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Preface

This volume presents the proceedings of the 4th International Conference on Mathe-
matical Research for Blockchain Economy (MARBLE 2023) that was held in London,
United Kingdom from July 11 to 13, 2023.

The 4thMARBLE conference took place as an in-person event and featured an excit-
ing programme of research papers, keynote talks and a tutorial, in line with MARBLE’s
goal to provide a high-profile, cutting-edge platform for mathematicians, computer sci-
entists and economists to present the latest advances and innovations related to the quan-
titative and economic aspects of blockchain technology. In this context, the Technical
Programme Committee has accepted 12 research papers for publication and presenta-
tion on themes including mining incentives, game theory, decentralized finance, central
government digital coins and stablecoins, automated market makers, blockchain infras-
tructure and security. The technical programme also features keynotes by the following
distinguished speakers: Dr. Garrick Hileman, Tara Annison (Twinstake), Artur Sepp
(Clearstar), Mark Morton (Scilling Digital Mining), Dr. Jiahua Xu (University College
London & DLT Science Foundation), Thomas Erdösi (CF Benchmarks), Dr. Alexander
Freier (Catholic University of Cordoba, University College London and Energiequelle)
and Juan Ignacio Ibañez (University College London and DLT Science Foundation).

We thank all authorswho submitted their innovativework toMARBLE2023. In addi-
tion, we thank all members of the Technical Programme Committee and other reviewers,
everyone who submitted a paper for consideration, the General Chairs, Prof. William
Knottenbelt and Prof. Panos Pardalos; the Organization Chair, Jas Gill; the Programme
Chairs, My T. Thai and Stefanos Leonardos; the Publication Chair, Ilias Kotsireas; the
Web and Publicity Chairs, Kai Sun and GemmaRalton; and other members of the Centre
for Cryptocurrency Research and Engineering who have contributed in many different
ways to the organization effort, particularly Katerina Koutsouri. Finally, we are grate-
ful to our primary sponsor, the Brevan Howard Centre for Financial Analysis, for their
generous and ongoing support.

London, UK
July 2023

William J. Knottenbelt
Ilias Kotsireas

Stefanos Leonardos
Panos Pardalos
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for Profit Maximization of Relay Nodes
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Abstract. Payment channel networks (PCNs) are a layer-2 blockchain
scalability solution, with its main entity, the payment channel, enabling
transactions between pairs of nodes “off-chain,” thus reducing the bur-
den on the layer-1 network. Nodes with multiple channels can serve as
relays for multihop payments by providing their liquidity and withhold-
ing part of the payment amount as a fee. Relay nodes might after a while
end up with one or more unbalanced channels, and thus need to trigger
a rebalancing operation. In this paper, we study how a relay node can
maximize its profits from fees by using the rebalancing method of sub-
marine swaps. We introduce a stochastic model to capture the dynamics
of a relay node observing random transaction arrivals and performing
occasional rebalancing operations, and express the system evolution as a
Markov Decision Process. We formulate the problem of the maximization
of the node’s fortune over time over all rebalancing policies, and approx-
imate the optimal solution by designing a Deep Reinforcement Learning
(DRL)-based rebalancing policy. We build a discrete event simulator of
the system and use it to demonstrate the DRL policy’s superior per-
formance under most conditions by conducting a comparative study of
different policies and parameterizations. Our work is the first to intro-
duce DRL for liquidity management in the complex world of PCNs.

Keywords: Payment channel networks · Lightning Network ·
Rebalancing · Submarine swaps · Deep reinforcement learning · Soft
actor-critic · Optimization · Discrete event simulation · Control
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1 Introduction

Blockchain technology enables trusted interactions between untrusted parties,
with financial applications like Bitcoin and beyond, but with also known scala-
bility issues [8]. Payment channels are a layer-2 development towards avoiding
the long confirmation times and high costs of the layer-1 network: they enable
nodes that want to transact quickly, cheaply and privately to do so by depositing
some balances to open a payment channel between themselves, and then trust-
lessly shifting the same total balance between the two sides without broadcasting
their transactions and burdening the network. Connected channels create a Pay-
ment Channel Network (PCN), via which two nodes not sharing a channel can
still pay one another via a sequence of existing channels. Intermediate nodes in
the PCN function as relays: they forward the payment along its path and collect
relay fees in return. As transactions flow through the PCN, some channels get
depleted, causing incoming transactions to fail because of insufficient liquidity
on their path. Thus, the need for channel rebalancing arises.

In this paper, we study the rebalancing mechanism of submarine swaps, which
allows a blockchain node to exchange funds from on- to off-chain and vice versa.
Since a swap involves an on-chain transaction, it takes some time to complete.
Taking this into account, we formulate the following optimal rebalancing problem
as a Markov Decision Process (MDP): For a node relaying traffic across multiple
channels, determine an optimal rebalancing strategy over time (i.e. when and
how much to rebalance as a function of the transaction arrival rates observed
from an unknown distribution and the confirmation time of an on-chain trans-
action), so that the node can keep its channels liquid and its profit from relay
fees can be maximized.

More specifically, our contributions are the following:

– We develop a stochastic model that captures the dynamics of a relay node
with two payment channels under two timescales: a continuous one for random
discrete transaction arrivals in both directions from distributions unknown to
the node, and a discrete one for dispatching rebalancing operations.

– We express the system evolution in our model as an MDP with continuous
state and action spaces and time-dependent constraints on the actions, and
formulate the problem of relay node profit maximization.

– We approximate the optimal policy of the MDP using Deep Reinforcement
Learning (DRL) by appropriately engineering the states, actions and rewards
and tuning a version of the Soft Actor-Critic algorithm.

– We develop a discrete event simulator of the system, and use it to evaluate
the performance of the learning-based as well as other heuristic rebalanc-
ing policies under various transaction arrival conditions and demonstrate the
superiority of our policy in a range of regimes.

In summary, our paper is the first to formally study the submarine swap
rebalancing mechanism and to introduce a DRL-based method for channel rebal-
ancing in particular, and for PCN liquidity management in general.
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2 Background

2.1 Payment Channel Networks and the Need for Rebalancing

A payment channel (Fig. 1) is created between two nodes N1 and N2 after they
deposit some capital to a channel-opening on-chain transaction. After this trans-
action is confirmed, the nodes can transact completely off-chain (i.e. in the chan-
nel) without broadcasting their interactions to the layer-1 network, and without
the risk of losing funds, thanks to a cryptographic safety mechanism. The sum
of their two balances in the channel remains constant and is called the channel
capacity. A transaction of amount α from N1 to N2 will succeed if the balance of
N1 at that moment suffices to cover it. In this case, the balance of N1 is reduced
by α and the balance of N2 is increased by α.

Fig. 1. A payment channel between
nodes N1 and N2 and current balances
of 3 and 4

Fig. 2. Processing of a transaction in a
payment channel network: before (left)
and after (right)

As pairs of nodes create channels, a payment channel network (Fig. 2) is
formed, over which multihop payments are possible: Consider a transaction of
amount 5 from N1 to N3 via N2. Note that the amount 5 includes the fees that
will have be paid on the way, e.g. 1% at each intermediate node. In the N1N2

channel, N1’s local balance is reduced by 5 and N2’s local balance is increased by
5. In the N2N3 channel, N2’s local balance is reduced by 5− fees = 4.95 and N3’s
local balance is increased by 4.95. N2’s total capital in all its channels before
the transaction was 2 + 1 + 7 = 10, while after it is 7 + 1 + 2.05 = 10.05, so N2

made a profit of 0.05 by acting as a relay. If one of the outgoing balances did not
suffice, then the transaction would fail end-to-end, thanks to a smart contract
mechanism, the Hashed Time-Lock Contract (HTLC). The role of relay nodes is
fundamental for the continuous operation of a PCN. The most prominent PCN
currently is the Lightning Network [26] built on top of Bitcoin. More details on
PCN operation can be found in [23].

Depending on the demand a payment channel is facing in its two direc-
tions, funds might accumulate on one side and deplete on the other, due to a
combination of factors (see Appendix A for details). The resulting imbalance is
undesirable, as it leads to transaction failures and loss of profit from relay fees,
thus creating the need for rebalancing mechanisms.
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2.2 The Submarine Swap Rebalancing Mechanism

In this work, we study submarine swaps, introduced in [4] and used commercially
by Boltz1 and Loop.2 At a high level, a submarine swap works as follows (Fig. 3):
Node N1 owns some funds in its channel with node N2, and some funds on-chain.
At time t0, the channel N1N2 is almost depleted on N1’s side (balance = 5). N1

can start a swap-in by paying an amount (50) to a Liquidity Service Provider
(LSP)—a wealthy node with access to both layers—via an on-chain transaction,
and the LSP will give this amount back (reduced by a 10% swap fee, so 45) to N1

off-chain via a path that goes through N2. The final amount that is added at N1

(and subtracted at N2) is 45 − ε due to the relay fees spent on its way from the
LSP. Thus, at time t1 the channel will be almost perfectly balanced. The reverse
procedure is also possible (a reverse submarine swap or swap-out) in order for
a node to offload funds from its channel, by paying the server off-chain and
receiving funds on-chain. More details on the submarine swap technical protocol
can be found in Appendix B.

Fig. 3. A submarine swap (swap-in)

The node has to make an important tradeoff: not rebalance a lot to avoid
paying swap fees but forfeit relay fees of transactions dropped due to imbalance,
or vice versa. This motivates the problem of demand-aware, timely dispatching
of swaps by a node aiming to maximize its total fortune.

3 Problem Formulation

3.1 System Evolution

Fig. 4. System model

In this section, we introduce
a stochastic model of a PCN
relay node N that has two
channels, one with node L and
one with node R, and wishes
to maximize its profits from
relaying payments from L to
R and vice versa (Fig. 4). Let
bLN (τ), bNL(τ), bNR(τ), bRN (τ) be
1 https://boltz.exchange.
2 https://lightning.engineering/loop.

https://boltz.exchange
https://lightning.engineering/loop


DRL-based Rebalancing Policies for Profit Maximization in PCNs 5

the channel balances and BN (τ) be the on-chain amount of N at time τ . Let
Cn be the total capacity of the channel Nn, n ∈ N � {L,R}. Events happen
at two timescales: a continuous one for arriving transactions, and a discrete one
for times when the node is allowed to rebalance.

The Transaction Timescale Transactions arrive as a marked point process
and are characterized by their direction (L-to-R or R-to-L), time of arrival and
amount. We consider node N to not be the source or destination of any transac-
tions itself, but rather to only act as a relay. At each moment in continuous time
(denoted by τ), (at most) one transaction arrives in the system. All transactions
are admitted, but some fail due to insufficient balances.

Let f(α) be the fee that a transaction of amount α pays to a node that relays
it. We assume all nodes charge the same fees. f can be any fixed function with
f(0) = 0. In practice, for α > 0, f(α) = fbase + fprop · α, where the base fee
fbase and the proportional fee fprop are constants. Let ALR(τ), ARL(τ) be the
externally arriving amounts coming from node L in the L-to-R direction and
from node R in the R-to-L direction at time τ respectively, each drawn from
a distribution that is fixed but unknown to node N . An arriving transaction
of amount ALR(τ) = α is feasible if and only if there is enough balance in the
L-to-R direction in both channels, i.e. bLN (τ) ≥ α and bNR ≥ α − f(α), and
similarly for the R-to-L direction. The successfully processed amounts by N at
time τ are3:

SLR(τ) =

{
ALR(τ) , if ALR(τ) ≤ bLN (τ) and ALR(τ) − f(ALR(τ)) ≤ bNR(τ)
0 , otherwise

and symmetrically for SRL(τ).
The profit of node N at time τ is f(SLR(τ)) + f(SRL(τ)), and the lost fees

(from transactions that potentially failed to process) are f
(
ALR(τ)−SLR(τ)

)
+

f
(
ARL(τ)−SRL(τ)

)
. The balance processes at time τ evolve as follows (the on-

chain amount BN (τ) is not affected by the processing of off-chain transactions;
channel NR behaves symmetrically):

bLN (τ) → bLN (τ) + (SRL(τ) − f(SRL(τ))) − SLR(τ)
bNL(τ) → bNL(τ) + SLR(τ) − (SRL(τ) − f(SRL(τ)))

The Rebalancing Decision (Control) Timescale The evolution of the sys-
tem can be controlled by node N using submarine swap rebalancing operations.
Rebalancing may start at times ti = i · Tcheck, i = 0, 1, . . ., and takes a (fixed)
time Tconf to complete (on average 10 min for Bitcoin). We consider the case

3 Since in the sequel we focus on the discrete and sparse time scale of the periodic
times at which the node rebalances, we make the fair assumption (as e.g. in [2]) that
off-chain transactions are processed instantaneously across their entire path and do
not fail in their subsequent steps after they cross the two channels (if a transaction
were to fail outside the two channels, it can be viewed as of zero value by the system).
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where Tcheck ≥ Tconf (to avoid having concurrent rebalancing operations in the
same channel that could be combined into one). The system state is defined only
for the discrete rebalancing decision timescale as the collection of the off- and
on-chain balances:

S(ti) =
(
bLN (ti), bNL(ti), bNR(ti), bRN (ti), BN (ti)

)
(1)

At each time ti, node N can decide to request a swap-in or a swap-out in
each channel. Call the respective amounts rin

L (ti), rout
L (ti), rin

R (ti), rout
R (ti). At any

time ti, in a given channel, either a swap-in or a swap-out or nothing will be
requested, but not both a swap-in and a swap-out.4

Let F in
swap(α) and F out

swap(α) be the swap fees that the LSP charges for an
amount α for a swap-in and a swap-out respectively, where F in

swap(·) and F out
swap(·)

are any nonnegative functions with Fswap(0) = 0. For ease of exposition, we let all
types of fees the node will have to pay (relay fees for the off-chain part, on-chain
miner fees, server fees) be both part of the above swap fees, and be the same
for both swap-ins and swap-outs when a net amount rnet is transferred from on-
to off-chain or vice versa: F in

swap(rnet) = F out
swap(rnet) = Fswap(rnet) � rnetF + M ,

where the proportional part F includes the server fee and off-chain relay fees,
and M includes the miner fee and potential base fees.

Note that the semantics of the swap amounts r are such that they represent
the amount that will move in the channel (and not necessarily the net change
in the node’s fortune). As a result of this convention and based on the swap
operation as described in the following paragraph, the amount rin of a swap-
in coincides with the net amount rin

net by which the node’s fortune decreases
(as rin does not include the swap fee), while the amount rout of a swap-out
includes the swap fee and the net amount by which the node’s fortune decreases
is rout

net = φ−1(rout), where φ(rnet) � rnet+Fswap(rnet), and φ−1 is the generalized
inverse function of φ(·) (it always exists: φ−1(y) = min{x ∈ N : φ(x) = y}).
For our Fswap(·) it is φ(rnet) = rnet(1 + F ) + M for rnet > 0, φ(0) = 0, so
φ−1(y) = (y − M)/(1 + F ) for y > 0 and φ−1(0) = 0.

A Submarine Swap Step-by-Step We now describe how a rebalancing opera-
tion on the Nn channel is affecting the system state. First, we describe a swap-in
of amount rin

n initiated by node N to refill N ’s local balance in the Nn channel:

– At time ti, node N locks the net rebalancing amount plus fees and subtracts
it from its on-chain funds: BN → BN − (rin

n + F in
swap(rin

n ))
– At time ti + Tconf , the on-chain transaction is confirmed, so the LSP sends a

payment of rin
n to node N off-chain.5 The payment reaches node n:

• If bnN ≤ rin
n (i.e. n does not have enough balance to forward it), then the

off-chain payment fails. The on-chain funds are unlocked and refunded
back to the on-chain amount: BN → BN + (rin

n + F in
swap(rin

n ))

4 Nodes L and R are considered passive: they perform no swap operations themselves.
5 The LSP is a well-connected node owning large amounts of liquidity, so we reasonably

assume that it can always find a route from itself to N , possibly via splitting the
amount across multiple paths.
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• Otherwise (if the transaction is feasible), n forwards the payment to N :
bnN → bnN − rin

n and bNn = bNn + rin
n

A swap-out of amount rout
n , initiated by node N to offload some of its local

balance to the chain, works as follows:

– At time ti, node N locks the net rebalancing amount plus fees and sends it to
the LSP via the off-chain network: bNn → bNn − rout

n . Note that rout
n includes

the fees.
– At time ti + Tconf , the on-chain transaction is confirmed, so node N receives

the funds on-chain: BN → BN + φ−1(rout
n ), and the funds are also unlocked

in the channel and pushed towards the remote balance: bnN → bnN + rout
n

Rebalancing Constraints Based on the steps just described, swap operations
will succeed if and only if their amounts satisfy the following constraints:

– Rebalancing amounts must be non-negative:

rin
n (ti), rout

n (ti) ≥ 0 for all i ∈ N, n ∈ N (2)

– A swap-in and a swap-out cannot be requested in the same channel at the
same time:

rin
n (ti) · rout

n (ti) = 0 for all i ∈ N, n ∈ N (3)

– The swap-out amounts (which already include the swap fees) must be greater
than the fees themselves:

rout
n (ti) − F out

swap(rout
n (ti)) ≥ 0 for all i ∈ N, n ∈ N (4)

– The respective channel balances must suffice to cover the swap-out amounts
(which already include the swap fees):

rout
n (ti) ≤ bNn(ti) for all i ∈ N, n ∈ N (5)

– The on-chain balance must suffice to cover the total swap-in amount plus
fees: ∑

n∈N

(
rin
n (ti) + F in

swap(rin
n (ti))

) ≤ BN (ti) for all i ∈ N (6)

State Evolution Equations Now we are able to write the complete state evo-
lution equations. The amounts added to each balance due to successful transac-
tions during the interval (ti, ti+1) are:

d
(ti,ti+1)
NL �

∫
τ∈(ti,ti+1)

(
SLR(τ) − (SRL(τ) − f(SRL(τ)))

)
dτ,
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similarly for d
(ti,ti+1)
NR , and d

(ti,ti+1)
nN � −d

(ti,ti+1)
Nn . Then for actions taken subject

to the constraints (2)–(6), the state evolves as follows:

bnN (ti+1) = bnN (ti) + d
(ti,ti+1)

nN − (rinn (ti)− zn(ti)) + routn (ti)

bNn(ti+1) = bNn(ti) + d
(ti,ti+1)

Nn + (rinn (ti)− zn(ti))− routn (ti)

BN (ti+1) = BN (ti)−
∑

n∈N

(
rinn (ti)− F in

swap(r
in
n (ti))

)
+

∑

n∈N
φ−1(routn (ti)) +

∑

n∈N
wn(ti)

where zn(ti) and wn(ti) are the refunds of the swap-in amount off- and on-chain
respectively in case a swap-in operation fails:

zn(ti) = rin
n (ti)1{bnN (ti) + d

(ti,ti+Tconf)
nN < rin

n (ti)} (7)

wn(ti) = zn(ti) + F in
swap(zn(ti)) (8)

3.2 Writing the Problem as a Markov Decision Process

The objective function the node wishes to maximize in the real world is its
total fortune both in the channels and on-chain (another equivalent objective is
discussed in Appendix C). The fortune increase due to the action (the 4-tuple)
r(ti) taken at step ti is:

D(ti, r(ti)) �
( ∑

n∈N
bNn(ti+1) + BN (ti+1)

)
−

( ∑
n∈N

bNn(ti) + BN (ti)
)

A control policy π = {(ti, rπ(ti))}i∈N consists of the times ti and the cor-
responding actions rπ(ti) =

(
rin
L (ti), rout

L (ti), rin
R (ti), rout

R (ti)
)

taken from the set
of allowed actions R = [0, CL]2 × [0, CR]2, and belongs to the set of admissible
policies

Π =
{{(ti, r(ti))}i∈N such that r(ti) ∈ R for all i ∈ N

}
Ultimately, the goal of node N is to find a rebalancing policy that maximizes
the long-term average expected fortune increase D over all admissible policies:

maximize
π∈Π

lim
H→∞

1
tH

H∑
i=0

E [D(ti, rπ(ti))]

subject to (2)–(6).

4 Heuristic and Reinforcement Learning-Based Policies

In this section, we describe the steps we took in order to apply DRL to approxi-
mately solve the formulated MDP. We first outline two heuristic policies, which
we will use later to benchmark our DRL-based solution.
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4.1 Heuristic Policies

Autoloop [7,18] is a policy that allows a node to schedule automatic swap-ins
(resp. swap-outs) if its local balance falls below a minimum (resp. rises above a
maximum) threshold expressed as a percentage of the channel’s capacity.6 The
initiated swap is of amount equal to the difference of the local balance from the
midpoint, i.e. the average of the two thresholds. The pseudocode can be found
in Algorithm 1. We expect Autoloop to be suboptimal with respect to profit
maximization in certain cases, as it does not take the expected demand into
account and thus possibly performs rebalancing at times when it is not necessary.

Algorithm 1: Autoloop rebalancing policy
Input: state as in Eq. (1)
Parameters: Tcheck, low, high

1 every Tcheck do
2 foreach neighbor n ∈ N do
3 midpoint = Cn · (low + high)/2
4 if bNn < low · Cn then
5 Swap-in amount = midpoint − bNn

6 else if bNn > high · Cn then
7 Swap-out amount = bNn − midpoint

8 else
9 Perform no action

This motivates us to define another heuristic policy that incorporates the
empirical demand information. We call this policy Loopmax, as its goal is to
rebalance with the maximum possible amount and as infrequently as possible
(without sacrificing transactions), based on the demand. Loopmax keeps track
of the total arriving amounts, and estimates the net change of each balance per
unit time using the difference of the total amounts that arrived in each direction:

Ânet
LN (τ) = −Ânet

NL(τ) � 1
τ

∫
t∈[0,τ ]

(
ARL(t) − f(ARL(t)) − ALR(t)

)
dt (9)

Ânet
RN (τ) = −Ânet

NR(τ) � 1
τ

∫
t∈[0,τ ]

(
ALR(t) − f(ALR(t)) − ARL(t)

)
dt (10)

For each channel, we first calculate its estimated time to depletion (ETTD)
or saturation (ETTS), depending on the direction of the net demand and the
current balances, and using this time we dispatch a swap of the appropriate type
not earlier than Tcheck +Tconf before depletion/saturation, and of the maximum
6 The original Autoloop algorithm defines the thresholds in terms of the node’s

inbound liquidity in a channel. We adopt an equivalent balance-centric view instead.
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possible amount. The rationale is that if e.g. ETTD ≥ Tcheck + Tconf , the policy
can leverage this fact to postpone starting a swap until the next check time, since
until then no transactions will have been dropped. If ETTD < Tcheck + Tconf

though, the policy should act now, as otherwise it will end up dropping trans-
actions during the following interval of Tcheck + Tconf . The maximum possible
swap-out is constrained by the local balance at that time, while the maximum
possible swap-in is constrained by the remote balance at that time7 and the
on-chain amount: an on-chain amount of BN can support (by including fees)
a net swap-in amount of at most φ−1(BN ). The pseudocode can be found in
Algorithm 2. Compared to Autoloop, Loopmax has the advantage that it rebal-
ances only when it is absolutely necessary and can thus achieve savings in swap
fees. On the other hand, Loopmax’s aggressiveness can lead it to extreme rebal-
ancing decisions when traffic is quite skewed in a particular direction (e.g. it
can do a swap-in of almost the full capacity, which is very likely to fail due to
randomness in the transaction arrivals). A small modification we can use on top
of Algorithm 2 to alleviate this is to define certain safety margins of liquidity
that Loopmax should always leave intact on each side of the channel, so that
incoming transactions do not find it depleted due to a large pending swap.

Algorithm 2: Loopmax rebalancing policy
Input: state as in Eq. (1)
Parameters: Tcheck

1 every Tcheck do

2 Update {Ânet
Nn}n∈N according to Eqs. (9)–(10)

3 foreach neighbor n ∈ N do

4 if Ânet
Nn < 0 then

5 ETTD = bNn/|Ânet
Nn| /* estimated time to depletion */

6 if ETTD < Tcheck + Tconf then
7 Swap-in amount = max{φ−1(BN ), bnN} /* maximum possible

swap in */

8 else
9 Perform no action

10 else if Ânet
Nn > 0 then

11 ETTS = bnN/Ânet
Nn /* estimated time to saturation */

12 if ETTS < Tcheck + Tconf then
13 Swap-out amount = bNn /* maximum possible swap out */

14 else
15 Perform no action

16 else
17 Perform no action

7 Actually, it is constrained by the remote balance at the time of the swap-in’s com-
pletion. We will improve this later using estimates of future balances.
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4.2 Deep Reinforcement Learning Algorithm Design

Having formulated the problem as an MDP, we now need to find an (approxi-
mately) optimal policy. The problem is challenging for a number of reasons:

– The problem dynamics are not linear.
– The state and action spaces are continuous and thus tabular approaches are

not applicable.
– There are time-dependent constraints on the actions.
– Choosing to not rebalance at a specific time requires special treatment, as

otherwise the zero action will be sampled from a continuous action space
with zero probability.

To tackle these challenges, we resort to approximate methods, and specif-
ically Reinforcement Learning (RL). In the standard RL framework, an agent
makes decisions based on a policy represented as a probability distribution over
states and actions: p : p(s, a) → [0, 1], with p(s, a) being the probability that
action a will be taken when the environment is in state s. Since our problem
has continuous state and action spaces and the policy cannot be stored in tab-
ular form, we need to use function approximation techniques. Neural networks
serve well the role of function approximators in many applications [5,20]. Some
algorithms appropriate for this type of problems are Deep Deterministic Policy
Gradient (DDPG) [19] and Soft Actor-Critic (SAC) [15]. We decided to use the
latter as DDPG is known to exhibit extreme brittleness and hyperparameter
sensitivity [11]. We now describe our methodology around how we engineer our
DRL algorithm based on the vanilla SAC in order to arrive at a solution that
deals with all the above challenges.

For the RL agent’s environment, we use as state the five balances (off- and
on-chain) and the estimates of the remote balances at the time of the swap
completion, each normalized appropriately: by the respective channel’s capacity,
or by a total target fortune in the on-chain amount’s case. Thus, our state space
is [0, 1]7. As actions, instead of the 4-tuple of Sect. 3, we use an equivalent (due
to (3)) 2-tuple (rL, rR), i.e. a single variable for each channel that can take both
positive (swap-in) and negative (swap-out) values. Before the raw sampled action
is applied, it undergoes some processing described in the sequel.

Raw actions are sampled from the entire continuous action space; thus the
zero action will be selected with zero probability. In reality, though, performing
zero rebalancing in a channel when a swap is not necessary is important for
minimizing the costs, and an action the agent should learn to apply. To make
the zero action selectable with positive probability, and at the same time prevent
the agent from performing swaps too small in size, we force the respective applied
action to be zero if the raw action coordinate is less than a threshold ρ0 (e.g.
20%) of the channel capacity. Moreover, the vanilla SAC algorithm [15] operates
on an action space that is a compact subset of Rk for all decision times. In our
case, though, the allowed actions vary due to the time-dependent constraints (2)–
(6). We therefore define the action space to be [−1, 1]2, where each coordinate
denotes the percentage not of the entire channel capacity, but of the maximum
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amount available for the respective type of swap at that moment. We now focus
on deriving these maximum amounts from the constraints.

All constraints are decoupled per channel, except for (6). However, we observe
that given some traffic, mostly in the L-to-R direction or mostly in the R-to-L
direction or equal in both directions, the local balances of node N will either
deplete in one channel and accumulate in the other, or accumulate in both, but
never both deplete. Thus, a swap-in in both channels in general will not be a
good action. Therefore, for the RL solution’s purposes we can split (6) into two
constraints, one for each channel, with the right-hand side of each being the
entire amount BN (ti). In case the agent does take the not advisable decision of
swap-ins in both channels and their sum exceeds the on-chain amount, one of
the two will simply fail.

Another useful observation is that when a swap-in is about to complete time
Tconf after it was requested, the remote balance in the respective channel needs
to suffice (otherwise the swap-in will fail and a refund will be triggered as in
Eqs. (7)–(8)):

rin
n (ti) ≤ bnN (ti) + d

(ti,ti+Tconf)
nN for all i ∈ N, n ∈ N (11)

We calculate an estimate b̂nN (ti + Tconf) of the right-hand side of (11) based on
the past history, with the details of the calculation given in Appendix D.1. Let
ρout

min � M/(1 − F ) be the minimum solution of (4). As long as ρ0Cn � ρout
min,

which should hold in practice as ρout
min is very small, we can write all constraints

(2)–(6), (11) in terms of the 2-tuple (rL, rR) as follows:

rn ∈
[
−bNn,min{b̂nN (ti + Tconf), φ−1(BN (ti)), Cn}

]
, n ∈ N

The described mapping of raw actions (sampled from the distribution on the
entire action space) to the finally applied actions is summarized in Table 1.

Table 1. Mapping of raw actions sampled from the learned distribution to final swap
amounts requested for channel Nn, n ∈ N

Raw action rn ∈ [−1, 1] Corresponding absolute amount r̃n Final requested

swap amount

rn < 0 |rn|bNn
Swap out

r̃n1{r̃n ≥ ρ0Cn}
rn ≥ 0 rn min{b̂nN (ti + Tconf ), φ−1(BN (ti)), Cn} Swap in

r̃n1{r̃n > ρ0Cn}


