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Weld Surface Defect Detection Based 
on Improved YOLOv7 

Tianyu Qi, Quancheng Dong, and Baizhen Li 

Abstract Welding is the most economical and effective permanent metal connection 
method. However, the surface defects caused by various factors, is the quality of 
welding products cannot be fully guaranteed. In order to improve the efficiency 
and accuracy of defect detection, this paper proposes a new weld defect detection 
algorithm based on YOLOv7. Firstly, the DCGAN model is used to enhance the data 
set of welding defects collected in the industrial field. Secondly, the Repvgg model 
architecture is analyzed, and the residual branch and 1 × 1 convolution architecture 
are added between each module of the high-efficiency layer attention network, and 
the CBAM attention module is integrated. Finally, Focal-EIoU is used to replace 
CIoU in the original YOLOv7 network model to optimize the loss function, which 
accelerates convergence, improves regression accuracy and network robustness. The 
experimental results show that the improved YOLOv7 network model has the highest 
average detection accuracy and the lowest model convergence compared with the 
original network and the classical target detection network model. 

Keywords Weld defect detection · YOLOv7 · Data augmentation · Attention 
mechanism 

1 Background 

Welding is an indispensable material forming technology in modern industrial manu-
facturing. It is widely used in aerospace, automobile industry, shipbuilding industry 
and other fields [1]. In the welding process, due to the limitation of welding conditions 
and welding technology, various welding defects are often formed such as welding 
tumors, pores, depressions and splashes. In order to ensure the safety of welding
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products, strict welding quality inspection must be carried out after welding which 
can find the type and location of welding defects and take targeted solutions [2]. 

2 Literature Review 

The traditional detection method of weld surface defects is usually manual detection. 
The accuracy of the detection results depends on the experience and concentration 
of workers. Therefore, the efficiency of manual defect detection is low, and the 
accuracy is poor. With the increase of labor costs, it has been unable to meet the 
growing industrial needs [3]. 

In recent years, computer vision technology has developed rapidly, and defect 
detection methods using feature extraction have been widely used to distinguish 
different defects by extracting physical features of defect regions, such as shape, 
texture and gray distribution [4]. In 2016, Angelo et al. proposed a feature extrac-
tion algorithm based on CBIR, which uses multi-layer perceptron to experiment in 
defect samples of aerospace structures and meets the accuracy requirements of the 
experiment [5]. 

With the rapid development of artificial intelligence, deep learning technology has 
been widely used in industrial production and has achieved excellent performance. In 
2017, Girshick et al. proposed the Faster R-CNN model based on the R-CNN and Fast 
R-CNN models, which solves the problem of repeated calculation when extracting 
eigenvalues and improves the accuracy and efficiency of target detection [6]. In 
2016, Liu proposed a fast multi-class single target detector SSD, whose detection 
accuracy on PASCAL VOC and COCO datasets is better than Faster-R-CNN [7]. In 
2022, Wang proposed a new real-time target detection architecture and corresponding 
model scaling method and developed a YOLOv7 network model based on this [8]. 

Although the above network model has high detection accuracy, it is usually used 
to detect common target objects. Therefore, in order to apply the deep learning to the 
defect detection of industrial welds, the algorithm model needs to be optimized [9]. 
In 2023, Zhao et al. proposed a steel surface defect detection RDD-YOLO network 
based on YOLOv5, which achieved high accuracy on both NEU-DET and GC75-
DET datasets [10]. In 2021, Kou et al. developed an end-to-end defect detection 
model based on YOLOv3 by using the anchor-free feature selection mechanism, and 
achieved high detection accuracy and speed [11]. In 2022, Based on YOLOv4, Li 
et al. proposed a new automatic defect detection scheme based on deep learning, and 
achieved high-precision detection results on the online arc additive manufacturing 
defect dataset [12]. 

Deep learning technology requires sufficient samples for training, but it is difficult 
to collect weld defect samples. Data augmentation technology can be used to expand 
the number of defect samples [13]. In 2014, Goodfellow et al. proposed a new 
network to estimate the generative model through the adversarial process, that is, the 
generative adversarial network (GAN), which is used to generate images close to real 
samples [14]. In this paper, the deep convolutional generative adversarial network
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(DCGAN) proposed by A Radford is used. Compared with the original network, 
the convolutional layer is used instead of the fully connected layer, which greatly 
improves the stability of network training and the quality of generated picture samples 
[15]. Through the above analysis, this paper proposes a weld surface defect detection 
method based on improved YOLOv7, and solves the problem of insufficient number 
of weld surface defect samples. 

3 Methodology 

This paper mainly studies the detection of weld surface defects and realizes the 
high-precision detection of weld surface defects through deep learning algorithms. 
Firstly, the data set used for training needs to be created. Secondly, the collected 
defective data should be expanded to improve the quality of the data set. Finally, 
an appropriate network model is selected for training. In this paper, the YOLOv7 
network model is selected, and by improving its backbone network, and integrating 
the attention mechanism and changing the loss function, the accuracy of the model 
is further improved, which make it is more suitable for detecting weld defects. 

3.1 Image Acquisition 

The collection of images containing defects is the basis for the detection of weld 
surface defects. The types of defects collected in this study mainly include four 
types: pores, welds, depressions and splashes. The images are shown in Fig. 1. 

Fig. 1 Image of weld surface defects
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3.2 Data Augmentation 

Traditional data augmentation. Before that, people usually use traditional image 
processing techniques to complete the expansion and optimization of data sets. These 
techniques are simple and easy to implement, but they easily affect the performance 
of the algorithm. 

Generative adversarial networks. The GAN model consists of two parts: the gener-
ative network and the discriminative network. The generative network inputs random 
noise z, while the discriminative network inputs real data x and the samples generated 
by the generator. Therefore, the essence of GAN can be regarded as a confrontation 
process between generator and discriminator. 

Deep Convolutional Generative Adversarial Network (DCGAN) is a deep learning 
model derived from convolutional neural network (CNN) based on GAN. The 
structure of DCGAN is shown in Fig. 2. 

Poisson image fusion. The samples generated by DCGAN must be fused with the 
background image to be used. However, the samples generated by the traditional 
image fusion method will have the phenomenon that the excessive edges of the 
defect target and the weld background are abrupt. Therefore, this paper uses the 
Poisson image fusion method [16]. This method can make the fusion edge transition 
smooth and optimize the defect target to adapt to the background image of the weld, 
The optimization process is shown in Fig. 3.

Fig. 2 DCGAN network structure 
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Fig. 3 Poisson fusion optimization process. a Defect image generated by GAN; b background 
image; c fused defect image by traditional method; d fused defect image by Poisson Fusion 

3.3 Improvement of YOLOv7 Target Detection Model 

YOLOv7 is a synthesizer of the development of YOLO series models. It is one of 
the more advanced algorithms at present. It integrates a variety of technologies and 
methods in the field of target detection, which effectively improves the accuracy 
of target detection and the speed of reasoning and makes the two achieve a good 
balance. 

Improve the ELAN module. The original YOLOv7 algorithm has excellent perfor-
mance in the detection of common target scenes, which is attributed to its core 
module-ELAN module. As an efficient network structure, it enables the network to 
learn more features by controlling the shortest and longest gradient paths. However, 
when it is directly used for the detection of weld defects, the feature extraction ability 
will decrease. Therefore: in this paper, the residual structure in the Rep VGG network 
is introduced. A 1 × 1 convolution branch and a skip connection branch are added 
between each convolution module, so that the network can simultaneously utilize the 
multi-branch model feature extraction ability and the single-channel model inference 
speed during the training process. The network structure is shown in Fig. 4.

Fusion convolution attention mechanism module. Attention mechanism has been 
widely used in natural language processing, computer vision and other tasks in 
recent years, which is an effective means to improve the performance of the model. 
The collected weld defect samples exhibit phenomena such as small target scale, 
increased noise, and background interference. The Convolutional Attention Mech-
anism Module (CBAM) provides a feature attention method that takes into account 
both channel and spatial dimension weights. The network structure is shown in Fig. 5.
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Fig. 4 Improved ELAN structure diagram. a ELAB; b ELAN; c Rep VGG Block; d Improved 
ELAN

Fig. 5 CBAM network structure 

Its function is to make the training model selectively ignore irrelevant information, 
and improve the recognition accuracy [17]. 

Loss function replacement. The coordinate regression loss in the YOLOv7 network 
model is calculated using the CIoU loss function. However, the CIoU loss function 
has the problem that the width and height cannot increase or decrease at the same 
time, so the CIoU loss function cannot be stably expressed.In this paper, we use 
the Focal-EIoU loss function obtained by integrating the EIoU and FocalL1 loss 
functions, and replace the CIoU loss function in the YOLOv7 network model. The 
Focal-EIoU loss function theoretically solves the problem that the width and height 
of the CIoU loss function cannot increase or decrease at the same time and can reduce 
the negative impact of low-quality data samples on the gradient.
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4 Experiments and Results Analysis 

4.1 Experimental Platform 

The experiment was carried out on the Dell® 5820 T workstation of Windows 10 oper-
ating system with a camera of Rindo E3517. The NVIDIA GeForce RTX 3080 GPU 
processor was used. PyCharm integrated development environment and PyTorch 
deep learning framework based on Python 3.7. 

4.2 Data Set Preparation 

Firstly, a total of 999 defect images were obtained through shooting. Secondly, the 
data augmentation method is used to expand the amount of defect samples to 2816, 
and the distribution of defect types is shown in Table 1. Figure 6 illustrates that as the 
number of epochs increases, the image samples generated by the network become 
more closely resemble the real samples. 

Table 1 Amount of weld surface defect 

Defect name Number of original 
defects 

After traditional data 
augmentation 

After DCGAN data 
augmentation 

Blow-hole 316 349 823 

Overlap 231 265 671 

Umbilication 167 201 557 

Splash 285 319 765 

All 999 1134 2816 

Fig. 6 Defect sample generation process
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4.3 Algorithm Comparison and Evaluating Indicator 

In addition to the YOLOv7 model, this paper also introduces classical target detection 
algorithms such as SSD, which are utilized in training the weld surface defect data 
set for comparison. The main evaluation criteria are the average precision (AP) and 
the convergence of the loss function. 

4.4 Experimental Results and Analysis 

The convergence of the loss function before and after the modification of YOLOv7 
is verified. As shown in Fig. 7, with the increase in the number of training iterations, 
both the Focal-EIoU and CIoU loss functions eventually converge to an equilibrium 
state. However, the Focal-EIoU loss value is smaller and exhibits greater stability 
compared to the CIoU loss value. 

To further validate the superiority of the optimized network model in weld defect 
detection over other classical algorithms, training and testing were conducted in the 
same experimental environment. The results are presented in Table 2 and Fig. 8. It can  
be observed that the improved YOLOv7 network model exhibits better classification 
performance compared to other classical network models. In fact, the mAP value of

Fig. 7 Comparison of loss function iteration 
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the improved model reached 94.3%, representing a 1.9% increase compared to the 
original network. 

Table 2 Comparison of detection accuracy on different target detection algorithms 

Methods AP@ 0.5(%) mAP@ 0.5 (%) 

Blow-hole Splash Overlap Umilication 

Faster R-CNN 89.0 88.4 85.0 84.1 86.6 

SSD 90.9 90.3 86.3 85.3 88.2 

YOLOv5 93.0 92.2 89.2 88.4 90.7 

YOLOv7 94.2 93.1 91.8 90.5 92.4 

Improved- YOLOv7 96.7 95.5 93.0 91.9 94.3 

Fig. 8 The mAP values of the improved model and the classical model
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5 Conclusion 

In order to achieve high-precision detection of weld surface defects, this paper has 
carried out a series of research and optimization on the deep learning network model. 
Firstly, a limited amount of defect sample images is obtained by using the camera. 
Secondly, the traditional data enhancement method and DCGAN model are used to 
expand the defect sample data set, which enhances the quality of model training. 
Finally, by comparing other classical target detection algorithms, the YOLOv7 
network model is finally selected, and the jump connection and 1 × 1 convolution 
structure are added between each module of the high-efficiency layer aggregation 
network, so that the model can obtain richer feature information. The convolution 
attention mechanism module is integrated to make the model ignore irrelevant infor-
mation. The Focal-EIoU loss function is introduced to improve network detection 
accuracy. The experimental results show that the detection accuracy of the improved 
YOLOv7 network model reaches 94.3%, which is better than the original network 
model and other target detection network models. 
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High-Frequency Electrically-Assisted 
Turning: Application to Aluminium 

Ahmad Abdul Kadir, Konstantinos P. Baxevanakis, and Anish Roy 

Abstract The manufacturing of engineering alloys has been developing over the 
years to meet the increasing demand for more efficient techniques and high-quality 
products. The electrically and ultrasonically-assisted manufacturing processes have 
been gaining attention due to their potential in reducing energy consumption and 
improving machined surface qualities. This research explores the capability of 
the combination of these techniques using continuous and pulsed currents at high 
frequencies to improve the machinability of metals. Electric current is applied to 
the workpiece through the cutting tool to harness the electroplastic effect with local 
softening due to high current density at the cutting zone. The electric current was 
delivered into the workpiece in continuous and in pulses at different peak current 
values, with low cutting speed and feed rate. Ultrasonic vibrations were added to 
amplify the current frequency and reduce the cutting force. Results showed a reduc-
tion in cutting force and surface roughness when electric current was applied in 
pulses at a high peak current. The study showed that electrically-assisted turning has 
great potential to help improve the machinability of materials. 

Keywords Electroplasticity · Electrically-assisted machining · Cutting force ·
Surface roughness · Ultrasonic vibrations 

1 Introduction 

Electroplasticity is the enhanced plastic deformation of a metallic material under the 
influence of a flowing electric current. This effect was discovered in the 1960s [1] and 
gained resurgence in recent years as a potential alternative towards more efficient and
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effective manufacturing. It can be utilised in many metal forming processes such as 
forming [2, 3], drawing [4], rolling [5], and also machining such as milling, drilling 
[6], and turning [7]. Electrically-assisted manufacturing can replace the traditional 
assisted manufacturing processes that were mostly using heat to help modify the 
mechanical properties of materials in order to improve their workability [8]. It has 
been reported that flow stress in electroplastic deformation was reduced when elec-
tric current was delivered in continuous form [9, 10]. On the other hand, several 
studies also showed that current delivered in short pulses exhibited better improve-
ment in materials formability [11]. It was also reported that electropulsed current 
used in drilling aluminium 7075 and 1045 carbon steel has improved the material 
machinability [6]. However, to the authors’ knowledge, the electrical frequency used 
in previous studies has been limited to the range available through the respective 
electrical generators, which were typically well below 2 kHz [12]. The amount of 
current density applied to the workpiece at the cutting area during electrically-assisted 
turning processes was also obscured due to the application of electric current on the 
workpiece while having an isolated cutting tool [12–14]. This paper presents the 
study of the hybrid manufacturing process of electrically-assisted turning with local 
softening at the cutting zone which is achieved by applying current to the workpiece 
directly through the cutting tool. At the same time, an alternative way of delivering 
pulsed current with a very high frequency (ultrasonic) was made possible by using the 
setup of a hybrid manufacturing process of ultrasonically-assisted turning. Through 
the combination of these two hybrid manufacturing processes, the cutting force data 
and surface quality analyses were carried out to investigate the effectiveness of this 
new approach in the turning process. 

2 Experimental Procedure 

2.1 Experimental Setup and Material 

The experimental setup for the electrically-assisted turning operation is shown in 
Fig. 1. The experiment was conducted using a Harrison M300 lathe. The workpiece 
was covered by cured epoxy resin at both ends so as to be insulated from the lathe 
machine at the chuck and the tailstock. In addition, any surfaces that were potentially 
exposed to the chip removed from the workpiece during the turning operation were 
covered with a rubber mat and electrical gaffer tape to insulate the experimental setup 
from the rest of the lathe machine components. The electric current was supplied to 
the setup flowing from the cutting tool into the workpiece (cathode) while a carbon 
brush clamp (anode) was attached to one end of the rotating workpiece. The electric 
current was supplied using a Dynatronix (DP20-50-200 XR) power generator which 
can deliver the highest continuous current of 50 A and a highest peak current of 
200 A in pulsed current mode. The turning operation was done in dry conditions 
without coolants or lubricants.
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Fig. 1 a Experimental setup for electrically and ultrasonically-assisted turning and the data 
collection for cutting force. b Surface roughness measurement 

The workpiece used in the experiments was a cylinder of pure aluminium ingot 
with a diameter of 18 mm. The cutting tool used to machine the workpiece surface 
was a tungsten carbide insert coated with TiAlN (SECO DNMG150608-MF1 CP500) 
which had a nose radius of 0.8 mm and a chip breaker groove on the rake face. 
The cutting tool is suitable for machining with superalloys and is a good electrical 
conductor. 

2.2 Experimental Parameters 

The electric current was supplied in two forms, i.e., continuously and in pulses. 
Five machining conditions were investigated during the experiment: (i) conven-
tional turning (CT), (ii) electrically-assisted turning with continuous current (EAT), 
(iii) electrically-assisted turning with pulsed current (PEAT), (iv) ultrasonically-
assisted turning (UAT), and (v) electrically-ultrasonically assisted turning (VEAT). 
The highest electrical capacity was used in continuous current with 50 A for EAT and 
VEAT, while in pulsed current mode (PEAT), the same average current of 50 A was 
used but with varying peak currents of 75, 100, 150 and 200 A. The current densi-
ties achieved from the applied electrical parameters were measured by dividing the 
supplied current by the contact area between the cutting tool tip and the workpiece 
being cut. At a depth of cut of 0.25 mm, the current densities used were as shown in 
Table 1. The ultrasonic vibration frequency and amplitude were 20.3 kHz and 4 μm 
respectively. The frequency value was obtained as resonance at which the transducer 
that holds the cutting tool vibrates at its natural frequency while the amplitude of 
vibration was achieved by optimizing the amount of power applied to the piezoelec-
tric component of the transducer. The spindle speed was consistent at 40 rpm and
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Table 1 Electrical parameters used in the electrically-assisted turning experiments 

Cutting operation Peak current (A) Average current (A) Current density (A/mm2) 

EAT 50 A 50 50 369.60 

VEAT 50 A 50 50 369.60 

PEAT 75 A 75 50 554.41 

PEAT 100 A 100 50 739.21 

PEAT 150 A 150 50 1108.81 

PEAT 200 A 200 50 1478.42 

the feed rate was 0.1 mm/rev for low cutting speed to ensure tool separation from 
the workpiece during ultrasonic vibration. The cutting length in the feed direction 
for each machining condition was 10 mm and each turning condition was covered 
by the cutting tool in approximately 2.5 min. 

2.3 Measurement of Cutting Force and Surface Roughness 

As shown in Fig. 1a, the cutting force was measured using a force-measuring 
dynamometer (Kistler 9257B) which converted the force data into charges and was 
amplified using charge amplifiers (Kistler 5015) in each of the orthogonal cutting 
directions of tangential, radial, and feed. The data was then visualised using PicoLog 
software with the help of a data acquisition oscilloscope (PicoScope 4424). The 
surface roughness of the machined surfaces was measured using a Bruker (NPFlex 
Elite) optical measurement system as shown in Fig. 1b. 

3 Results and Discussion 

3.1 Cutting Force 

The average real-time cutting force results in the main cutting direction are shown 
in Fig. 2. The cutting force obtained after conducting EAT was lower than that of 
CT, which was assisted by the local softening induced by the electric current at the 
cutting zone. Interestingly, the tangential cutting forces after applying pulsed current 
in PEAT steadily decreased with increasing peak current, signifying the importance 
of high energy transmitted intermittently in a short period of time. Moreover, the 
lowest cutting force was achieved when electric current was delivered with very 
high frequency aided by the ultrasonic vibration in VEAT, which was even slightly 
lower than the well-documented low cutting force of UAT.


