
The Proceedings of
the 2023 Conference
on Systems Engineering
Research

Dinesh Verma
Azad M. Madni
Steven Hoffenson
Lu Xiao

Systems Engineering Towards a Smart
and Sustainable World

Conference on Systems Engineering Research Series

Conference on Systems Engineering Research
Series

The Conferences on Systems Engineering Research Series (CSER) push the bound-
aries of systems engineering research and respond to new challenges for systems
engineering. CSER invites researchers and practitioners to submit their work to
the conference each year in alignment with the meetings’ annual thematic focus.
Founded in 2003 by Stevens Institute of Technology and the University of Southern
California, the conference returned to the Stevens campus in Hoboken, New Jersey,
in 2023, and commenced with the Proceedings of that the 20th year of CSER.

Dinesh Verma • Azad M. Madni •
Steven Hoffenson • Lu Xiao
Editors

The Proceedings of the 2023
Conference on Systems
Engineering Research
Systems Engineering Towards a Smart
and Sustainable World

Conference on Systems Engineering Research

Editors
Dinesh Verma
Stevens Institute of Technology
Hoboken, NJ, USA

Steven Hoffenson
Endevor
Wilmington, DE, USA

Azad M. Madni
Astronautics Aerospace and Mechanical
Engineering Department
University of Southern California
Los Angeles, CA, USA

Lu Xiao
Stevens Institute of Technology
Hoboken, NJ, USA

ISSN 3004-9849 ISSN 3004-9857 (electronic)
Conference on Systems Engineering Research Series
ISBN 978-3-031-49178-8 ISBN 978-3-031-49179-5 (eBook)
https://doi.org/10.1007/978-3-031-49179-5

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2024
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://doi.org/10.1007/978-3-031-49179-5
https://doi.org/10.1007/978-3-031-49179-5
https://doi.org/10.1007/978-3-031-49179-5
https://doi.org/10.1007/978-3-031-49179-5
https://doi.org/10.1007/978-3-031-49179-5
https://doi.org/10.1007/978-3-031-49179-5
https://doi.org/10.1007/978-3-031-49179-5
https://doi.org/10.1007/978-3-031-49179-5
https://doi.org/10.1007/978-3-031-49179-5
https://doi.org/10.1007/978-3-031-49179-5

Preface

The International Conference on Systems Engineering Research (CSER) is the
primary conference for research focused on the fast-evolving systems engineering
discipline and associated engineering practices. It has become a global platform for
creative research in systems engineering. It addresses systems engineering research
that is focused on the complexity of modern cyber-physical systems and the context
within which they provide value to society.

CSER was co-founded by systems faculty leaders at Stevens Institute of Tech-
nology and the University of Southern California in 2003; accordingly, CSER 2023
was the 20th edition of this venerable research conference series. Since its inception,
CSER has become the primary conference for disseminating systems engineering
research; germinating new research ideas; and nucleating new collaborative initia-
tives between academics and practitioners across the systems research and practice
landscape.

The CSER 2023 theme emphasizes the pivotal role of a transdisciplinary systems
engineering research community in conceiving and creating smart systems and the
transition toward a more sustainable, safe and secure society. Smart systems are
systems that apply some combination of artificial intelligence, machine learning,
digitalization and data analytics to provide performance enhancements, generate
automated insights and enable informed decisions. Modern systems, which have
profound impacts on economic, environmental and social sustainability create
complex challenges that demand a transdisciplinary approach.

These CSER 2023 proceedings feature 47 chapters, authored by researchers
from around the globe, covering foundational and cutting-edge topics in systems
engineering research, including Artificial Intelligence for Systems and Software
Engineering, Systems and Software Engineering for Artificial Intelligence, Dig-
ital Engineering, Digital Twins, Digital Transportation, Industry 4.0 and Lean
Manufacturing, Model-Based Systems Engineering, Cybersecurity and System
Security Engineering, Uncertainty and Complexity Management, Human-Systems
Integration, Big Data and Analytics, Cyber-Physical Systems, and System Thinking.
Researchers and practitioners in systems engineering will find substantial value in
the CSER 2023 proceedings.

v

vi Preface

We would like to take this opportunity to acknowledge the following for their
dedicated engagement and hard work to help make this CSER 2023 proceedings
possible:

• Authors of 47 chapters from around the globe for their insights shared in the
proceedings.

• CSER 2023 Technical Committee, Dr. Zhongyuan Yu, Dr. Eman Almar, Dr. Feng
Liu and Dr. Hao Chen, for overseeing the rigorous review process.

• Organizing team from Stevens Institute of Technology who made CSER 2023
such a wonderful success.

• The Springer team who executed a rigorous review and publication process.

Hoboken, NJ, USA Dinesh Verma
Los Angeles, CA, USA Azad M. Madni
Wilmington, DE, USA Steven Hoffenson
Hoboken, NJ, USA Lu Xiao

Contents

Part I Model-Based Systems Engineering

PySysML2: Building Knowledge from Models with SysML v2
and Python . 3
Keith L. Lucas, Thomas C. Ford, Jordan L. Stern, and John X. Situ

Model-Based Verification Strategies Using SysML and Bayesian
Networks . 19
Joe Gregory and Alejandro Salado

MBSE-Based Design Space Exploration for Productivity
Improvement Using Workflow Models . 35
Jozef Hooman, Koen Kanters, Alexandr Vasenev, and Jacques Verriet

Using JSON Schema to Define a Systems Modeling Vocabulary:
The Tradespace Analysis Tool for Constellations (TAT-C) 47
Paul T. Grogan and Josue I. Tapia

Part II Digital Engineering

Framework for and Progress of Adoption of Digital
and Model-Based Systems Engineering into Engineering Enterprises 69
Tom McDermott, Kaitlin Henderson, Eileen Van Aken,
and Alejandro Salado

Towards Developing a Digital Mission Engineering Framework 83
Dalia Bekdache and Daniel DeLaurentis

Digital Twin Use Case for Smart, Sustainable Cities . 99
Joana L. F. P. Cardoso and Donna H. Rhodes

Advancing Education on Digital Artifacts . 117
P. Wach, D. Clark, Kerr Geoff, D. Long, M. Clifford, C. Arndt,
T. Sherburne, Y. Seetao, T. McDermott, D. Verma, P. Beling,
and N. Hutichson

vii

viii Contents

Part III System Modularity

Modularity Matters: Making Products Open Is Only Half the Battle 133
Whit Matteson

Modeling Aspects of Dynamically Reconfigurable System of Systems 141
Anton D. Hristozov and Eric T. Matson

Technology Infusion in US Spacesuits: A Comparative System
Analysis . 159
Cinda Chullen, Iser Pena, and Hao Chen

A Framework on Early Decoupling Level Metric Assessment
Based on NLP4RE . 179
Lu Xiao, Gengwu Zhao, Maximilian Vierlboeck, and Roshanak Nilchiani

Part IV Knowledge Management and Verification

Study of Equivalence in Systems Engineering Within the Frame
of Verification . 197
P. Wach, P. Beling, B. P. Zeigler, and A. Salado

Verification Complexity: An Initial Look at Verification Artifacts 211
Sukhwan Jung and Alejandro Salado

Building a Resilient Systems Engineering Workforce
with Knowledge Intelligence Transduction (KIT) . 225
Rock Mendenhall and Steven Simske

Part V Testing, Verification, and Validation

Introducing Technical Debt Link to Leading Indicators in Test
and Evaluation Phase of Systems Engineering: A Thought
Experiment. 241
Zakaria Ouzzif and Shamsnaz Bhada

An Integrated Testbed for Supporting Sustained Military
Installation Decision-Making and Modernization . 251
Randy K. Buchanan, Mohammad Marufuzzaman, James Stinson,
John Richards, Christina Rinaudo, George Gallarno, Brendon Hoch,
Natalie Myers, and Eric Specking

Can Measurement Misdirect System Design? . 263
Casey E. Eaton, Christopher White, and Bryan Mesmer

Technical Concept Development, Testing, and Modeling:
Development of a Shape-Memory Alloy (SMA) Tire Insert for
Flat Tire Prevention and Airless Conversions . 279
Cole Smith

Contents ix

Part VI Graph/Network Methods

Using Graph Theory to Investigate the Role of Expertise on
Infrastructure Evolution: A Case Study Examining the Game
Factorio . 297
Chase A. Covello, Hyunjang Jung, and Bryan C. Watson

Graph Representation of System of Analysis in Determining
Well-Formed Construction . 313
Daniel Dunbar, Mark Blackburn, Thomas Hagedorn, and Dinesh Verma

Product Competition Analysis for Engineering Design: A
Network Mining Approach . 327
Yinshuang Xiao, Yaxin Cui, Michael T. Cardone, Wei Chen,
and Zhenghui Sha

Part VII Software Engineering

Systems Engineering–Driven AI Assurance and Trustworthiness. 343
Jyotirmay Gadewadikar, Jeremy Marshall, Zachary Bilodeau,
andVatatmaja

How Is Software Reuse Discussed in Stack Overflow? . 357
Eman Abdullah AlOmar, Anthony Peruma, Mohamed Wiem Mkaouer,
Christian Newman, and Ali Ouni

Smart Base Installations: Applying Systems Engineering
Techniques to the Agile Development of Multidisciplinary
Systems of Systems Projects . 373
Tate Hasenclever, Eric Specking, Gregory S. Parnell, Ed Pohl,
John P. Richards, George E. Gallarno, and Randy Buchanan

Part VIII AI and Smart Systems

Analysis of IoT Privacy Policies in Smart Transportation Systems 387
Nil Kilicay-Ergin and Adrian Barb

Product Herding for Intelligent Systems . 397
Niloofar Shadab, Tyler Cody, Peter Beling, and Alejandro Salado

Early Implementation of a Cognitive Assistant for Identifying
Requirement Gaps . 411
Nicholas Campagnari, Chris A. Macholtz, Nicholas C. Eng,
Miguel Rodriguez, and Alejandro Salado

Part IX Value-Based Engineering Case Studies

An Interactive Dashboard to Support Design of an Artillery System 427
Stephanie McDonough, Ariela Litvin, Benjamin Steinwurtzel,
Robert Feliciano, Steven Hoffenson, and Mark Blackburn

x Contents

Tackling Optimization and System-Driven Engineering
in Coupling Physical Constraints with MBSE: The Case
of a Mobile Autonomous Line of Products . 441
Lorraine Brisacier-Porchon and Omar Hammami

Risk-Informed Prioritization for Complex Engineered Systems:
Two US Army Corps of Engineers Case Studies. 461
Willie Brown, John Richards, Christopher Morey, Titus Rice,
and George Gallarno

Exploring Differences in Value Functions Allowed by Ordinal
Validation . 469
Christopher White and Bryan Mesmer

Part X User Behavior in Complex Systems

Identifying and Evaluating the Effects of User Scenarios on the
Data Integrity of Wearable Devices . 483
Ruijing Wang, Ying Wang, and Ting Liao

An Experimental Study of the Effect of Monetary Incentives and
Fees on Consumer Energy Behavioral Intentions . 499
Gina Dello Russo, Ashley Lytle, Steven Hoffenson, and Lei Wu

A Framework for Agent-Based Models to Consider Energy
Justice Through Technology Adoption . 515
Danielle Preziuso and Philip Odonkor

Network-Based Analysis of Heterogeneous
Consideration-Then-Choice Customer Preferences with Market
Segmentations . 523
Yaxin Cui, Yinshuang Xiao, Zhenghui Sha, and Wei Chen

Part XI Systems Thinking Case Studies

Systems Thinking Design in Action: A Duplicated Novel
Approach to Define Case Studies . 541
Haytham B. Ali and Gerrit Muller

A Systems Thinking Understanding of Teamwork Competencies
and Their Relationship to Health System Outcomes . 559
Susan Ferreira, Philip Greilich, Paul Componation, Mozhdeh Sadighi,
Eleanor Phelps, and Gary Reed

Applying Systems Science to Applied Science . 569
Yaniv Mordecai and Rohit Malshe

Contents xi

Part XII Sustainability Case Studies

Ecological Decentralization for Improving the Resilient Design
of Urban Water Distribution Networks . 587
Luis A. Rodriguez, Abheek Chatterjee, and Astrid Layton

Resilient Microgrid Design Using Ecological Network Analysis 603
Abheek Chatterjee, Amira Bushagour, and Astrid Layton

Optimization of the System of Systems (SoS) Meta-Architecture
of Algae Systems for Cost-effective Pollution Remediation 619
Peter Ofuje Obidi, Cihan H. Dagli, and David J. Bayless

Sustainable Design of a Reusable Water Bottle: A Systems
Thinking Approach . 637
Hossein Basereh Taramsari and Steven Hoffenson

Part XIII Systems Engineering Reviews and Expertise

Context-Dependent Research Agenda for Systems Engineering
in 2050 . 655
Yoram Reich, Miri Sitton, Avner Engel, Uzi Orion, Ami Danielli,
Aharon Hauptman, Alex Blekhman, and Jacob Shabi

How to Identify an Engineer with the Appropriate Systems
Thinking Skills? . 663
Nissel Miller Anat and Kordova Sigal

The Emphasis of Design Patterns in Expressing Expert
Knowledge from a Technical Solution: A Framework for
Continued Research . 675
S. Russell, B. Kruse, R. Cloutier, and D. Verma

Literature Review and Research Design for Systems Integration:
Case Study in Defense Systems . 691
Gaute Tetlie, Gerrit Muller, and Satyanarayana Kokkula

Index . 707

Part I
Model-Based Systems Engineering

PySysML2: Building Knowledge
from Models with SysML v2 and Python

Keith L. Lucas, Thomas C. Ford, Jordan L. Stern, and John X. Situ

Abstract The systems engineering community is pushing toward the adoption of
digital engineering to improve the design process and resultant systems across the
life cycle. This shift depends on the ability to produce useful digital twins. Systems
Modeling Language (SysML) version 1.x and its implementing tools do not contain
truly open interfaces or otherwise enable data exchange in formats to integrate
systems models with a variety of data analysis and simulation tools. Lacking data
interoperability, SysML version 1.x models struggle to enable a systems engineering
digital engineering vision. SysML v2 corrects many of these shortfalls with speci-
fication of a text-based language and a RESTful application programming interface
(API). This chapter introduces PySysML2, a prototype software application to
integrate SysML v2 models with the Python-based ecosystem of analysis tools. This
work demonstrates the functionality and utility of PySysML2 by describing how to
read into, manipulate within, and use SysML v2 models in a Python environment.
Additionally, we demonstrate SysML v2 model serialization into a portable JSON
(JavaScript Object Notation) format that supports interoperability with a wide
range of commonly used data analysis tools. We close with a recommendation for
continued open-source exploration of the pathfinder work presented in this chapter.

Keywords SysML · SysML v2 · Python · Data science · MBSE · Modeling
and simulation · Digital thread

K. L. Lucas (�)
Department of the Air Force Digital Transformation Office, Air Force Materiel Command,
Wright-Patterson AFB, OH, USA
e-mail: keith.lucas.3@us.af.mil

T. C. Ford
KBR, Inc., Beavercreek, OH, USA

J. L. Stern · J. X. Situ
Department of Systems Engineering & Management, Air Force Institute of Technology,
Wright-Patterson AFB, OH, USA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
D. Verma et al. (eds.), The Proceedings of the 2023 Conference on Systems
Engineering Research, Conference on Systems Engineering Research Series,
https://doi.org/10.1007/978-3-031-49179-5_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49179-5protect T1	extunderscore 1&domain=pdf

 885
49096 a 885 49096 a

mailto:keith.lucas.3@us.af.mil
mailto:keith.lucas.3@us.af.mil
mailto:keith.lucas.3@us.af.mil
mailto:keith.lucas.3@us.af.mil
mailto:keith.lucas.3@us.af.mil

4 K. L. Lucas et al.

1 Introduction

Systems engineering is undergoing a paradigm shift. The nature of system acqui-
sition ensures that technology and capability requirements result in complex
systems with challenging development schedules. Model-based systems engineer-
ing (MBSE) is a key element of the digital transformation intended to produce
trusted, high-quality systems in an increasingly complex technical environment. The
utility of MBSE relies almost entirely on the usability of the models it produces. If
digital systems models cannot be analyzed and executed to produce useful insights
into the physical twin’s attributes, behavior, and performance, then the digital
engineering vision cannot be fully realized. PySysML2 is an early pathfinder for
integration between the SysML v2 modeling language [1] under development by
the Object Management Group (OMG) and the vast Python data science ecosystem.
PySysML2 is free and open-source and available on GitHub. Ideally, others with a
vested interest in the intersection of MBSE with data science and analysis will either
contribute to its development, build something better, or start related projects.

Systems engineering has been moving away from the traditional document-
based approach toward the use of digital models to manage, maintain, understand,
and interrogate a system’s technical baseline. Challenges include acquiring and
deploying software tools and infrastructure, training the workforce, building quality
models, and interfacing or integrating models. Some tools support model integration
(e.g., ModelCenter); however, these tools can be costly and are niche markets with
limited distribution. Less expensive approaches require writing custom middleware
to interface with different tool application programming interfaces (APIs). A more
fundamental problem is the lack of an open, standardized serialization format with
which to record and share systems models. These models are often files stored in
tool-specific, proprietary formats. It is worth examining the roots of this problem,
as it points toward a potential solution.

One problem stems from the fact that the Systems Modeling Language (SysML)
is a “a general-purpose graphical modeling language for specifying, analyzing,
designing, and verifying complex systems that may include hardware, software,
information, personnel, procedures, and facilities” [2]. Because the language does
not have a textual specification, individual tool vendors have created their own file
formats. A common method for serializing SysML v1.6 models for export between
tools is an Extensible Markup Language (XML) format called XML Metadata
Interchange (XMI). While this is a standard maintained by the OMG, it has been
heavily extended by the tool vendors. Two specific problems associated with XMI
are (1) there is no definitive documentation for XMI and its tool-specific extensions
and (2) XMI does not represent SysML completely and is error-prone; porting a
model from one tool to another using XMI results in loss of fidelity.

The problem of model portability and interoperability between applications was
at the forefront when the OMG drafted a request for proposal (RFP) for SysML
v2 [3]. The RFP defines interoperability as the “ability to exchange data with other
SysML models, other engineering models, tools, and other structured data sources.”

PySysML2: Building Knowledge from Models with SysML v2 and Python 5

In its list of objectives, the RFP states: “In particular, the emphasis for SysML v2 is
to improve the precision, expressiveness, interoperability, and the consistency and
integration of language concepts relative to SysML v1.” This objective is supported
by several related requirements throughout the RFP. A proposed specification from
a consortium of members of the systems engineering community from across the
industry and academia called the SysML v2 Submission Team (SST) is currently
under development. In its current draft state, the proposal includes a mature
prototype specification of the SysML v2 language, in addition to an open-source
repository on GitHub of supporting software applications [4].

2 Literature Search

In the draft SysML v2 specification, the SST defined a basic language called the Ker-
nel Modeling Language (KerML), which includes abstract elements and concepts
common to many modeling languages. SysML v2 was then extended from KerML.
The SST explains their reasoning for building two modeling languages: “By intent,
KerML provides a common kernel for the creation of diverse modeling languages
that can be tailored to specific domains while still maintaining fundamental semantic
interoperability. SysML v2 is such a modeling language, tailored to the systems
modeling domain” [4]. SysML v2 has not only a graphical specification like SysML
v1 but also a first-class textual specification. Like a programming language, this
textual specification is built upon a rigorous and well-defined syntax and a set of
semantics.

In addition to the textual language, the SST also proposed a SysML v2
Representational State Transfer (REST or RESTful) API [5]. The SST states in its
proposal that the API will “provide standard services to access, navigate, and operate
on KerML-based models, and SysML [v2] models. The standard services facilitate
interoperability both across SysML modeling environments and between SysML
modeling environments and other engineering tools and enterprise services” [5].
The SST’s decision to define both a textual modeling specification and a RESTful
API for SysML v2 ensures that model interoperability and accessibility will remain
the core features of the language as it matures. This development points to a future
in which the authoritative source of truth for MBSE models need not be held in
vendor-specific, proprietary formats that lock data in silos.

There are two ways to interface with the SysML v2 textual language: (1) by
parsing it or (2) by interfacing via the SysML v2 API. In its prototype state,
PySysML2 focuses on the former, whereas implementation of the latter is on the
development roadmap. Currently, the application can parse a SysML v2 model from
its textual language representation, instantiating it as a data structure within the
Python environment. This supports the capabilities of both simulating the model
and interfacing with modern, open-source data science libraries, widely used in
the scientific, academic, engineering, and defense communities. Specifically, a
straightforward approach to integrating SysML v2 with the Python programming

6 K. L. Lucas et al.

language is demonstrated through the development of the open-source application
PySysML2.

3 Methods

PySysML2 is developed as free and open-source, to be released and licensed under
the Apache Commons 2.0 License [6] to encourage broad use of the tool and to
support incorporation into or adoption by other projects [6]. Note that the SST has
chosen to license the prototype SysML v2 Release under the General Public License
(GPL) [7]. This license was considered for PySysML2 but was discounted because
it requires derivative products to carry the same license forward and may discourage
use and adoption. As PySysML2 does not use any SysML v2 Release source code,
it is not necessary to carry the GPL forward. Additionally, other related projects,
for example, the HUDS (Huddle Unified Data Schema) XML Cameo plugin by the
Aerospace Corporation [8], have released their source under Apache Commons.
HUDS XML is an alternative to the problematic XMI serialization format for
SysML v1 mentioned earlier.

PySysML2 is developed using Miniconda, a minimal subset of the widely used
Anaconda Python distribution, with some supporting features and libraries in other
languages. This has many advantages, but the primary advantage is that Anaconda
includes most required modules and libraries out of the box. It includes not only
data science libraries like NumPy, Pandas, Keras, and TensorFlow but also general
support utilities. Anaconda provides easy, secure, and free access to tested and
verified versions of these open-source modules, while the Miniconda distribution of
Anaconda allows only required dependencies to be added as needed. Furthermore,
harnessing PySysML2 to a version of Miniconda ensures that all dependencies are
verified to work correctly with one another, as each is developed independently.
Finally, Miniconda supports the generation of an environment setup file that
supports easy installations across multiple operating systems and configurations
while clearly notating all dependencies.

The fundamental capability of PySysML2 is its ability to parse the SysML v2
textual language so that models may be instantiated and contextualized in Python
as data objects that can be explored, analyzed, and manipulated. Since the SysML
v2 textual language is a high-level programming language, like C++ or Java,
building a Parser for it is nontrivial and is more akin to building a computer
language compiler. Common approaches to building a language Parser include
building it from the ground up or using a preexisting workbench of language and
grammar tooling. Building from scratch enables the most flexibility to handle any
nuances of the SysML v2 grammar, but using preexisting grammar frameworks and
tooling significantly reduces development time, while supporting the extensibility
and maintainability of the Parser.

Because the SST made a great effort to define a grammar for SysML v2 that is
intuitive and straightforward, using a Parser generation tool outweighs the benefit

PySysML2: Building Knowledge from Models with SysML v2 and Python 7

Table 1 Grammar-related terminologies adapted from the definitive ANTLR4 reference [9]

Terms Meaning

Syntax Rules that govern the membership of a phrase in a language
Grammar Specification that defines the syntax (or rules) of a language for each potential

phrase
Character Configuration of bytes that specifies a single letter, number, or another mark
Token Combination of characters that have specific meaning; can be combined into

valid phrases of the language
Tokenizing Process by which characters are grouped into tokens
Lexer Application that tokenizes characters and groups them into a stream of tokens

that form phrases that have meaning in the context of the language according to
the syntax defined by the grammar

Parser Application that interprets the Lexer’s token stream, assigning meaning to
phrases of tokens as per the grammar

Tree Data structure characterized by a root element that points to one or more child
elements

Parse tree A tree data structure that records the Parser’s interpretation of the phrases
defined in the token stream

gained from building a Parser from the ground up. ANother Tool for Language
Recognition 4 (ANTLR4) is a powerful, open-source tool for developing Parsers
from a defined grammar and is widely used across the industry and academia [9].
Twitter, for example, uses it as their primary query Parser that interprets searches by
users [9]. ANTLR4 also abstracts the coding of the Parser itself from the definition
of the grammar, which means that the primary artifact to develop, maintain, and
extend is the SysML v2 grammar definition itself. ANTLR4 autogenerates the
Parser from the grammar in a variety of programming languages (e.g., Java, C++,
C#, Python, Swift) and is currently used in the prototype SysML v2 tooling released
by the SST. The important terminologies related to ANTLR4 are included in Table 1.

4 Results

Following Fig. 1, the first step in interpreting a language is to read the characters.
This is performed by the Lexer. The Lexer is a relatively lightweight routine for
recognizing specific groups of characters as tokens (i.e., symbols or keywords) that
have specific meaning in the syntax of the language’s grammar. For example, the
words part, def, use, and case, along with symbols like {, }, and :> have
specific meanings in SysML v2, so its Lexer should recognize those combinations
of characters as valid tokens. The Lexer is also responsible for things like handling
whitespace (which, in the case of SysML v2, means ignoring it), along with numbers
and strings.

8 K. L. Lucas et al.

Fig. 1 Grammar parsing workflow

Once the Lexer converts all the characters into valid tokens, the much more com-
plex Parser takes over. The Parser must interpret the tokens and the order in which
they appear in the context of the grammar’s syntax. This can be straightforward
for certain constructs, but it becomes complicated very quickly. Nested constructs,
for example, those involving braces or parentheses, are particularly common across
most programming languages and can be quite complex. Peculiarities of the
language (e.g., overlapping rules and redundant keywords, prominent features of
SysML v2) compound any inherent complexities as well.

A parse tree is the output of a Parser based upon the grammar and serves as the
raw interpretation of the source code being recognized. PySysML2 interfaces with
the parse tree through a special class called the Visitor that retrieves all required
information from the tree as needed. Figure 2 breaks down the SysML v2 grammar
implemented so far in PySysML2. It is worth noting again that the Lexer, Parser,
and base Visitor classes are automatically generated from this grammar. Subsequent
sections describing PySysML2’s implementation expand on the Lexer, Parser, and
Visitor pattern through a demonstration on a notional but nontrivial SysML v2
model.

ANTLR4 is built around a specialized “metalanguage” suited for describing the
grammars of other programming languages [9]. Using the ANTLR4 metalanguage,
a grammar specification for SysML v2 is constructed, derived from the documenta-
tion released by the SST [10]. From this grammar specification, ANTLR4 generates
the source code required to interpret textual language. The grammar specification is
designed to be extensible. As PySysML2 evolves, this extensibility supports growth
beyond the initial subset of the language chosen for this project, eventually including
the whole specification. It also supports adaptability, as the language will inevitably
change before the final adoption of SysML v2 by the OMG.

The process by which the SysML v2 textual language is interpreted by
PySysML2 is straightforward. First, the character stream (i.e., the SysML v2
code) is read and tokenized by the Lexer according to the predefined grammar. For
example, the SysML v2 code “part def ‘RAM’;” is read as a character stream,
then the Lexer tokenizes the stream using the grammar by identifying SysML
v2 keywords (e.g., “part def”), organizational symbols (e.g., semicolon), and
identifiers (e.g., RAM). The Parser builds a data structure called a parse tree from
the tokens.

Now that PySysML2 can parse SysML v2, the next task is to access and manip-
ulate the model information in support of management, cost analysis, operations
analysis, engineering analysis, and general data science. The task of PySysML2 is
to expose, organize, and collate the data within a SysML v2 model in such a way that
it is congruent with standard data science data structures. In other words, PySysML2

PySysML2: Building Knowledge from Models with SysML v2 and Python 9

Fig. 2 SysML v2 grammar source represented in the ANTLR4 format

10 K. L. Lucas et al.

Fig. 3 PySysML2 codebase

must transform the data of a SysML v2 model so that it can be structured as trees,
graphs, data frames, and multidimensional arrays.

The Lexer, Parser, and Visitor classes are automatically generated by ANTLR4
from the grammar. Figure 3 shows the relative size and complexity of these
generated classes. The classes generated from the grammar, shown on the left-hand
side of the figure, constitute approximately 2800 SLOC (source lines of code), while
the grammar itself, shown in the middle, is only 100 SLOC. The code developed for
PySysML2 to implement the SysML v2 modeling language, shown on the right-
hand side, is about 1200 SLOC.

A SysML v2 model is, at its core, a tree data structure, hierarchically organized
into packages and elements like parts with attributes, users, use cases, and others.
Additionally, once the SysML v2 model has been taken in by the Parser, all its data
exist in a parse tree. This drives the architecture quite naturally toward a tree as its
foundational data structure.

Using our method, a PySysML v2 model is represented by a Model class in
Python. A Model is defined as a root node that points to the first element of
a SysML v2 model, which may then point to arbitrary sub-elements and so on.

PySysML2: Building Knowledge from Models with SysML v2 and Python 11

Since a Model is a tree of Elements and Behaviors, each Element or Behavior
must also be a tree since they too can have child nodes. A SysML v2 part, for
example, may have many attributes, and a use case may contain actors (which are
specialized parts), along with objectives, which, in turn, can contain comments.
The underlying tree architecture of SysML v2 is driven by this feature of KerML:
“A root Namespace is a Namespace that has no owner. The owned members of a
root Namespace are known as top level Elements. Any Element that is not a root
Namespace shall have an owner and, therefore, must be in the ownership tree of a
top level Element of some root Namespace” [10]. “Model” elements are populated
by interrogating the parse tree through a subclass of the Visitor class generated by
ANTLR4. The PySysML2-specific Visitor subclass can traverse the parse tree on
demand, executing application-specific code driven by the rules of the modeling
language—which, in the case of PySysML2, is to transform the model elements
into data science-friendly data structures.

The first task, then, is to implement a general tree data structure in Python.
We make use of the popular Python module Anytree [11]. With the base tree
class in hand, the “Model,” “Element,” and “Behavior” classes are now defined
as customizable subclasses extending the Anytree abstract class. Additionally, the
PySysML2-tailored “Visitor” subclass is also be defined. Once the Model class is
implemented, functions for transforming the data into tables for data frames, graphs,
and arrays can be implemented. With these in hand, interfacing a SysML v2 model
with Numpy, Pandas, SciPy, and others is straightforward.

Figure 4 shows the inheritance structure of the primary user facing PySysML2
classes, which includes “Model,” “Element,” and “Behavior.” All three inherit
from the Anytree abstract class, via “NodeMixin.” Any class that inherits from
“NodeMixin” can now be part of a tree as either the root, nodes with children,
or leaves. Essentially, “NodeMixin” defines a field that points to the node’s parent
and children, supporting tree traversal. “Element” and “Relationship” each inherit
from “RootSyntacticElement” as well as “NodeMixin.” The SysML v2 specification
defines a “root syntactic element” as the primary super class of any model element
or behavior [4]. This class, then, has all the fields that “Elements” and “Behaviors”
have in common, in addition to functions shared by both. In turn, “Element”
and “Behavior” each have subclasses of their own that define specific elements
of the language, like part, attribute, and the redefines relationship.
Encapsulating each element and behavior in this way supports maintenance as
well as future extensibility. The first version of PySysML2 only supports the basic
elements of the language, enough to build useful but still simple models. Future
iterations, though, will gradually incorporate the rest of the specification.

To provide an initial validation of the PySysML2 method, we created a simple,
notional, integrated system called the tabletop roleplaying game (TTRPG) eToken.
The primary use case for this system is to display a user-defined image on a small,
round liquid crystal display (LCD) screen that can be used as a customizable game
token in a tabletop game. It is driven by a micro-central processing unit (micro-CPU)
controller with Wi-Fi and/or Bluetooth capability and is battery-powered. The user

12 K. L. Lucas et al.

Fig. 4 PySysML2 inheritance structure

can upload new images to the token, remove existing images, and change displayed
images stored in a buffer to fit their needs as the game progresses.

A walk-through of the usage of PySysML2 for the TTRPG notional systems
model is described next. First, the user accesses PySysML2 through a command line
interface and points to a SysML v2 source file (e.g., the TTRPG eToken model).
PySysML2 parses the model source using the Lexer and Parser code that was
generated from the grammar shown in Fig. 2. The model of the TTRPG system
is built-in memory from the PySysML2 classes, a “Model” object is instantiated,
and its root node is defined. “Model” then interacts with the TTRPG SysML v2
model through the SysML2 Visitor class, which walks the parse tree. Element and
Behavior objects are instantiated by SysML2 Visitor and saved in a temporary
array in “Model.” After walking the parse tree, “Model” loops through the array
of “Elements” and “Behaviors,” building out the model tree with nodes pointing

PySysML2: Building Knowledge from Models with SysML v2 and Python 13

Table 2 Data structure transformation

Data structure Implementation

Multidimensional array Numpy array. The primary interface to the majority of Python-based
data science tools

DataFrame Pandas DataFrame. A specially formatted multidimensional array
with spreadsheet functionality

Tree Anytree. Stores a model in a hierarchical data format like HDF5 [12]
Nested dictionary Pure Python. Serializes JSON and XML; efficiently handles large

data sets [13]

to their children and back to their parents. Now that “Model” is fully instantiated,
the TTRPG eToken model may now be accessed and manipulated by the user in
their data analysis environment. Several helper capabilities have also been included
and, depending on the command line arguments, the model can be transformed
into any one of several data structures. Once PySysML2 completes a run, multiple
output files are generated: a tabular version of the model, a JSON (JavaScript Object
Notation) serialization of the Python object states, a text file listing all elements in
a hierarchy, and a visual graph of the model tree structure.

The PySysML2 application was developed using test-driven development (TDD)
and was validated through test cases based on the notional TTRPG eToken model.
Specifically, this model was built using the Java-based modeling tools provided by
the SST and confirmed to be a valid model through the built-in linting and error-
checking capability. Then, the output files were evaluated after running PySysML2,
comparing the transformed, formatted model in both tabular and JSON forms to the
original textual code. Lastly, the visual graph was compared to the model hierarchy.

With the ability to read, parse, build, and manipulate models in memory now
implemented as data structures listed in Table 2, the ability to serialize models
into a portable file format rounds out the foundational capabilities of PySysML2.
One of the most important goals of PySysML2 is increasing model portability
and interoperability, both between other modeling tools and between external data
science, simulation, and analysis tools. The foundation of this capability is the
implementation of well-documented serialization schemas that allow models to
be exported and imported across tools with full fidelity. Additionally, multiple
serialization formats tailored for specific purposes are useful. The primary purpose
of serialization is to preserve the precise state of objects in memory in a binary or
textual representation so that they can be saved and reconstituted later, either by
the originating application or after transmission to other applications. A secondary
benefit of serialization is the flattening of complex models into simpler formats
that can be analyzed. For example, serializing a model to a relational table would
allow its direct examination in a spreadsheet for any number of purposes. Hence,
we built two serialization formats: one optimized for general portability between
applications and the other optimized to support applications built around relational
tables, like databases and spreadsheets.

14 K. L. Lucas et al.

Serialization of SysML v2 models could be accomplished somewhat by the
textual language itself. The main problem with relying on textual language for
serialization, though, is that there is no precise, one-to-one correspondence from a
model back to the textual source from which it is compiled. In other words, the same
model can be generated from multiple configurations of the textual source. This
is because there are so many ways to represent the same concept through SysML
v2 syntax. This problem is not unique to SysML v2, but rather is prevalent in all
compiled programming languages as evidenced, for example, by the difficulty of
reverse compiling a binary executable file back to its original source code. While it
is possible to do this, it is inherently difficult, and, even if it is accomplished, there
is always loss that occurs when reverse compiling. This greatly limits the utility of
textual language for serialization.

Rather than reverse compile a SysML v2 model back to the original textual
language for the purposes of serialization, the problem can be greatly simplified
by serializing the Python objects built from the original source. Since the “Model,”
“Element,” and “Behavior” classes were designed with serialization in mind from
the ground up and can all be represented as nested dictionaries in addition to trees,
JSON is well-suited as a serialization format. This can be done trivially through
Python’s built-in JSON package. Serializing to a flattened, tabular format, on the
other hand, is somewhat more challenging. It requires designing the table itself in
addition to custom coding, but the task is relatively straightforward. Furthermore,
tables can be easily read and written to CSV (comma-separated value) files (or
even Excel) through the Pandas DataFrame data structure [14], which is already
a supported PySysML2 data transformation. Lastly, it is useful to have a simplified
string representation of a model. While this is not serialization per se, it is related,
in that it transforms a model into a human readable string. This is useful in the short
term for debugging and development purposes but may have additional uses in the
future.

Having discounted reverse compilation as a viable alternative to serialization, the
JSON and tabular formats are prioritized for the first version of PySysML2, along
with a string format suitable for quick model viewing. A reverse compiler for the
language will be explored in future work. Implementation of the model as a tree
makes this task straightforward. The underlying tree of the Model object can be
traversed from the root to each leaf, and a hierarchical string providing an overview
of the model can be constructed. Although it is static text rather than a navigable
containment tree, it provides a clear, concise view of the model’s structure.

A “data schema” is a blueprint that describes how data are organized. It is a
detailed specification of a data set that facilitates interoperability between producers
and consumers of those data. It is defined at the granular level, specifying fields,
types, boundary conditions, relationships, triggers, procedures, and other contextual
information about the individual data elements. A data schema should be defined to
a sufficient level of detail such that a database can consume the described data (e.g.,
a relational database specification) or that an application can generate or receive
serialized data (e.g., through file I/O or message queuing through formats like JSON
or XML). Although it can be defined in a human readable form, a data schema is

PySysML2: Building Knowledge from Models with SysML v2 and Python 15

often defined in a format suitable for database software and other applications to
read programmatically. A data schema should be specified according to a language
or standard, i.e., well-defined and documented, accepted rules of grammar, and
syntaxes that structure the description of the data set. Two schemas for serialization
are currently supported for PySysML2, including a JSON and tabular CSV format,
detailed next. The JSON schema is straightforward and automatic. It is derived
from the class definitions of Model, Element, and Behavior and is generated from
a simple call to the built-in Python JSON package. While this is useful for writing
and reading model states, the lack of documentation due to volatility as PySysML2
evolves currently limits its utility for cross-application portability. This will change
as development stabilizes, however, and the time investment of documentation
becomes worthwhile.

In contrast to the JSON schema, the CSV schema is designed to support model
portability between applications. PySysML2-specific fields necessary for complete
JSON serialization were removed, leaving only fields common to modeling and
analysis tools. The tabular fields were chosen based on their criticality to the model’s
organization and descriptiveness of model elements. The tabular export provides
any data fields that may be useful for analysis in general. For example, a trade
study of different alternatives for a component would require threshold and objective
parameters, which may be recorded as values of attributes. A graph theory analysis
would require relationship information between elements. This is captured in the
table through the inclusion of names and Unique Identifier (UIDs) for parent and
related elements, along with other information about relationships captured by the
keywords used to define them.

5 Conclusions

The goal of this project is to build a pathfinder for a Python-based application,
capable of interfacing with the SysML v2 modeling language through its textual
specification. PySysML2 achieves this goal, while also providing a robust frame-
work for continued development of the application. The extensibility of the grammar
definition using the ANTLR4 language parsing workbench, for example, supports
eventual inclusion of the rest of the SysML v2 specification. PySysML2 is currently
limited because the full SysML v2 grammar has not yet been implemented in
PySysML2. As new features of the SysML v2 textual language and its parent
language KerML are released, the workflow supports both the adaption of existing
rules to future changes and the inclusion of new rules.

This pathfinder project demonstrates the possibilities that open-source develop-
ment and open data standards can realize for systems model usage. PySysML2 was
made possible using open-source technology and by leveraging the SST’s work. The
decision of the OMG to prioritize model interoperability across tools in the SysML
v2 RFP is truly a paradigm shift for systems modeling standards and tool develop-
ment. We hope that our research inspires future work in related areas. PySysML2

16 K. L. Lucas et al.

is built from the ground up using computer programming and data science skills
that most new engineering and computer science graduates possess as they enter the
workforce. A dedicated team with access to higher-tier expertise could accomplish
so much more. As digital transformation across government, industry, and academia
continues to progress, issues with data portability and interoperability between
tools will continue to pose significant challenges. Supporting open standards and
formats, in addition to open source where appropriate, should be the cornerstone
of the strategy to meet these challenges head on. This project demonstrates how
the availability of open standards and formats, in conjunction with the availability
of open-source technology, could lead to a future in which models are no longer
siloed, locking away data from analysis. In that future, systems models become
what they were intended to be in the first place: repositories of organized, integrated
systems engineering data, easily accessible and discoverable by the workforce
across both engineering and functional support fields, and compatible with powerful
data science, simulation, and analysis tools available to the modern workforce.

Future development of PySysML2 will include the implementation of the
RESTful API. Our draft tabular format can serve as the initial schema for a database
view, which facilitates this connection. Our goal is also to finalize the open-source
release of PySysML2 under the Apache Commons license and then seek out and
engage with other organizations and developers working in the area of modeling,
simulation, and analysis tool interoperability. There are several related open-source
projects under development, and collaboration with that community is vital going
forward. In addition to the open-source community, the defense sector is also
highly active in this space. Many organizations, ranging from large contractors and
federally funded research and development centers (FFRDCs) to small business
innovation research (SBIR) firms, are pursuing solutions to the interoperability
problems outlined at the beginning of this chapter.

Future features of PySysML2 include building out the grammar definition and
accommodating the rest of the SysML v2 specification. The tabular CSV schema
will be refactored for compatibility with the open HUDS format, currently under
development by The Aerospace Corporation [8], in addition to a corresponding
XML serialization schema. Further on the horizon, new capabilities include the
implementation of the RESTful API and integration with the SysML v2 model
repository and development of a reverse-compiling feature capable of generating
SysML v2 textual code. Development of a basic simulation/analysis engine in
PySysML2 could also be straightforward.

Acknowledgments The authors thank the Air Force Institute of Technology (AFIT), Department
of Systems Engineering and Management, for providing the opportunity to conduct this research
and also thank the Department of the Air Force Digital Transformation Office (DTO) at the
Air Force Materiel Command (AFMC) for sponsoring this research. This research was partially
completed under contract # GS00Q14OADU416 and task order # 47QFCA21F0013.

PySysML2: Building Knowledge from Models with SysML v2 and Python 17

Disclaimer The views expressed in this chapter are those of the authors and do not reflect the
official policy or position of the United States Air Force, the United States Department of Defense,
the United States Government, or KBR, Inc.

References

1. M. Bajaj, S. Friedenthal, E. Seidewitz, Systems modeling language (SysML v2) support for
digital engineering. Insight 25(1), 19–24 (2022)

2. Object Management Group, What is SysML? (2022) [Online]. Available: https://
www.omgsysml.org/what-is-sysml.htm. Accessed 12 Dec 2022

3. Object Management Group, Systems modeling language (SysML) v2 request for proposal
(RFP) (2 Dec 2017) [Online]. Available: http://www.omg.org/cgi-bin/doc.cgi?ad/2017-12-2.
Accessed 8 Dec 2022

4. SysML v2 Submission Team (SST), 2022–10 SysML v2 release (2022) [Online]. Available:
https://github.com/Systems-Modeling/SysML-v2-Release. Accessed 8 Dec 2022

5. SysML v2 Submission Team (SST), SysML v2 API and services (2022) [Online]. Available:
https://github.com/Systems-Modeling/SysML-v2-API-Services. Accessed 8 Dec 2022

6. Apache Software Foundation, Apache license, version 2.0 (2004) [Online]. Available: https://
www.apache.org/licenses/LICENSE-2.0. Accessed 8 Dec 2022

7. Free Software Foundation, GNU general public license (2007) [Online]. Available: https://
www.gnu.org/licenses/gpl-3.0.en.html. Accessed 8 Dec 2022

8. The Aerospace Corporation, Modeling tool integration plugin for Cameo Systems Mod-
eler (MTIP-Cameo) (17 Oct 2022) [Online]. Available: https://github.com/the-aerospace-
corporation/mtip-cameo-plugin. Accessed 8 Dec 2022

9. T. Parr, The Definitive ANTLR4 Reference (The Pragmatic Bookshelf, Dallas, 2012)
10. I. Model Driven Solutions, Introduction to the SysML v2 language textual notation

(Oct 2022) [Online]. Available: https://github.com/Systems-Modeling/SysML-v2-Release/
tree/master/doc. Accessed 8 Dec 2022

11. Anytree Contributors, Anytree (14 Jan 2020) [Online]. Available: https://github.com/c0fec0de/
anytree. Accessed 8 Dec 2022

12. S. Friedenthal, Requirements for the next generation systems modeling language (SysML v2).
Insight 21(1), 21–25 (2018)

13. Object Management Group, SysMLV2: the next generation systems modeling language (2017)
[Online]. Available: https://www.omgsysml.org/SysML-2.htm. Accessed 8 Dec 2022

14. Pandas Contributors, Pandas (22 Nov 2022) [Online]. Available: https://pandas.pydata.org/.
Accessed 8 Dec 2022

 32220 11876 a 32220
11876 a

https://www.omgsysml.org/what-is-sysml.htm

 15573 15197 a 15573
15197 a

-563 18518 a -563 18518 a

 -563 20731 a -563 20731 a

32220 21838 a 32220 21838 a

https://www.apache.org/licenses/LICENSE-2.0

 32220 24052 a 32220
24052 a

https://www.gnu.org/licenses/gpl-3.0.en.html

 22250 27373 a 22250 27373 a

https://github.com/the-aerospace-corporation/mtip-cameo-plugin

 12838 31801 a 12838 31801 a

https://github.com/Systems-Modeling/SysML-v2-Release/tree/master/doc

 24078 34015 a 24078 34015 a

https://github.com/c0fec0de/anytree

 7157 39550 a 7157 39550 a

 24903 40657 a 24903 40657 a

Model-Based Verification Strategies
Using SysML and Bayesian Networks

Joe Gregory and Alejandro Salado

Abstract In this chapter, the authors outline an approach to formally model verifi-
cation strategies using Systems Modeling Language (SysML) in a way that enables
the automatic generation of the corresponding Bayesian network. The approach
includes the development of a verification metamodel that can be represented as
a SysML profile. A notional example is included, in which a CubeSat verification
strategy is produced in accordance with the SysML profile and a representative
Bayesian network is created. Results from the Bayesian update are presented,
and the impact on the SysML model is discussed. Further work will focus on
the continued development of this metamodel, the integration of the plug-in to
automatically generate the corresponding Bayesian network, and more detailed case
studies.

Keywords Model-based systems engineering · Verification · Bayesian
networks · SysML

1 Introduction

Verification activities, which usually take the form of a combination of analyses,
inspections, and tests, consume a significant, if not the biggest, part of the
development costs of large-scale engineered systems [1]. Verification occurs at
various levels of a system’s decomposition and at different times during its life
cycle [1]. Under a commonmaster plan, low-level verification activities are executed
as risk mitigation activities, such as early identification of problems, or because
they are not possible at higher levels of integration [1]. Therefore, a verification
strategy is planned, “aiming at maximizing confidence on verification coverage,
which facilitates convincing a customer that contractual obligations have been met;

J. Gregory · A. Salado (�)
Department of Systems and Industrial Engineering, University of Arizona, Tucson, AZ, USA
e-mail: alejandrosalado@arizona.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
D. Verma et al. (eds.), The Proceedings of the 2023 Conference on Systems
Engineering Research, Conference on Systems Engineering Research Series,
https://doi.org/10.1007/978-3-031-49179-5_2

19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49179-5protect T1	extunderscore 2&domain=pdf

 885
55738 a 885 55738 a

mailto:alejandrosalado@arizona.edu
mailto:alejandrosalado@arizona.edu

20 J. Gregory and A. Salado

minimizing risk of undetected problems, which is important for a manufacturer’s
reputation and to ensure customer satisfaction once the system is operational;
and minimizing invested effort, which is related to manufacturer’s profit” [2].
Essentially, verification activities are the vehicle by which contractors can assess
evidence of contractual fulfillment in acquisition programs.

In current practice, verification planning requires the production of several
artifacts, such as verification requirements, test configurations, test procedures,
and verification reports [1, 3–5]. Executing these activities often requires the
maintenance of configuration logs (that are in sync with design artifacts) and
verification control documents (that are in sync with requirement artifacts), among
others [6]. Traditionally, all these artifacts are generated or controlled by a com-
bination of independent or stand-alone documents. As with other document-based
approaches in systems engineering [7], a document-based approach to verification
planning generates several problems [6, 8], including information inconsistencies
(due to multiple information sources and recurring updates and task repetitions),
wasted effort in manually typing and transferring information across information
sources, difficulty in identifying and controlling change propagation, and loss of
a holistic view of the verification enterprise. Furthermore, the lack of modeling
artifacts for verification planning restricts the opportunity to connect design and
verification models to quantitatively assess the confidence yielded by the verification
evidence. In summary, current document-based approaches to verification planning
and assessment are inefficient, prone to inconsistencies, and unable to quantitatively
inform about the confidence level on the verification status of the system of interest.

A model-based approach to verification planning and assessment can overcome
these weaknesses [6, 8]. By connecting verification strategy models with other
engineering artifacts within a model-based systems engineering (MBSE) environ-
ment or, more generally, by leveraging digital engineering (DE), we anticipate
significant impacts on velocity and deployed capabilities by reducing the time
needed to complete verification activities (since documentation efforts can be
automated directly from the model), improving consistency in the design and
development process (since information points to single sources of truth), improving
the holistic evaluation of the verification enterprise (engineering teams that include
design engineers, verification managers, and integration and test engineers work
concurrently in shared models), and enabling the use of quantitative methods to
compute the confidence in the correct state of the system of interest.

The concept of model-based systems integration (MBSI) was proposed to
attempt to obtain the same benefits for later life cycle phases of systems develop-
ment [9]. MBSI expands model-based methods beyond the early definition phases
of a system and uses its capabilities to explore the implications of the architectural
design on the future integration and testing of a system [9].

In this chapter, we outline an approach to develop a model-based verification
planning and assessment approach in which verification planning is formally mod-
eled and connected to quantitative models of verification strategies and verification
evidence as well as to models of system design. Verification planning will be
modeled using the behavioral and structural modeling features offered by Systems

