for
Advanced Materials
Molecular Electronics
Nijenborgh 4
9747 AG Groningen
The Netherlands

Wei You

University of North Carolina at
Chapel Hill
Curriculum in Applied Sciences
and Engineering
125 South Road
Chapel Hill, NC 27599-3287
USA

Hongbin Wu

South China University of
Technology
Institute of Polymer Optoelectronic
Materials and Devices
State Key Laboratory of Luminescent
Materials and Devices
No. 381, Wushan Road
Tianhe district
Guangzhou 510640
China

and

University of North Carolina at
Chapel Hill
Department of Chemistry
125 South Road
Chapel Hill, NC 27599-3290
USA

Liqiang Yang

University of North Carolina at
Chapel Hill
Curriculum in Applied Sciences
and Engineering
125 South Road
Chapel Hill, NC 27599-3287
USA

Chengmei Zhong

South China University
of Technology
Institute of Polymer Optoelectronic
Materials and Devices
State Key Laboratory of Luminescent
Materials and Devices
No. 381, Wushan Road
Tianhe district
Guangzhou 510640
China

Hin-Lap Yip

University of Washington
Department of Materials Science &
Engineering
302 Roberts Hall
Seattle, WA 98195-2120
USA

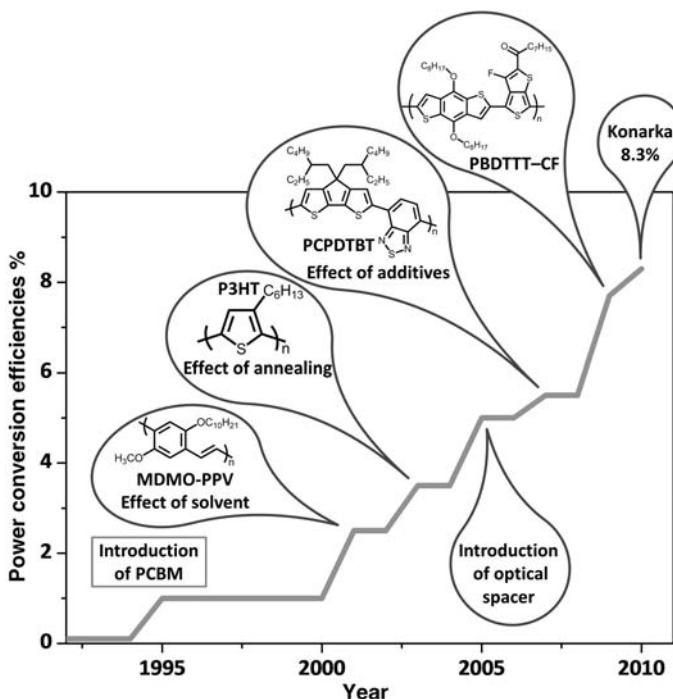
Huaxing Zhou

University of North Carolina at
Chapel Hill
Department of Chemistry
125 South Road
Chapel Hill, NC 27599-3290
USA

Part One

Materials for Thin Film Organic Photovoltaics

1


Overview of Polymer and Copolymer Materials for Organic Photovoltaics

Solon P. Economopoulos, Grigoris Itsos, Panayiotis A. Koutentis, and Stelios A. Choulis

1.1 Introduction

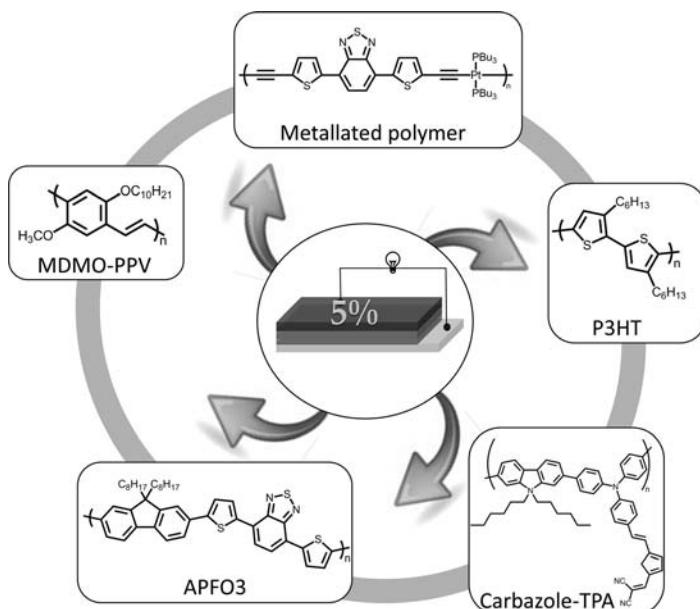
Predictions of limited fossil fuels and issues associated with their environmental impact have led to a rapid growth of research on photovoltaics (PVs). Until recently, the majority of PVs were silicon-based conventional p–n junction devices; however, the dominance of these solar cells is being challenged by the emergence of third-generation PV technologies based on new materials and device approaches. Among these, are PV technologies based on solution processing methods that enable the low-cost fabrication of solar cell devices. These processes allow the incorporation of different semiconductor materials into single devices that are not necessarily lattice matched. Organic semiconductors are of particular interest as PV materials owing to their unique combination of properties: ease of fabrication, flexibility, tunability, lightweight, and the possibility of large surface coverage [1]. Organic photovoltaics (OPVs) refer to solar cells that contain at least one organic semiconductor in the cell active region [1]; as such, the term includes both all-organic and hybrid PV material approaches. Various OPV approaches that include combinations of organics such as conjugated polymers, fullerenes, small molecules, dyes and inorganics such as porous semiconductors, oxides, and colloidal nanocrystals have been successfully used [1]. In light of the above, OPVs based on light absorbers deposited by solution-processed techniques, in contrast to more involved processing of materials requiring vacuum- or vapor-phase deposition, are of particular interest.

Of the various OPVs, polymer–fullerene solar cells represent a unique category that has seen remarkable progress during the last 15 years, overcoming several key obstacles toward the anticipated OPV milestone efficiency of 10% (Figure 1.1). This chapter will focus on conjugated polymers used for polymer–fullerene bulk heterojunction OPVs with occasional references to all-polymer OPVs. In the first part, key developments over the past 15 years on the characteristics and understanding of such devices will be presented. This will be followed by a review of the effort to improve the performance of such solar cells via optimization of the

Figure 1.1 Timeline of power conversion efficiencies in OPVs since 1992 to the current best efficiency demonstrated by Konarka Technologies.

material donor (polymer) part of the device, guided by progress in the material design, and improvements on the physical and chemical properties of the conjugated polymers used. The most prominent state-of-the-art conjugated polymer families used in solar cells will be summarized, and their future potential will be discussed. Breakthrough ideas that contributed to the understanding of polymer physical chemistry in devices will be highlighted along with insights that can guide future efforts.

1.2 Early Efforts


The first major development in the field came from the experimental observation that conjugated polymer photoexcited excitons efficiently dissociate from the conjugated polymer to the fullerene interfaces via ultrafast electron transfer processes [2]. This was directly exploited in organic solar cell devices using blends of the two material families (electron donor and electron acceptor) with length scale of heterojunctions within the blend approximately equal to the exciton diffusion length. The proposed structure resulted in the invention of the bulk heterojunction (BHJ)

architecture in 1995 [3]. Prior to this, the low conversion yield of photoexcited Frenkel excitons into mobile carriers heavily limited the efficiencies of polymer–fullerene bilayer OPVs structures; this was attributable to the large binding energies of the former. Yu *et al.* [3] introduced the notion of a bulk mixture of the polymer donor and the fullerene acceptor with phase-separated domain regions of the order of the exciton diffusion length to allow efficient interfacial polymer exciton dissociation. Bulk heterojunction device structures allowed the implementation of thick active layers for efficient light harvesting without compromising the efficiency of the charge separation process and are still the basis for today's best performing organic solar cells. Our review focuses on conjugated polymers used in this type of PV geometry. The success of BHJs was partly attributable to the early use of the highly soluble fullerene phenyl-C₆₁-butyric acid methyl ester ([60]PCBM) [4], which has good electron transport properties and is still the acceptor material of choice in OPVs. Recently, C₇₀ [5] and C₈₄ [6] fullerene adducts have been introduced and may offer additional advantages. In the same publication introducing the BHJ architecture, Yu *et al.* also investigated the effect of blend morphology on device performance by exploring parameters such as fullerene content, solvent type, and electrode material. Six years later in 2001, Shaheen *et al.* [7] convincingly demonstrated that the nanostructure morphology of the polymer–fullerene blend profoundly affected the PV device performance: The careful selection of solvent gave a better polymer–fullerene blend with smaller phase-separated fullerene domains. In addition, it was later shown that the addition of PCBM to the blend improved the hole mobility in the polymer due to enhanced intermolecular interactions of the polymer chains induced by the fullerene molecules [8]. The heterojunction morphology and its effect on exciton dissociation, charge recombination, and transport in polymer–fullerene BHJ solar cells is still an intense topic of research in polymer–fullerene OPVs [9,10].

1.3

Toward Devices with 5% Efficiencies

Polymer solar cells [2] and polymer light-emitting diodes (PLEDs) [11] were invented in the early 1990s alongside the precursor to polymer field-effect transistors (PFETs) [12]. As such, these branches of polymer electronics shared common grounds and materials that when found to work well in one area would be tried and tested in another. For example, the PPV analog poly[2-methoxy-5-(2'-ethylhexyloxy)-*p*-phenylenevinylene] (MEH-PPV), which was used as a proprietary material in the first PLEDs, was also used in early polymer PVs. MEH-PPV and the similar poly[2-methoxy-5-(3,7-dimethyloctyl-oxy)-*p*-phenylenevinylene] (MDMO-PPV) (Figure 1.1) dominated polymer-based solar cells for most of the 1990s. A large part of the aforementioned progress in understanding the basic physics underlying polymer fullerene solar cells was made using MDMO-PPV (Figure 1.2). Power conversion efficiencies at the start of the century were

Figure 1.2 Illustration of prominent polymers used in solar cell devices with power conversion efficiencies up to 5%.

standing at the level of ~1%. Optimization of the blend morphology introduced by Shaheen *et al.* [7] led to a threefold increase. By that time, polymer groups worldwide were able to synthesize polymers more efficiently, and the factor of purity came into play in device performance. A research team at Linz Institute for Organic Solar Cells (LIOS) showed that high-purity samples were needed to reach higher efficiencies, pushing PPV-based devices to 3% efficiencies [13]. It is worth noting that another PPV analog synthesized in Cambridge [14] was targeted as a fullerene substitute in creating all-polymer solar cells, but efficiencies failed to compete with the fullerene counterparts.

Optimization of PPV-based polymers brought OPVs based on this polymer family to their performance limits (~3%). Limitations included the relative large energy bandgap (2.5 eV) and low hole mobility of such polymers [15]. Efforts directed toward new polymer families quickly identified thiophene-based polymers [16] as promising materials owing to their good charge transport properties [17]. Alkyl-substituted polythiophenes, in addition to exhibiting good hole mobilities, had increased solubility as well as high regioregularity, a material property that was identified by the PV community at the time as being important. Regioregularity can be controlled during polymerization, and a breakthrough in obtaining high regioregular (>98%) head-to-tail poly(3-hexylthiophene) (P3HT) was first reported separately by Chen and Rieke [18] and McCullough *et al.* [19]. Brabec and coworkers used the optimized material in P3HT/[60]PCBM solar cells [20] and obtained a record high internal quantum efficiency approaching unity.

Further progress was achieved by Sariciftci's group that first introduced postproduction thermal annealing treatments (Figure 1.1) to demonstrate the best OPV efficiency of 3.5% at the time (Figure 1.2) [21]. Hosting a number of improvements over PPV analogs, P3HT took over as the workhorse of polymer–fullerene solar cell research for many years, pushing efficiencies forward [22–25], being a scaffold for interesting structures [26,27], and at the same time providing a prototype system enabling scientists to understand many aspects of the operation of BHJ polymer–fullerene solar cells.

Progress toward OPVs with a landmark of 5% efficiency was achieved by further optimization of PPV- and P3HT-based devices along with synthetic efforts to produce new polymer donors based on new building blocks such as fluorene (APFO₃) and carbazole (carbazole–triphenylamine (TPA)) molecules or noble metal-based molecules (Figure 1.2).

The synthetic efforts to create new electron donor polymers were guided by the following desired attributes of the material:

- 1) Broad absorption covering most of the visible and extending to near-IR up to the predicted optimum gap for single-junction cells of 1.1 μm [28].
- 2) High hole mobilities for efficient charge transport with values within an optimum range matching electron mobilities in the fullerenes.
- 3) Optimum leveling of energy states of donor, acceptor, and electrode materials, allowing efficient charge separation with minimum losses to thermal energy while minimizing the energy barrier to the collecting electrodes.

A recently reported model [29] has shown that the maximum power conversion efficiency of a BHJ solar cell can be predicted by the aforementioned properties, namely, the energy bandgap and the lowest unoccupied molecular orbital (LUMO) level of the polymer donor, and by taking into consideration the need to optimize morphological properties controlling transport and recombination within the blend. Keeping this in mind, the LUMO level of an ideal donor polymer should be around 3.7–4.0 eV, considering that the LUMO level of the soluble fullerene (PCBM) is 4.3 eV, to provide the minimum energy difference of approximately 0.3 eV required for efficient Frenkel exciton dissociation. As the optimized bandgap of the ideal light harvesting material (polymer in this case) should be around 1.2–1.5 eV, the highest occupied molecular orbital (HOMO) level value should be adjusted between 5.2 and 5.5 eV. This range of values for the HOMO level of the donor polymer has the additional benefit to ensure a relatively high V_{oc} and air stability in the final devices. Electron and hole mobilities are also crucial parameters for OPV power conversion efficiencies. High mobilities for electrons and holes within the active region are necessary to favorably compete with losses due to geminate and nongeminate charge recombination. Recent theoretical prediction models [30] place desired mobility values, in BHJ cells, on the order of $10^{-2} \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$ for one and within a tolerance range of 10^{-1} to $10^{-3} \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$ for the other, irrespective of the type of carriers in each case. We note, however, that a balanced ambipolar transport within BHJs is the

ideal condition to eliminate space charge effects and recombination, both of which are essential parameters for optimized solar cell power conversion efficiency values.

Several synthetic strategies have been used [31] to engineer the desired optical absorption characteristics. Among these include increasing the quinoid character of the ground state of polyaromatic conjugated polymers [32,33] and introducing molecular rigidity to increase planarity between adjacent aromatic units, thus extending conjugation and facilitating delocalization [34–36]. An additional and widespread strategy includes the incorporation of electron-withdrawing and electron-accepting moieties, either in the aromatic unit [37] or, more effectively, in the same polymer backbone; this approach will be discussed in more detail later. Other efforts include the optimization of the charge transport properties such as that recently reported by Ying and coworkers who used pyridal[2,1,3]thiadiazole as a building block for conjugated polymers and reported on the increased regioregularity of the thiadiazole moiety, resulting in an increase in hole mobilities by two orders of magnitude compared with their regiorandom counterparts [38]. As more and better syntheses are being explored to tailor physical and chemical properties of donor materials to the desired functionalities mentioned, the current crop of polymers used in polymer–fullerene PVs exceeding 7% solar cell efficiencies (Figure 1.3) will be enriched. Such high-performance polymers are discussed in the following sections.

1.4

Novel Thiophene-Containing Polymers

Moving away from P3HT homopolymers, the community realized that the chemical tailoring required to attain the variety of properties for this particular technology would necessarily involve copolymerization. This meant targeting the incorporation of various molecular units, each enriching the final material with specific properties. Thiophenes and their analogs are still encountered as basic building blocks in many copolymers in new polymer–fullerene solar cells with record high efficiencies. In part, this is because thiophenes are good electron donators in donor–acceptor copolymers, and their facile incorporation was attributable to the wide commercial availability of analogs suitable for copolymerization. In light of thiophenes' widespread use in low-bandgap copolymers, a reference to specific outstanding thiophene-based copolymers follows.

A copolymer specifically designed for solar cells was introduced based on the 4,4-dialkylcyclopentadithiophene-2,6-diyl (CPDT) [39,40]. Copolymerization of CPDT with benzothiazole afforded the copolymer PCPDTBT (Figure 1.2) [41] exhibiting desirable optical characteristics and charge transport mobilities, leading to initial device efficiencies of ~3%. PCPDTBT, however, seemed to underperform based on theoretical estimations (Figure 1.4) [29]. The main drawback was attributable to poor morphological characteristics of PCPDTBT–PCBM blends. A year later, Bazan and coworkers introduced additives to control the blend morphology,

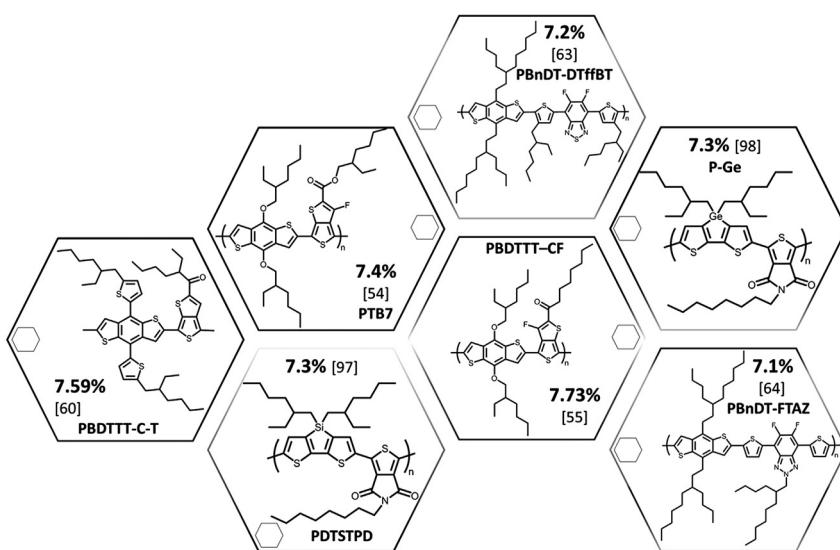
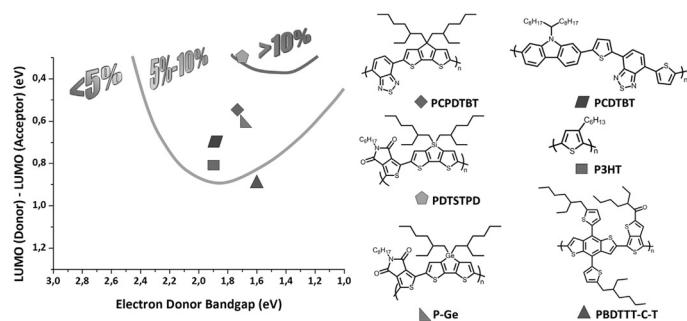



Figure 1.3 Various polymer electron donors with some of the highest device efficiencies reported to date.

Figure 1.4 Schematic illustration of the theoretical prediction by Scharber *et al.* [29] of the efficiency of polymer-PCBM solar cells based on the polymer energy gap and the polymer-PCBM LUMO band offsets. Various high-performance

polymer donors synthesized are placed on the prediction graph. In publications in which the exact LUMO of the acceptor is not mentioned, a value of 4.0 eV for [60]PCBM and 4.1 eV for [70]PCBM is assumed.