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1
Overview of Polymer and Copolymer Materials
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1.1
Introduction

Predictions of limited fossil fuels and issues associated with their environmental
impact have led to a rapid growth of research on photovoltaics (PVs). Until
recently, the majority of PVs were silicon-based conventional p—n junction devices;
however, the dominance of these solar cells is being challenged by the emergence
of third-generation PV technologies based on new materials and device
approaches. Among these, are PV technologies based on solution processing
methods that enable the low-cost fabrication of solar cell devices. These processes
allow the incorporation of different semiconductor materials into single devices
that are not necessarily lattice matched. Organic semiconductors are of particular
interest as PV materials owing to their unique combination of properties: ease of
fabrication, flexibility, tunability, lightweight, and the possibility of large surface
coverage [1]. Organic photovoltaics (OPVs) refer to solar cells that contain at least
one organic semiconductor in the cell active region [1]; as such, the term includes
both all-organic and hybrid PV material approaches. Various OPV approaches that
include combinations of organics such as conjugated polymers, fullerenes, small
molecules, dyes and inorganics such as porous semiconductors, oxides, and colloi-
dal nanocrystals have been successfully used [1]. In light of the above, OPVs based
on light absorbers deposited by solution-processed techniques, in contrast to more
involved processing of materials requiring vacuum- or vapor-phase deposition, are
of particular interest.

Of the various OPVs, polymer—fullerene solar cells represent a unique category
that has seen remarkable progress during the last 15 years, overcoming several
key obstacles toward the anticipated OPV milestone efficiency of 10% (Figure 1.1).
This chapter will focus on conjugated polymers used for polymer—fullerene bulk
heterojunction OPVs with occasional references to all-polymer OPVs. In the first
part, key developments over the past 15 years on the characteristics and under-
standing of such devices will be presented. This will be followed by a review of
the effort to improve the performance of such solar cells via optimization of the
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Figure 1.1 Timeline of power conversion efficiencies in OPVs since 1992 to the current best
efficiency demonstrated by Konarka Technologies.

material donor (polymer) part of the device, guided by progress in the material
design, and improvements on the physical and chemical properties of the conju-
gated polymers used. The most prominent state-of-the-art conjugated polymer
families used in solar cells will be summarized, and their future potential will be
discussed. Breakthrough ideas that contributed to the understanding of polymer
physical chemistry in devices will be highlighted along with insights that can
guide future efforts.

1.2
Early Efforts

The first major development in the field came from the experimental observation
that conjugated polymer photoexcited excitons efficiently dissociate from the con-
jugated polymer to the fullerene interfaces via ultrafast electron transfer processes
[2]. This was directly exploited in organic solar cell devices using blends of the two
material families (electron donor and electron acceptor) with length scale of heter-
ojunctions within the blend approximately equal to the exciton diffusion length.
The proposed structure resulted in the invention of the bulk heterojunction (BHJ)
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architecture in 1995 [3]. Prior to this, the low conversion yield of photoexcited
Frenkel excitons into mobile carriers heavily limited the efficiencies of polymer—
fullerene bilayer OPVs structures; this was attributable to the large binding
energies of the former. Yu et al. [3] introduced the notion of a bulk mixture of
the polymer donor and the fullerene acceptor with phase-separated domain
regions of the order of the exciton diffusion length to allow efficient interfacial
polymer exciton dissociation. Bulk heterojunction device structures allowed the
implementation of thick active layers for efficient light harvesting without com-
promising the efficiency of the charge separation process and are still the basis
for today’s best performing organic solar cells. Our review focuses on conjugated
polymers used in this type of PV geometry. The success of BHJs was partly attrib-
utable to the early use of the highly soluble fullerene phenyl-C¢;-butyric acid
methyl ester ([60]JPCBM) [4], which has good electron transport properties and is
still the acceptor material of choice in OPVs. Recently, C;, [5] and Cg, [6] fullerene
adducts have been introduced and may offer additional advantages. In the
same publication introducing the BH]J architecture, Yu et al. also investigated the
effect of blend morphology on device performance by exploring parameters
such as fullerene content, solvent type, and electrode material. Six years later in
2001, Shaheen et al. [7] convincingly demonstrated that the nanostructure
morphology of the polymer—fullerene blend profoundly affected the PV device
performance: The careful selection of solvent gave a better polymer—fullerene
blend with smaller phase-separated fullerene domains. In addition, it was later
shown that the addition of PCBM to the blend improved the hole mobility in the
polymer due to enhanced intermolecular interactions of the polymer chains
induced by the fullerene molecules [8]. The heterojunction morphology and its
effect on exciton dissociation, charge recombination, and transport in polymer—
fullerene BH]J solar cells is still an intense topic of research in polymer—fullerene
OPVs [9,10].

13
Toward Devices with 5% Efficiencies

Polymer solar cells [2] and polymer light-emitting diodes (PLEDs) [11] were
invented in the early 1990s alongside the precursor to polymer field-effect transis-
tors (PFETS) [12]. As such, these branches of polymer electronics shared common
grounds and materials that when found to work well in one area would be
tried and tested in another. For example, the PPV analog poly[2-methoxy-5-(2'-
ethylhexyloxy)-p-phenylenevinylene] (MEH-PPV), which was used as a proprietary
material in the first PLEDs, was also used in early polymer PVs. MEH-PPV
and the similar poly[2-methoxy-5-(3,7-dimethyloctyl-oxy)-p-phenylenevinylene]
(MDMO-PPV) (Figure 1.1) dominated polymer-based solar cells for most of the
1990s. A large part of the aforementioned progress in understanding the basic
physics underlying polymer fullerene solar cells was made using MDMO-PPV
(Figure 1.2). Power conversion efficiencies at the start of the century were
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MDMO-PPV

Figure 1.2 lllustration of prominent polymers used in solar cell devices with power conversion
efficiencies up to 5%.

standing at the level of ~1%. Optimization of the blend morphology introduced
by Shaheen et al. [7] led to a threefold increase. By that time, polymer groups
worldwide were able to synthesize polymers more efficiently, and the factor of
purity came into play in device performance. A research team at Linz Institute for
Organic Solar Cells (LIOS) showed that high-purity samples were needed to reach
higher efficiencies, pushing PPV-based devices to 3% efficiencies [13]. It is worth
noting that another PPV analog synthesized in Cambridge [14] was targeted as a
fullerene substitute in creating all-polymer solar cells, but efficiencies failed to
compete with the fullerene counterparts.

Optimization of PPV-based polymers brought OPVs based on this polymer fam-
ily to their performance limits (~3%). Limitations included the relative large
energy bandgap (2.5eV) and low hole mobility of such polymers [15]. Efforts
directed toward new polymer families quickly identified thiophene-based poly-
mers [16] as promising materials owing to their good charge transport properties
[17]. Alkyl-substituted polythiophenes, in addition to exhibiting good hole mobili-
ties, had increased solubility as well as high regioregularity, a material property
that was identified by the PV community at the time as being important. Regiore-
gularity can be controlled during polymerization, and a breakthrough in obtaining
high regioregular (>98%) head-to-tail poly(3-hexylthiophene) (P3HT) was first
reported separately by Chen and Rieke [18] and McCullough et al. [19]. Brabec
and coworkers used the optimized material in P3HT/[60]PCBM solar cells [20]
and obtained a record high internal quantum efficiency approaching unity.
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Further progress was achieved by Sariciftci’s group that first introduced
postproduction thermal annealing treatments (Figure 1.1) to demonstrate the best
OPV efficiency of 3.5% at the time (Figure 1.2) [21]. Hosting a number of
improvements over PPV analogs, P3HT took over as the workhorse of polymer—
fullerene solar cell research for many years, pushing efficiencies forward [22-25],
being a scaffold for interesting structures [26,27], and at the same time providing
a prototype system enabling scientists to understand many aspects of the opera-
tion of BH]J polymer—fullerene solar cells.

Progress toward OPVs with a landmark of 5% efficiency was achieved by further
optimization of PPV- and P3HT-based devices along with synthetic efforts to pro-
duce new polymer donors based on new building blocks such as fluorene
(APFO3) and carbazole (carbazole—triphenylamine (TPA)) molecules or noble
metal-based molecules (Figure 1.2).

The synthetic efforts to create new electron donor polymers were guided by the
following desired attributes of the material:

1) Broad absorption covering most of the visible and extending to near-IR up to
the predicted optimum gap for single-junction cells of 1.1 um [28].

2) High hole mobilities for efficient charge transport with values within an opti-
mum range matching electron mobilities in the fullerenes.

3) Optimum leveling of energy states of donor, acceptor, and electrode materials,
allowing efficient charge separation with minimum losses to thermal energy
while minimizing the energy barrier to the collecting electrodes.

A recently reported model [29] has shown that the maximum power conversion
efficiency of a BH]J solar cell can be predicted by the aforementioned properties,
namely, the energy bandgap and the lowest unoccupied molecular orbital (LUMO)
level of the polymer donor, and by taking into consideration the need to optimize
morphological properties controlling transport and recombination within the
blend. Keeping this in mind, the LUMO level of an ideal donor polymer should
be around 3.7-4.0eV, considering that the LUMO level of the soluble fullerene
(PCBM) is 4.3 €V, to provide the minimum energy difference of approximately
0.3eV required for efficient Frenkel exciton dissociation. As the optimized
bandgap of the ideal light harvesting material (polymer in this case) should be
around 1.2-1.5eV, the highest occupied molecular orbital (HOMO) level value
should be adjusted between 5.2 and 5.5 eV. This range of values for the HOMO
level of the donor polymer has the additional benefit to ensure a relatively
high V.. and air stability in the final devices. Electron and hole mobilities are also
crucial parameters for OPV power conversion efficiencies. High mobilities for
electrons and holes within the active region are necessary to favorably compete
with losses due to geminate and nongeminate charge recombination. Recent
theoretical prediction models [30] place desired mobility values, in BHJ cells,
on the order of 10 2cm?V 's ™! for one and within a tolerance range of 10 ' to
10 *cm?V's™! for the other, irrespective of the type of carriers in each case.
We note, however, that a balanced ambipolar transport within BH]Js is the
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ideal condition to eliminate space charge effects and recombination, both of which
are essential parameters for optimized solar cell power conversion efficiency
values.

Several synthetic strategies have been used [31] to engineer the desired optical
absorption characteristics. Among these include increasing the quinoid character
of the ground state of polyaromatic conjugated polymers [32,33] and introducing
molecular rigidity to increase planarity between adjacent aromatic units, thus
extending conjugation and facilitating delocalization [34-36]. An additional and
widespread strategy includes the incorporation of electron-withdrawing and elec-
tron-accepting moieties, either in the aromatic unit [37] or, more effectively, in the
same polymer backbone; this approach will be discussed in more detail later.
Other efforts include the optimization of the charge transport properties such as
that recently reported by Ying and coworkers who used pyridal[2,1,3]thiadiazole as
a building block for conjugated polymers and reported on the increased regioregu-
larity of the thiadiazole moiety, resulting in an increase in hole mobilities by two
orders of magnitude compared with their regiorandom counterparts [38]. As more
and better syntheses are being explored to tailor physical and chemical properties
of donor materials to the desired functionalities mentioned, the current crop
of polymers used in polymer—fullerene PVs exceeding 7% solar cell efficiencies
(Figure 1.3) will be enriched. Such high-performance polymers are discussed in
the following sections.

1.4
Novel Thiophene-Containing Polymers

Moving away from P3HT homopolymers, the community realized that the chemi-
cal tailoring required to attain the variety of properties for this particular technol-
ogy would necessarily involve copolymerization. This meant targeting the
incorporation of various molecular units, each enriching the final material with
specific properties. Thiophenes and their analogs are still encountered as basic
building blocks in many copolymers in new polymer—fullerene solar cells with
record high efficiencies. In part, this is because thiophenes are good electron
donators in donor—acceptor copolymers, and their facile incorporation was attrib-
utable to the wide commercial availability of analogs suitable for copolymerization.
In light of thiophenes’ widespread use in low-bandgap copolymers, a reference to
specific outstanding thiophene-based copolymers follows.

A copolymer specifically designed for solar cells was introduced based on the
4,4-dialkylcyclopentadithiophene-2,6-diyl (CPDT) [39,40]. Copolymerization of
CPDT with benzothiazole afforded the copolymer PCPDTBT (Figure 1.2) [41]
exhibiting desirable optical characteristics and charge transport mobilities, leading
to initial device efficiencies of ~3%. PCPDTBT, however, seemed to underperform
based on theoretical estimations (Figure 1.4) [29]. The main drawback was attrib-
utable to poor morphological characteristics of PCPDTBT-PCBM blends. A year
later, Bazan and coworkers introduced additives to control the blend morphology,
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Figure 1.3 Various polymer electron donors with some of the highest device efficiencies reported to date.
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Figure 1.4 Schematic illustration of the theoretical prediction by Scharber et al. ~ polymer donors synthesized are placed on the prediction graph. In publications
[29] of the efficiency of polymer—PCBM solar cells based on the polymer energy  in which the exact LUMO of the acceptor is not mentioned, a value of 4.0 eV for
gap and the polymer—PCBM LUMO band offsets. Various high-performance [60]PCBM and 4.1eV for [70]PCBM is assumed.



