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Preface 

From 2020 until 2022, the COVID-19 pandemic struck the world and massively 
changed our daily lives. For the academic world, it meant a sudden halt to in-person 
meetings, workshops, and conferences, among many other consequences. Of course, 
several editions of the Genetic Programming Theory and Practice (GPTP) workshop 
were also affected: In 2020, we had to cancel GPTP; in 2021, we held it online, 
which turned out great, but still we hoped that we would never be forced to repeat that 
format for GPTP. In 2022, we planned GPTP as an in-person event at the University 
of Michigan, and after not being completely sure if it would work for a long time, 
we were very glad when it finally did! We were very cautious (e.g., wearing masks 
at the event) and, unfortunately, several of our colleagues who would have preferred 
to attend the workshop were not able to travel, but overall it was a great event. 

November 2022 saw the premiere of the “GPTP Sandbox”, a new online format 
for GPTP in which we focused on two things: On the first day, six Ph.D. students 
were given the opportunity to present their research and receive feedback from the 
community; on the second day, we discussed how genetic programming could be 
promoted and made more visible in the machine learning community and in society 
in general. 

In 2023, finally, we were able to plan GPTP under more or less “normal” circum-
stances. (Apart from the fact that for the first time in a long period, Wolfgang Banzhaf 
was not part of the organization team due to his sabbatical year.) For the first time we 
planned to hold the workshop at the Kellogg Hotel & Conference Center at Michigan 
State University, and we also decided to try to integrate more groups that are active 
in GP research into the GPTP community. Additionally, we also decided to offer 
the speakers not only the possibility to give regular talks but also so-called lightning 
talks, i.e., shorter talks in which ideas and research directions could be presented 
without necessarily having final results or conclusions yet.
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vi Preface

And then, in June 2023, GPTP finally came back to Michigan State University! 
Following the tradition, we started the twentieth edition of our workshop with a joint 
dinner at a local bar (downtown East Lansing), and then 45 GPTP’ers had three great 
days at the Kellogg Center, where we had a very nice conference room and delicious 
food (coffee breaks, lunch, and even a great conference dinner on the first day of the 
workshop). 

Day one started with a great keynote given by Oana Carja from Carnegie Mellon 
University, she talked about topological puzzles in biology and how geometry shapes 
evolution and applications to designing intelligent collectives. What a great start to 
GPTP XX! We then saw and discussed presentations given by Jason Moore and Pedro 
Ribeiro (Cedars-Sinai Medical Center), Una May OReilly (MIT CSAIL), Nathan 
Haut (Michigan State University), Wolfgang Banzhaf (Michigan State Univer-
sity), and Moshe Sipper (Ben-Gurion University); lightning talks were delivered 
by Nic McPhee (University of Minnesota), Jose Manuel Velasco Cabo (Universidad 
Complutense de Madrid), and Matthew Andres Moreno (Michigan State University). 

On day two, Thomas Baeck from Leiden University gave an exciting keynote, in 
which he talked about automated algorithm configuration for expensive optimization 
tasks; it was very interesting to see all the industrial applications in which theoret-
ical advances of GP have led to successful solutions. Throughout the day, presen-
tations were given by Lee Spector (Amherst College and UMass Amherst), Joel 
Lehman and Herbie Bradley (Carper.ai), Eric Medvet (University of Trieste) Chris-
tian Haider (University of Applied Sciences Upper Austria), and Alexander Lalejini 
(Grand Valley State University); lightning talks were given by Michael Affenzeller 
(University of Applied Sciences Upper Austria) and Stuart W. Card. 

The last day started with one of the most remarkable keynotes in GPTP history, 
namely James Foster’s talk about his life and his academic journey in computer 
science and genetic programming. For sure, all of us hearing this talk will never 
forget it as it was full of interesting stories and emotional moments. We then heard 
the last talks of GPTP XX, namely lightning talks by Lisa Soros (Barnard College) 
and Fabricio Olivetti de Franca (Federal University of ABC) and regular talks by 
Emily Dolson (Michigan State University) and Talib Hussain (John Abbott College). 

Throughout the event, not only after the talks but also during breaks and in the 
evening, we had great discussions, in which we often talked about the current hype 
machine learning is seeing at the moment—and that GP is the perfect method for so 
many applications, as it is a very flexible method that produces interpretable results, 
which is so important in numerous applications. Nevertheless, we all agreed that 
we have to do more in order to make GP more visible in our community as well 
as in society in general! One of the most prominent issues we should address is
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Fig. 1 Attendees of GPTP XX at Michigan State University, June 2023 

that we need more generally and easily available implementations of GP that can be 
integrated into any data science workflow. 

We are very honored and grateful that we could once again organize another GPTP 
workshop in-person (Fig.1). It is our intention that GPTP continues to be a core event 
for genetic programming research, bringing together academics, practitioners and 
theorists from diverse fields of science that intersect in our community, providing 
for a constructive, thoughtful, inspired and open interchange of ideas, and to do so, 
whenever possible, in-person, with a coffee during breaks or a beer at dinner. 
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Hagenberg, Austria 
September 2023 
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Chapter 1 
TPOT2: A New Graph-Based 
Implementation of the Tree-Based 
Pipeline Optimization Tool for 
Automated Machine Learning 

Pedro Ribeiro, Anil Saini, Jay Moran, Nicholas Matsumoto, Hyunjun Choi, 
Miguel Hernandez, and Jason H. Moore 

1.1 Introduction 

In recent years, machine learning (ML) has been applied to a number of domains, 
including image recognition, weather forecasting, stock market prediction, recom-
mendation engines, text generation, etc. A whole gamut of algorithms is available 
for these tasks, such as Logistic Regression, Naive Bayes, K-Nearest Neighbors, 
Decision Tree, Random Forest, Support Vector Machine, etc. Each algorithm also 
has a large number of hyperparameter settings to adjust. In addition, a typical user 
also needs to select methods for data cleaning, feature selection, feature engineering, 
etc. The role of a data scientist is to search through a large space of possible operators 
and their hyperparameters in order to find the best-performing pipeline for a given 
task. 

Over the years, multiple methods have been developed to automate searching for 
the best machine learning pipeline. One of those methods is TPOT [ 13]. In TPOT, 
the pipelines are represented as trees, where the root node is either a classifier or 
a regressor, with other nodes encoding other ML operators for data preprocessing, 
feature engineering, etc. 

Over the years, TPOT has been successfully applied to several problems, such as 
genetic analysis [ 12]. Several extensions of TPOT have been developed that opti-
mize the existing implementation or provide additional functionality. However, these 
changes were often not merged into the main software package. For example, in 
Parmentier et al. [ 14], the authors fork TPOT and implement a successive halving 
strategy to reduce computational demand. The algorithm begins by quickly search-
ing through a larger population evaluated on smaller portions of the data early in the 
training phase, then evaluating fewer but likely better-performing models on larger 
portions of the dataset later. This allowed TPOT to explore a larger search space as 
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well as reach better performance. TPOT was forked and modified in another paper 
to use covariate adjustments [ 11]. Recently, TPOT has been forked and modified to 
automate quantitative trait locus (QTL) analysis in a biology-based AutoML software 
package called AutoQTL [ 9]. However, none of the above forks of TPOT have been 
merged into the master branch. Due to the way TPOT and these forks are structured, 
it would also be difficult to do so. 

Since these extensions have been developed in isolation, they may not be compat-
ible with the main repository. This limits their usability as different features might 
not be used together, and users may not be aware of the different forks and their 
respective features. 

In this chapter, we introduce a new edition of TPOT called TPOT2. 1 Although 
TPOT2 shares some similarities with TPOT in how it searches for ML pipelines, it 
has been implemented from scratch to be easily maintainable and extendable. TPOT2 
uses a graph-based representation which is much more flexible than the tree-based 
representation used by TPOT. TPOT2 also gives the user much more flexibility 
to define various parameters of the underlying algorithm. The following sections 
describe the TPOT2 algorithm, including the representation, genetic operators, etc. 
For the remainder of the paper, we will refer to the original TPOT as TPOT1 and the 
new version as TPOT2. 

1.2 Related Work 

There are several other methods in the domain of AutoML, which differ in the way 
they search for optimal machine learning pipelines. Some popular methods include 
Auto-WEKA [ 16], Auto-Sklearn 1 and 2 [ 5, 7], and TPOT [ 13], among others. 
Both Auto-Weka and Auto-Sklearn, for example, use Bayesian optimization. Auto-
Sklearn also improves upon the performance of its earlier version with meta-learning, 
successive halving, and other optimizations. TPOT utilizes an evolutionary algorithm 
to search through the space of possible pipelines. 

Other existing packages have inspired various parts of TPOT2. For example, sev-
eral Python packages implement an API for evolutionary algorithms, not necessarily 
to evolve machine learning pipelines. Some popular packages include PyMoo [ 2], 
DEAP [ 8], and KarooGP [ 3], etc. Other packages, such as baikal 2 and skdag, 3 have 
been developed for easily building graph-based Scikit-Learn pipelines. 

Instead of using the existing implementations for the evolutionary algorithm and 
graph-based pipelines, we developed a new implementation to meet our needs. In 
the future, we may work toward adding the functionality of exporting to other graph 
pipeline representations into TPOT2.

1 https://github.com/EpistasisLab/tpot2. 
2 https://github.com/alegonz/baikal. 
3 https://github.com/scikit-learn-contrib/skdag. 
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https://github.com/scikit-learn-contrib/skdag
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1.3 Evolutionary Algorithm 

TPOT2 implements an evolutionary algorithm module that follows a standard algo-
rithm outlined in Fig. 1.1. First, an initial population is generated and evaluated. The 
individuals in the initial population are generated sequentially in the following way. 
TPOT2 loops through the possible final estimators and assigns them as the root node 
to the individuals one by one. After all final estimators have been assigned as a root 
to different individuals, the loop repeats for the following individuals. We randomly 
add between 0 and .max(i, 3) nodes to each root in the .i th loop. We stop the loop 
when the required number of individuals has been generated. 

The population is a list of individuals that is available to be used to generate new 
individuals. The primary evolutionary algorithm loop begins with survival selection, 
where lower-performing individuals are removed from the current population. Next, 
the parent selection algorithm selects (with replacement) individuals to be used in 
mutation, crossover, or a combination of both. Next, the crossover and mutation 
methods are used to generate new individuals. Note that crossover is one-directional, 

Fig. 1.1 A flowchart 
illustrating the evolutionary 
algorithm used in TPOT2
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which means it generates one individual per pair. More details on mutation and 
crossover operators are found in the next section. If a newly generated individual is 
identical to an already evaluated individual, TPOT2 will mutate that individual until 
it becomes unique (up to 20 attempts). 

With parallel processing, we want to ensure each node or core has an individual 
to evaluate every generation. This allows us to ensure we are creating the expected 
number of individuals to saturate the computational resources. Finally, the set of new 
individuals is evaluated. Individuals that throw errors or time out are discarded. The 
remainder gets added to the current population list. The algorithm then loops back 
into survival selection, where the now expanded population is cut down, and the loop 
continues. We exit the loop once we complete the desired number of generations, 
satisfy an early stopping condition, or receive a manual termination signal. The 
default best individual is the one with the highest value of the first objective function, 
which by default, is the cross-validation score on the training data. 

TPOT1 and TPOT2 use the Nondominated Sorting Genetic Algorithm (NSGA-
II) for survival selection [ 4]. For parent selection, TPOT selected parents randomly 
from the population, whereas the default in TPOT2 is to use Dominated Tournament 
Selection (as described in the NSGA-II paper [ 4]). While the selection methods are 
hardcoded into TPOT1, they can be passed as parameters in TPOT2. 

1.4 GraphPipelineIndividual Representation 

The individuals in TPOT2 are represented as NetworkX directed acyclic graphs 
[ 10]. Figure 1.2 shows an example TPOT2 individual. The GraphPipelineIndividual 
class contains a template for the pipeline represented as a directed acyclic graph. 
A single node in the graph contains both the machine learning method type and 
its hyperparameters. The individual holds other parameters that dictate their search 
space:

• root_config_dict: Defines the root node’s possible methods and hyperparameter 
ranges.

• inner_config_dict: Defines the inner nodes’ possible methods and hyperparameter 
ranges. If set to None, the graph will have no inner nodes.

• leaf_config_dict: Defines the leaf nodes’ possible methods and hyperparameter 
ranges. If set to None, leaf nodes are pulled from inner_config_dict.

• max_size: The maximum number of nodes in any pipeline.
• linear_pipeline : If  True, TPOT2 will evolve only linear pipelines. 

The structure of configuration dictionaries (root_config_dict, etc.) is different 
from the one in TPOT1. The keys are the Python Types for the desired method, and 
the corresponding values are functions that return a set of hyperparameters from the 
desired search space. These functions are designed to be compatible with the Optuna 
hyperparameter optimization package [ 1]. The hyperparameters are currently chosen 
randomly, but we plan to explore Optuna integration in the future.
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Fig. 1.2 An example individual in TPOT2 

Additionally, when setting the key to be the special-case string “Recursive,” the 
user can pass in the above parameters in a dictionary in place of a function to recur-
sively define the search space for a given node. For example, the user can define the 
configuration dictionaries in such a way that the leaf nodes are set to be a pipeline 
of the shape “Selector-Transformer-Classifier” and the root node is a final classifier. 

These configuration dictionaries can be customized for specific tasks. Some exam-
ples of useful search spaces users can define using the above tools are:

• AutoQTL: AutoQTL [ 9] is a fork of TPOT with a custom configuration and objec-
tive function. This can be replicated in TPOT2 by using a custom configuration 
dictionary that includes the genetic encoders and encoding frequency selectors 
used as transformers and selectors, as well as passing in the custom objective 
function as described in the paper.

• Logistic regression with Selected Features: TPOT2 can perform genetic feature 
selection for a given machine learning algorithm. For example, the root node can 
be set to logistic regression; all leaf nodes can be set to a set of feature selectors. 
Then TPOT2 can evolve a set of selectors that optimize the performance of logistic 
regression.

• Symbolic regression or classification: TPOT2 can also evolve symbolic regres-
sion or classification pipelines. The root node can be set to linear or logistic regres-
sion, inner nodes can encode basic arithmetic operators, and leaf nodes can encode 
Feature Set Selectors.
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1.4.1 Mutation 

In TPOT2, we implement eight mutation methods. Currently, each of these methods 
is selected with uniform probability during mutation. In the future, we might explore 
applying these methods with different probabilities.

• _mutate_get_new_hyperparameter: Pick a node randomly and assign new 
hyperparameters to that node.

• _mutate_replace_method: Pick a node randomly and select a new operator (and 
hyperparameters) for that node.

• _mutate_remove_node: Pick a random node (other than the root node) and 
remove it from the graph. Connect all its children to all its parents.

• _mutate_remove_extra_edge: Randomly pick a node with more than one out-
going edge and randomly remove one edge.

• _mutate_add_connection_from: Pick two nodes and add an edge between them 
(as long as the graph could still be acyclic after the addition).

• _mutate_insert_leaf: Create a new node and add an edge between it and the 
randomly chosen existing node.

• _mutate_insert_bypass_node: Pick two nodes at random and create a new node. 
Add edges from one of the existing nodes to the new node and from the new node 
to the second node (as long as the graph could still be acyclic after the addition).

• _mutate_insert_inner_node: Pick two nodes connected by an edge and create 
a new node. Remove the edge between the original nodes. Add edges from one 
existing node to the new node and from the new node to the second existing node. 

1.4.2 Crossover 

The crossover operator in TPOT2 takes in two individuals and modifies the first 
individual.

• _crossover_swap_branch: A branch, or a subgraph, is a node and its descendants. 
This operator selects the root of a subgraph and removes it. All other nodes in the 
subgraph are removed if they become disconnected from the root of the whole 
graph. (If a node in the graph has another path to the root, it is not removed). A 
full subgraph from the second individual is copied into the first individual with 
outgoing edges to the same parents as the originally selected node. This is similar 
to a subtree crossover generalized to directed acyclic graphs.

• _crossover_take_branch: This operator copies a branch (subgraph) from the 
second individual and attaches an edge from the root of the branch to a node 
chosen at random in the first individual.
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1.5 TPOT2 API 

1.5.1 TPOTEstimator 

The TPOTEstimator class is the primary entry point into TPOT2, where users can 
define the search space and input other parameters for evolving graph pipelines. 
For convenience and consistency with TPOT1, TPOTClassifier, and TPOTRegressor 
classes are also provided, which contain default parameters for use in classification 
and regression tasks, respectively. 

TPOT2 exposes more parameters and options than TPOT1, providing users more 
flexibility in defining the search space and evolutionary parameters. For example, 
users can now provide their own objective functions, specify the maximum size of 
the pipelines, separately define the possible operators for root nodes, inner nodes, and 
leaf nodes, and even define a set of preprocessing steps for all pipelines. Additionally, 
there are parameters related to the evolutionary algorithm, such as survival selection 
methods, parent selection methods, genetic operators, changing population size over 
time, changing the proportion of data used over time, etc. 

1.5.1.1 Optimizations 

In Parmentier et al. [ 14], the authors describe how their successive halving can 
improve the performance of TPOT1. It has also shown to be very successful in 
Auto-Sklearn. Unfortunately, this feature was never brought into the main software 
package in TPOT1. We re-implement this feature in TPOT2. The premise of the 
algorithm is to evaluate a large number of pipelines with a small subset of the data 
in the early generations and fewer pipelines with a larger subset or all of the data in 
the later generations. 

The user can provide the range as well as the rate of change of values of the corre-
sponding parameters. The original paper found that halving and doubling population 
size and computational budget a few times over the course of the evolution led to 
performance improvements. Future work can look into other ways of scaling it. 

1.5.1.2 Cross Validation Early Stopping (Experimental) 

We can reduce the computational load by not fully evaluating all folds in cross-
validation in poorly performing models. When a model performs poorly on the first 
few folds of cross-validation, it can be reasonably assumed that it will continue to 
perform poorly on the remaining. We can save time and computational resources by 
terminating the evaluation early. 

TPOT2 implements two strategies; both can be used independently or simultane-
ously.
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• Threshold Early Stoping: After evaluating each fold, the pipeline must reach a 
certain percentile of all previously evaluated scores; otherwise, it is discarded.

• Selection Early Stopping: We evaluate each fold one at a time in selecting early 
stopping. After each fold, we select the best individuals and discard the rest. 

In the future, we will look into implementing an algorithm similar to greedy k-fold 
cross-validation as described by Soper [ 15] to evaluate a population more efficiently. 

1.5.1.3 Validation Set to Select From Pareto Front Models 

TPOT1 would sometimes overfit the cross-validation score with overly complex 
pipelines that had poor generalization compared to the simpler pipelines in the Pareto 
front. This is more common in smaller datasets. TPOT2 can subsample the training 
data into a validation set. It then uses the validation set to select the best model from 
the Pareto front, hopefully avoiding overfit models. 

1.5.2 Ensembling 

TPOT1 includes classifiers and regressors in the search space for the inner nodes. All 
inner classifier and regressor operators (i.e., those that are not the final estimator) were 
wrapped in a StackingEstimator object which passed through its inputs in addition to 
its prediction to the next operator. When two classifiers or regressors exist in different 
branches, however, this would cause two duplicates of the data to be passed to the 
final operator. This could negatively impact performance. 

In TPOT2, there is no passthrough from classifiers or regressors. Only the model 
predictions pass to the next layer. This allows TPOT2 to learn whether or not to pass 
through data to the root (final estimator) node. 

In testing, we have not found much improvement in including classifiers and 
regressors in inner nodes for TPOT2. By default, only transformers and selectors are 
included in the search space for the inner nodes. Future work will explore strategies 
to improve the ensembling strategies in TPOT2. It is possible that optimizations (in 
parallelization, caching, successive halving, early termination of the cross-validation 
evaluation, etc.) may improve the performance of ensembling by allowing more 
models to be evaluated in the same time period. Another option would be to do post 
hoc ensembling with the best-evaluated pipelines after the evolutionary algorithm 
completes. There may be an optimal configuration dictionary to define an efficient 
search space for an ensemble. For example, an individual could be defined by an 
ensemble of ‘selector-transformer-classifier’ pipelines followed by a meta-classifier.
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1.6 Experiment Set-Up 

For our experiments, we use the benchmark datasets from diverse domains compiled 
in Feurer et al. [ 6] and hosted my OpenML. Specifically, we compare the performance 
of TPOT2 4 against TPOT1 on the 39 OpenML tasks grouped in .D_test in that 
paper. Each task provides a training and testing split for an underlying dataset. These 
datasets vary in the number of samples, the number and types of features, as well as 
the presence of missing values. 

To make the comparison between indexTree-Based Pipeline Optimization Tool 
(TPOT) TPOT1 and TPOT2 as fair as possible, we do some preprocessing steps. 
To take care of the missing values, we preprocess the data with mean imputation of 
the numeric variables and mode imputation of the categorical variables. Then, we 
perform one-hot encoding of categorical columns with the minimum frequency of 
categories set to 0.001. The latter was done since TPOT1 does not have a parameter 
for specifying categorical columns and does not do one-hot encoding by default. The 
preprocessing resulted in datasets with the number of samples ranging from 463 to 
389279 and the number of columns ranging from 4 to 7200. 

To ensure the same partitions of the data for cross-validation in TPOT1 and 
TPOT2, we pass in a scikit-learn cross-validation splitter with randomized splits 
and the same seed to both. 

Note that OpenML task 168795 partitions its data such that there are less than 
ten examples for two classes in the training set. We, therefore, randomly resampled 
the classes with fewer than ten examples and appended them to the training data so 
that for each class we have at least 10 samples. This was done so that it could be 
correctly split during cross-validation. Additionally, the dataset for task 189866 was 
very large and causing TPOT1 and TPOT2 to run into memory issues. To alleviate 
memory issues for this experiment, we set n_jobs to 24 rather than 48 and allowed 
10 h instead of 5 h before considering the run to have timed out. 

All experiments were conducted on a High-Performance Computing cluster node 
with an Intel Xeon Gold 6342 CPU with 48 threads and 1TB of memory. 

1.6.1 TPOT1 Versus TPOT2 

Although TPOT1 and TPOT2 have slightly different parameters, we set parameter 
values for them so that experimental settings for them are as close to each other as 
possible. The parameter values are shown in Table 1.1. We compare the performance 
of TPOT1 and TPOT2 at 30 generations. A population size of 48 was selected to 
match the 48 threads on the CPU we are using. Each individual pipeline is given 
a limit of 5 min to be evaluated. In theory, this should take approximately 5 min 
per generation since all individuals can be evaluated simultaneously. The maximum 
time for the entire process would be approximately 2.5 h, with some extra time

4 The code to run experiments: https://github.com/epistasisLab/tpot2_gptp_experiments. 

https://github.com/epistasisLab/tpot2_gptp_experiments
https://github.com/epistasisLab/tpot2_gptp_experiments
https://github.com/epistasisLab/tpot2_gptp_experiments
https://github.com/epistasisLab/tpot2_gptp_experiments
https://github.com/epistasisLab/tpot2_gptp_experiments
https://github.com/epistasisLab/tpot2_gptp_experiments
https://github.com/epistasisLab/tpot2_gptp_experiments
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Table 1.1 AutoML methods and their parameters 

Method Parameter Values 

TPOT1 scoring “roc_auc” for Binary, “neg_log_loss” for 
multiclass 

population_size 48 

generations 30 

n_jobs 48 

cv StratifiedKFold(n_splits=10, 
shuffle=True, random_state=42) 

max_time_mins None 

max_eval_time_mins 5 

TPOT2 scores [“roc_auc”] for Binary, [“neg_log_loss”] 
for multiclass 

n_jobs 48 

cv StratifiedKFold(n_splits=10, 
shuffle=True, random_state=42) 

max_eval_time_seconds 300 

crossover_probability 0.1 

mutate_probability 0.9 

mutate_then_crossover_probability 0 

crossover_then_mutate_probability 0 

other_objective_functions [number_of_nodes_objective] 

other_objective_functions_weights [–1] 

memory_limit None 

preprocessing False 

allocated for processing between generations and the final pipeline fitting. We also 
set a maximum time limit of 5 h per run to allow for wiggle room. If the run exceeds 
this limit, it will be terminated and not included in the results. Both algorithms used 
a 90% mutation rate and a 10% crossover rate. 

The primary objective function we use is: maximize the area under the receiver 
operator curve (auroc) for binary problems or minimize the log loss for multiclass 
problems. In addition, a secondary objective function was included that minimizes 
the number of nodes in a given pipeline. 

There is a key difference in the search space of the two algorithms. TPOT1 allows 
classifiers wrapped inside a custom StackingEstimator class, which passes through 
its inputs along with its predictions to the next node, to be included in the inner 
or leave nodes (this cannot be disabled). TPOT2, however, for these experiments, 
includes classifiers only in the root node.



1 TPOT2: A New Graph-Based Implementation of the Tree-Based … 11

1.7 Results and Discussion 

For each dataset, we evaluated five runs each for TPOT1 and TPOT2. Table 1.2 
summarizes the number of completed and failed runs for each method. A failed run 
is one in which the algorithm throws an error and terminates prematurely, or does 
not finish in the allotted time period and is killed by the system. TPOT1 failed on 45 
runs, and TPOT2 failed only on one. The method that TPOT1 utilizes for timing out 
pipelines does not always work correctly, partly due to the fact that it is incompatible 
with the C backends of many algorithms. This would cause it to get stuck and run 
over time. Some TPOT1 failures were also due to memory constraints with the larger 
datasets. In some other cases, TPOT1 seems to abruptly end training early before 
completing all generations. We are not sure what the cause of this is. We still included 
those results in our analysis as it returned a final pipeline. 

The runs where TPOT2 failed were all on the largest dataset due to memory issues. 
There are still some optimizations and fixes to be made so that it is more stable for 
larger datasets.TPOT2 may also effectively end training early when memory issues 
prevent it from continuing training. This occurs when all worker processes crash 
simultaneously, generally due to memory issues. This then causes all subsequent 
evaluations to fail (Fig. 1.3). 

Table 1.2 Summary of run completion for each algorithm 

Algorithm failed_count completed_count 

TPOT1 45 150 

TPOT2 1 194 

Fig. 1.3 Stripplot summarizing duration in minutes to run each method on a given dataset. The 
x-axis denotes the identifiers of the datasets
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We later found a bug introduced in version 0.12.0 that caused early termination of 
some runs in TPOT1. This bug reduced training times for some runs and potentially 
lowered the average scores for TPOT1 runs in this paper. We have fixed this particular 
bug in the 0.12.1 release. The updated results with the fixed TPOT1 are published in 
the GitHub repository. 

Note that we only include completed runs (including the TPOT1 runs that end 
training abruptly but still return a final pipeline) in our analyses in this paper. 

The performance of TPOT1 and TPOT2 on each dataset is measured in the fol-
lowing way. For every run, we take the pipeline with the best objective function value 
(log loss or auroc, based on the dataset) across all generations on the training set, 
calculate its performance on the holdout set, and report that value. We average the 
values for five runs. Figure 1.4 illustrates the scores of the best pipeline found in a 

Fig. 1.4 Stripplot summarizing the test scores of both methods on all the datasets. Log loss scores 
are reported for multiclass tasks and AUROC for binary problems. Diamonds indicate the average 
score for a method on a particular dataset
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Fig. 1.5 Histograms (for 
binary and multiclass 
datasets, respectively) 
summarizing the standard 
deviation of scores for 
completed runs across all 
datasets 

given run on the holdout set for each dataset. Additionally, in Fig. 1.5, we show the 
standard deviation of scores for each model across all datasets. 

In Fig. 1.6, we plot the average test scores of TPOT1 and TPOT2 on all the 
datasets. Since all the points are very close to the diagonal line, we see that TPOT1 
and TPOT2 have very similar performances with the given parameter setting though 
in a few instances, TPOT2 had meaningfully better scores than TPOT1. 

Next, we take a deeper look into the results of the TPOT2 runs. Figure 1.7 plots the 
best cross-validation scores on the training set in the population for a given generation 
for all runs on different datasets. TPOT2 appears to generally converge quickly, with 
only minor improvements after a few generations. 

We also look at the Pareto front of all the evaluated pipelines in a given run. This 
is shown in Fig. 1.8, where the y-axis denotes the values of the primary objective (log 
loss or auroc), and the x-axis denotes the value of the secondary objective (number of
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Fig. 1.6 Scatterplot summarizing the test scores of the methods on all the datasets. Each point in 
the plots represents a dataset. Log loss scores are reported for multiclass tasks and AUROC for 
binary problems 

nodes in a given pipeline). The plots show that the larger models provide negligible 
improvements in primary objective scores. 

The number-of-nodes objective is not a perfect measure of model complexity. 
A larger pipeline may be simpler than a smaller one. For example, a pipeline with 
logistic regression and several feature selectors is likely simpler than a model with 
a single XGBoost. However, more often than not, larger pipelines are usually more 
complex and overfit the cross-validation score on the training data. TPOT1 often 
had a similar issue where the final returned model was large. While the large model
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Fig. 1.7 TPOT2 best cross-validation scores in the population for a given generation. Each line 
represents a single run for a given dataset 

Fig. 1.8 Pareto front of all the evaluated pipelines. Each line represents the pareto front for a single 
run 

would have the best cv score, it would underperform on test data compared to other 
pareto front models. 

1.8 Conclusions 

In this chapter, we presented a new version of the popular AutoML package TPOT 
called TPOT2. Among other differences, TPOT2 uses graph-based representation for 
individuals instead of the tree-based representation used by TPOT. By benchmarking 
both versions on a diverse set of datasets from OpenML, we show that the new 
version performs at least as well as the original. Moreover, the new version has 
several additional features that allow it to be more flexible for different types of 
problems, more easily maintained, and more easily extended. We will continue to 
build additional features and optimizations into TPOT2.
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1.8.1 Future Work 

There are many avenues for optimizing existing and adding new features in TPOT2. 
In this section, we highlight some of our future plans. 

1.8.1.1 MetaLearner 

TPOT2 allows the users to specify the search space of pipelines for a particular dataset 
and control other aspects of evolutionary search through many different parameter 
settings. However, different parameter settings will be optimal for different types of 
problems. For example, a large dataset might benefit more from using the successive 
halving algorithm than a relatively smaller one. However, trying out several parameter 
settings can be computationally expensive. Autosklearn2 addresses this issue by 
training a ‘meta-learner’ that estimates the best parameter values for a given dataset. 
In the future, we can also look into training a meta-learner to estimate optimal 
parameters for a given dataset in TPOT2. 

1.8.1.2 Optuna Optimization 

Currently, hyperparameters for different ML operators in TPOT2 are generated and 
mutated randomly. We plan to look into different strategies for integrating Optuna 
to optimize hyperparameters during an evolutionary run. 

1.8.1.3 Interpretability 

Given that the increase in the performance of TPOT2 plateaued early in an evolution-
ary run on many datasets, it is possible that complex pipelines are not required for 
optimal performance on these datasets. In order to further improve the performance, 
future work could look into having TPOT2 focus more on hyperparameter optimiza-
tion in the later generations. Alternatively, we could leverage TPOT2’s strength in 
complex graph building to try to build more interpretable pipelines that may be com-
posed of a higher number of more interpretable steps. For example, optimizing a set 
of more robust feature selections and engineering followed by a simple classifier as 
opposed to a single complex XGBoost model. This process could include defining 
an objective function that more accurately measures interpretability. 
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