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Introduction 

This book is an independent companion volume to Uncertainty Quantification with 
R, complementing certain of its topics and taking up others from a different angle – 
the Bayesian Standpoint. 

This is a fairly general book, covering a range of methods and techniques, each of 
which can be further developed in the literature specific to each of the fields 
covered – and the reader can find scientific articles that develop them in depth. 

This book targets the use of R, which is a GNU project to develop a tool for 
language and environment for statistical computing and graphics. An IDE is pro-
posed by RStudio. The popularity of R and RStudio make that the reader will find on 
the web many sites and information about it. A wide literature can also be found 
about this software. The community of the users of R proposes a large choice of 
packages to extend the possibilities of R. You will find repositories containing them, 
such as, for instance, https://cran.r-project.org/web/packages/. 

The book contains many programs. If you are an expert in R, you will find 
certainly a large number of improvements to the programs presented. Analogously, 
the community of the users of R proposes many packages to solve a large number of 
practical problems and implementing the methods considered in this book. We cite 
many of them, but – probably, even certainly – not all the existing contributions. The 
author apologizes in advance to any forgotten contributors, whose works are not 
cited in the book, but who have made the effort and been kind enough to make their 
work product available to the community. As mentioned above, we recommend that 
R users search software repositories such as https://cran.r-project.org/. 

If you are not familiarized with Uncertainty Quantification (UQ), you can con-
sider it as a collection of methods for the analysis of numerical data, namely when 
uncertainty or variability is involved, having as general objective the determination 
of probability distributions. The general aim of UQ is to characterize the observed 
variability in a quantity X by using another random variable U, by using the available 
information about (X,U ) to construct an explanation of X by U, into a form which 
will be useful for use in numerical calculations involving X. The information may be,

v
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for instance, an equation, a numerical problem involving both the variables, or 
samples. UQ applies to a wide range of situations. 

vi Introduction

In the book Uncertainty Quantification with R, we tried to illustrate the practical 
use of UQ techniques under R. In this book, the philosophy is the same: we focus on 
practical aspects, and the theoretical arguments are reduced to the strictly minimal 
amount necessary to the understanding of the practical methods introduced. We ask 
for your indulgence on this point – as indicated, we are more concerned with the 
practical aspects and do not deal with the theoretical aspects in this book – the reader 
should refer to the texts in the literature to study the mathematical arguments 
underlying the methods discussed.
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Chapter 1 
Basic Bayesian Probabilities 

Bayesian probabilities can be seen as a particular point of view on probabilities. In 
this chapter, we recall the basic elements of probability theory that will be used in the 
book, and we give some elements about the Bayesian point of view about 
probabilities. 

1.1 A Historical Perspective 

The fundamental text for Bayesian probabilities is the article “An Essay Towards 
Solving a Problem in the Doctrine of Chances,” conceived by Thomas Bayes and 
published posthumously by his friend Richard Price in Philosophical Transactions 
of the Royal Society (Bayes and Price 1763). In his text, Price says that Bayes 
formulates the following problem: 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
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2 1 Basic Bayesian Probabilities

In terms of modern probability, Bayes’ problem reads as 

Problem 1.1 Let be given a sample X = X1, . . . ,Xnð Þ  of n variates from a 
Bernoulli distribution B( p) (P(Xi = 1) = p,P(Xi = 0) = 1 - p). Let be given 

0 ≤ a < b ≤ 1. Assuming that 
n 

i= 1 
Xi = k, determine the probability of the event 

p 2 (a, b), conditionally to the observed data. 

A complete analysis of Bayes’ solution can be found in Stigler (1982). It is based 
on two propositions: on the one hand, 

i.e., in terms of modern probability: 

P E1 \ E2ð Þ=P E2jE1ð ÞP E1ð Þ: ð1:1Þ 

On the other hand, 

i.e., in terms of modern probability (see Sect. 1.3): 

P E1jE2ð Þ= 
P E1 \ E2ð Þ  

P E2ð Þ  : ð1:2Þ 

Combining these two expressions, we obtain the classical equality known as 
Bayes’ formula (see Sect. 1.3): 

P  E1jE2ð  Þ= 
P  E2jE1ð  Þ  
P  E2ð  Þ  P  E1ð  Þ: ð1:3Þ
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In modern probability, Bayes’ formula is used to show that the solution for 
Problem 1.1 verifies 

P p  2 a, bð ÞjXð Þ= 

b 

a 

P pjXð Þdp, ð1:4Þ 

with 

P pjXð Þ= 
P X jpð ÞP pð Þ  

P Xð Þ  , P Xð Þ= 

1 

0 

P X jpð ÞP pð Þdp: ð1:5Þ 

The practical use of Eq. (1.5) requires the knowledge of P X jpð Þ (usually referred 
to as Likelihood) and P( p) (usually referred to as Prior Distribution) . In practice, 
Likelihood yields from a model, while the Prior must be chosen by the user, 
according to his assumptions or beliefs about p – except in particular situations. In 
the case studied by Bayes, an analogy – often called Bayes’ billiard – is used to 
conclude that P(p) =1, which corresponds to a uniform distribution, while the model 
for the Likelihood is binomial (Bayes and Price 1763). As a consequence, we have, 
in modern probabilistic language, 

P pjXð Þ= 

k 
n 

pk 1- pð Þn- k 

1 

0 

k 
n 

pk 1- pð Þn- k dp 

: ð1:6Þ 

This expression can be written in a simplified form as 

P pjXð Þ=A pk 1- pð Þn- k , ð1:7Þ 

where A is a constant such that 

A 

1 

0 

pk 1- pð Þn- k dp= 1 ) A= 
nþ 1ð Þ! 

k! n- kð Þ! : ð1:8Þ 

The work of Bayes remained ignored for a long time (a complete history can be 
found in (Dale 1999)). In 1774, Pierre-Simon Laplace published a memoir entitled 
Mémoire sur la probabilité des causes par les événements (Laplace 1774, 1891). In 
this work, Laplace considers the following problem:
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S.M. Stiegler proposes the following translation (Laplace 1986): 

In the following problem, an urn is supposed to contain a given number of white and black 
tickets in an unknown ratio; if one draws a ticket and finds it white, determine the probability 
that the ratio of white to black tickets is that of p to q. The event is known and the cause is 
unknown. 

The problem considered by Laplace is analogous to the problem introduced by 
Bayes. Nevertheless, Laplace did not make any reference to Bayes – we can suppose 
that he was not aware of Bayes’ work. Laplace states a principle for the solution: 

S.M. Stiegler proposes the following translation (Laplace 1986): 

If an event can be produced by a number n of different causes, the probabilities of these 
causes given the event are to each other as the probabilities of the event given the causes, and 
the probability of the existence of each of these is equal to the probability of the event given 
that cause, divided by the sum of all the probabilities of the event given each of these causes. 

In modern probability writing: Laplace considers n possible distinct causes 

Ci, 1  ≤ i ≤ n and an event : Ci \ Cj = ∅, for i ≠ j and 
n 

j= 1 
P Cj = 1. Then, for 

an event E,

P CijEð Þ  
P CjjE 

= 
P EjCið Þ  
P EjCj 

ð1:9Þ 

and (see Sect. 1.3)



Þ

P CijEð Þ= 
P EjCið Þ  
n 

j= 1 
P EjCj 

: ð1:10Þ
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Notice that P Eð Þ= 
n 

j= 1 
P EjCj P Cj and P(E \ Ci) = P(E|Ci)P(Ci), so that 

Eq. (1.10) is equivalent to Eq. (1.2) when all the causes are equiprobable, i.e., 
P(Cj) = 1/n, 8 j. Indeed, Laplace assumes the equiprobability of the causes implic-
itly. A complete analysis of Laplace’s work can be found in Dale (1982) or Dale 
(1999). A generalization to the actual form (1.10) appears in the works of Augustus 
de Morgan, William Fishburn Donkin, William Allen Whitworth, and Mathieu Paul 
Hermann Lauren (see Dale (1999)). 

By 1920, the work of Bayes was rediscovered, namely, by Karl Pearson and 
Ronald Aylmer Fisher. The rediscovery generated a wide and polemical controversy 
about the use of a uniform distribution for p, justified by Bayes using the analogy of 
the billard. 

One of the main criticisms was that such a choice is not invariant by transforma-
tion, so that it may lead to contradictions, if applied without precaution. Indeed, the 
criticism was not so much directed at Bayes’ work as at the formulation that, in the 
absence of any information except the possible values of a quantity, one must 
consider a uniform distribution on these values. If such a principle is applied without 
adequate care, it can lead to contradictions, illustrated by a simple example: if a 
quantity X is uncertain and we do not have any information other than X 2 1=a, að , 
with a > 1, then the principle leads to 

P X ≤ 1ð Þ= 
1- 1 

a 

a- 1 
a 

= 
1 

1 þ a : 

However, Y = 1 X is also uncertain and Y 2 1=a, að Þ. Thus, the same principle 
leads to 

P Y  ≥ 1ð Þ= 
a- 1 
a- 1 

a 

= 
a 

1þ a 
> 

1 
1þ a =P X ≤ 1ð Þ: 

These results may appear to be contradictory, since X ≤ 1 ⟺ Y ≥ 1. Such a 
difficulty generated a controversy, which turned into a philosophical dispute about 
the meaning of probability, with two extreme standpoints: on the one hand, the 
“frequentist” one, where probabilities are the limits of relative frequencies or the 
result of enumerations; on the other hand, the “subjectivist” one, where probabilities 
are measurements degrees of belief. A highlight in this debate is the sentence of 
Bruno de Finetti (see (De Finetti 2017), p. xv) : 

My thesis, paradoxically, and a little provocatively, but nonetheless genuinely, is 
simply this:
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PROBABILITY DOES NOT EXIST 

The abandonment of superstitious beliefs about the existence of Phlogiston, the Cosmic 
Ether, Absolute Space and Time, . . ., or Fairies and Witches, was an essential step along the 
road to scientific thinking. Probability, too, if regarded as something endowed with some 
kind of objective existence, is no less a misleading misconception, an illusory attempt to 
exteriorize or materialize our true probabilistic beliefs. 

Nowadays, many researchers (but not all!) regard the controversy as mainly 
obsolete and consider that they have at their disposal tools having as origin Bayes, 
Fisher, Pearson, etc. For these researchers, these tools form a toolbox from which 
they can choose what is necessary for their studies according to the circumstances. 

Such a point de view is not universal, and the discussion goes on about the 
philosophical aspects and interpretations of probability – see, for instance, Howson 
and Urbach (2006), Jeffreys (1939), Savchuk and Tsokos (2011), Press and Tanur 
(2001), and Jaynes (1989, 2003). 

The reader will certainly have his own point of view or will build it from his 
readings and his own thinking. We will not discuss these aspects in the following, 
and we will concentrate on the methods and their practical use, namely, with R. 

1.2 Probabilities 

Uncertainty can be modeled by different ways. For instance, we can use fuzzy 
variables to classify objects or individuals according to classes having imprecise 
limits. We can also model uncertain numerical variables as intervals and use interval 
analysis to manipulate them. 

A classical model for uncertain quantities is the model of random variables, based 
on the classical definition of probabilities: 

Definition 1.1 Let Ω be a nonempty set and P Ωð Þ= E : E⊂Ωf g be the set of 
the parts of Ω. A  probability defined on Ω is an application P : P Ωð Þ⟶ℝ such 
that 

1. P Eð Þ≥ 0, 8E 2 P Ωð Þ; 
2. P(Ω) = 1; 

3. P 
n2ℕ 

En = 
n2ℕ 

P Enð Þ,8 En : n 2 ℕf g  such that Ei \ Ej =∅, if i≠ j:∎ 

In the context of probability, Ω is the universe, and (Ω,P) is referred to as a 
probability space. A subset E ⊂ Ω is an event. From this definition, we can state the 
standard properties of probabilities, namely,
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P ∅ð Þ= 0; ð1:11Þ 
P E-Fð Þ=P Eð Þ-P E \ Fð Þ; ð1:12Þ 

P A [ Bð Þ=P Að Þ þ  P Bð Þ-P A  \ Bð Þ; ð1:13Þ 
A⊂B⟹P Að Þ≤P Bð Þ: ð1:14Þ 

Definition 1.2 We say that E ⊂ Ω is almost sure (a.s.) if and only if 
P(E) = 1. We say that E ⊂ Ω is almost impossible (a.i.) or negligible if and 
only if P(E) = 0. ∎ 

Probabilities can be defined by probability mass functions on finite or enumer-
able universes, while probability mass densities are used on intervals of real 
numbers: 

Definition 1.3 
1. Let Ω be finite or enumerable. A probability mass function μ on Ω is an 

application μ:Ω ⟶ ℝ such that 8ω 2Ω: μ(ω) ≥ 0 and ∑ω 2 Ωμ(ω) = 1. The 
probability generated by μ is given by P({ω}) = μ(ω). 

2. LetΩ⊂ℝ. A  probability mass density μ onΩ is an application μ:Ω ⟶ℝ 
such that μ(ω) ≥ 0 on  Ω and Ωμ(ω)dω = 1. We define a probability on Ω 

by considering P a, bð Þð Þ= 
b 

a 
μ ωð Þdω, 8 a, bð Þ⊂Ω. ∎ 

The extension to other subsets of Ω is made using condition 3 in Definition 1.1, 
the classical properties of probabilities, namely, Eqs. (1.12 and 1.13). For instance, 
when Ω = {ω1, . . .,ωn} and 

μ ωið Þ= pi ≥ 0, 
n 

i= 1 

pi = 1: ð1:15Þ 

Then, 

P ωi1 , ::,ωikf gð Þ= 
k 

j= 1 

μ ωij : ð1:16Þ 

R proposes functions for the manipulation of mass functions and mass densities. 
For instance, sum and integrate. The package pracma emulates Matlab® and pro-
poses functions quad, romberg for the evaluation of integrals.
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Example 1.1 Let us consider Ω = {ω1, . . .,ωn} and  μ(ωi) = βe-αi . Let us 
determine the possible values of α and β. We have 

μ ωið Þ≥ 0⟺β≥ 0 

and 

n 

i= 1 

μ ωið Þ= 1⟺β 
n 

i= 1 

e- αi = 1: 

Thus, 

β= 
1 

n 

i= 1 
e- αi 

We can plot the possible values as follows: 

[[i]]*Omega))} 

str2 = substitute(paste("possible values of ( ", alpha,", 
",beta," ), for n = ",v),list(v = n)) 
plot(alfa, betta,type = 'n', xlab = expression(alpha),ylab 
= expression(beta), main = str2) 
lines(alfa,betta,col='blue',lwd=2) 

n = 6 # number of elements of Omega 
Omega <- c(seq(1,n)) # universe 
alfa = seq(-5,5,length.out = 1001)  # values of alpha 
betta = rep(0, length(alfa)) 
for (i in seq(1,length(alfa))){betta[[i]]= 1/sum(exp(-alfa

(continued)
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The results are shown in Fig. 1.1. ∎ 

Fig. 1.1 Determination of the coefficients in the mass function 

Example 1.2 Let us consider Ω = (0, 1) ⊂ ℝ and μ(ω) = βe-αω . Let us 
determine the possible values of α and β. We have 

μ ωð  Þ≥ 0⟺β ≥ 0 

And, for α ≠ 0: 

1 

0 

μ ωð Þdω= 1⟺β 
1- e- α 

α 
= 1: 

Thus, 

β= 
α 

1- e- α α≠ 0ð Þ: 

If α = 0, then μ(ω) = β, so that we must have β = 1. We can plot the 
possible values as follows:

(continued)
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alfa = seq(-5,5,length.out = 1001)  # values of alpha 
betta = rep(1, length(alfa)) 
for (i in seq(1,length(alfa))){if (alfa[[i]] != 0) {betta[ 
[i]]= alfa[[i]]/(1 - exp(-alfa[[i]]))}} 

str2 = expression(paste("possible values of ( ", alpha,", 
",beta," )")) 
plot(alfa, betta,type = 'n', xlab = expression(alpha),ylab 
= expression(beta), main = str2) 
lines(alfa,betta,col='blue',lwd=2) 

The results are shown in Fig. 1.2. ∎ 

Fig. 1.2 Determination of the coefficients in the mass density 

When Ω = {ω1, . . .,ωn} is  finite, a popular mass function is the uniform mass 
function: μ(ω) = 1/n, 8 ω 2 Ω. In such a situation, probabilities are directly given by 
the number of elements of the subsets: P(A) = |A|/n, where |A| is the number of 
elements of A. Its analogous to Ω = (a, b) ⊂ ℝ is the uniform mass density 
μ ωð Þ= 1 

b- a ,8ω 2 a, bð Þ. Then, for a ≤ α ≤ β ≤ b, P α, βð Þð Þ= β- α 
b- a . 

Example 1.3 In a 52-card deck of playing cards, you draw simultaneously 
three at random. Let us evaluate the probability of getting three diamonds: 
here, the universe Ω = {(C1,C2,C3): Ci: card drawn at i}. Assuming a 

(continued)
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uniform mass function onΩ, we must evaluate, on the one hand, the number of 
elements of Ω, which is n = 52 × 51 × 50. On the other hand, we must evaluate 
the number of elements inA= {(C1,C2,C3):Ci: card drawn at i is a diamond}, 
which is |A| = 13 × 12 × 11, so that 

1.2 Probabilities 11

P 3 diamondsð Þ= 
13× 12 × 11 
52× 51× 50: 

= 
1716 

132600 
≈ 0:01294 

The evaluation can be made by R as follows: 

library(arrangements) 
k = npermutations(13,3) 
n = npermutations(52,3) 
pA = k/n 
print(paste("P(A) = ",pA)) 

The result is 

## [1] "P(A) =  0.0129411764705882" 

Now let us evaluate the probability of getting three cards of the same color: 

in this case, we must evaluate the number of elements in = 
4 

i= 1 
Ai Ai = {(C1, 

C2,C3): Cj: card drawn at j is ci}, ci is one of the four colors: clubs, diamonds, 
hearts, and spades. Thus, |B| = 4 × |A| = 4 × 13 × 12 × 11 and 

P 3 of same colorð Þ= 
4× 13 × 12× 11 
52× 51 × 50: 

= 
6864 

132600 
≈ 0:05176: 

Using R: 

k = 4*npermutations(13,3) 
n = npermutations(52,3) 
pB = k/n 
print(paste("P(B) = ",pB)) 

The result is 

## [1] "P(B) =  0.0517647058823529"
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Example 1.4 LetΩ = (-1, 1) with the uniform mass density. Then, μ ωð Þ= 1 2. 
Let Aα = {ω 2 Ω: log |ω| ≤ - α}. Since 

Aα = ω 2 Ω : ωj j≤ e- αf g= 
Ω, if α≤ 0

- e- α, e- αð Þ, if α≥ 0 
, 

We have 

P Aαð Þ= 
1, if α≤ 0 

e- α, if α≥ 0 
: 

We can evaluate these probabilities using R: 

a <<- -1 # global variable 
b <<- 1 # global variable 
mu = function(omega){ 

aux = 1/(b-a) 
return(aux) 

} 
alfa = seq(0,2, length.out = 201) 
p_ex = exp(-alfa) 
pcalc = numeric(length = length(alfa)) 
library(pracma) 
for (i in seq(1,length(alfa))){ 

om = exp(-alfa[[i]]) 
pcalc[[i]] = quad(mu,-om,om) 

} 
str1 = expression(paste('P(A'[alpha],')')) 
str2 = expression('probability of A'[alpha]) 
plot(alfa,pcalc,type='n',xlab = expression(alpha),ylab = s 
tr1, 

main = str2) 
lines(alfa,p_ex,col='blue',lwd = 2) 
lines(alfa,pcalc,lwd=5,lty=2,col='red') 
legend(x = "topright",legend = c("exact", "calculated"), 

lty = c(1, 2),col = c('blue', 'red'),lwd = c(2,3)) 

(continued)
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Example 1.4 (continued)

The result appears in Fig. 1.3. 

Fig. 1.3 Determination of the probabilities P(Aα) 

Now, let us consider Bα = {ω 2 Ω: ω2 - (α + 1)ω + α ≤ 0}. Since the roots 
of the polynomial are α and 1, we have 

Bα = 

Ω, if  α≤ - 1 

α, 1ð Þ, if - 1≤ α≤ 1 

∅, if  α> 1 

, 

so that 

P Bαð Þ= 

1, if α≤ - 1 
1- α 
2 

, if - 1≤ α≤ 1 

0, if α> 1 

: 

Again, we can evaluate these probabilities using R: 

alfa = seq(-1,1, length.out = 201) 
p_ex = (1 - alfa)/2 
pcalc = numeric(length = length(alfa)) 
library(pracma) 
for (i in seq(1,length(alfa))){ 

pcalc[[i]] = quad(mu,alfa[[i]],1) 
} 

(continued)
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Example 1.4 (continued)

The result appears in Fig. 1.4. 

Fig. 1.4 Determination of the probabilities P(Bα) 

Exercises 
1. Consider Ω = (0, 1) and the mass density μ(ω) = α ln (2 + ω) +  β . What 

are the possible values of α and β? Plot the admissible region. 
2. Consider Ω = {ω1,ω2,ω3} and the mass function μ(ωi) = α ln (1 + i) +  β. 

What are the possible values of α and ? Plot the admissible region. 
3. Consider Ω = (0, 1) and the mass density μ(ω) = αω2 + β. What are the 

possible values of α and ? Plot the admissible region. 
4. Consider Ω = {ω1,ω2,ω3,ω4} and the mass function μ(ωi)= αi + β. What 

are the possible values of α and ? Plot the admissible region. 
5. Consider Ω = (0, 1) and the mass density μ(ω) = 3ω2 . Find the probabil-

ities of the following events: 

(a) A= ω 2 Ω : ω< 1 2 . 
(b) B= ω 2 Ω : ω2 < 1 2 .

(continued)
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(c) C = {ω 2 Ω: eω < 2}. 
(d) D = {ω 2 Ω: 5ω2 - 9ω + 1  ≤ 0}. 
(e) Write programs in R to find these probabilities. 

6. Consider Ω = {ω1, . . .,ωn} and μ ωið Þ= 2i 
n nþ1ð Þ. 

(a) Find P({ω1,ωn}). 
(b) Find P({ω2,ωn - 1}). 
(c) Write programs in R to determine these probabilities. 

7. Consider Ω = {ω1,ω2,ω3,ω4} and the events A = {ω1}, B = {ω1,ω2}, 
C = {ω1,ω2,ω4}. Let P Að Þ= 1 5, P Bð Þ= 3 10, P Cð Þ= 7 10. 

(a) Find P({ω2}), P({ω3}), P({ω4}). 
(b) Find P({ω1,ω2,ω3}). 

8. Consider Ω = {ω1,ω2,ω3} and the events A = {ω1}, B = {ω1,ω2}. Let 
P Að Þ= 1 4 and P Bð Þ= 1 2. 

(a) Find P({ω2}). 
(b) Find P({ω3}). 
(c) Find P({ω1,ω3}). 

9. In a 52-card deck of playing cards, you draw sequentially four at random. 
At each draw, the card is put back in the deck, which is reshuffled. Find 
the probabilities of getting 

(a) Four spades. 
(b) Four cards of the same color. 
(c) Four aces. 
(d) At least three aces. 

10. An urn contains 40 numbered balls of three colors: 12 red, 20 green, and 
8 blue. We draw at random two balls simultaneously. Find the probability 
of getting 

(a) Two green balls. 
(b) Two balls of the same color. 
(c) Two balls of different colors. 

1.3 Representing a Probability Space in R 

WhenΩ is finite, we can represent the probability space using the class dps (discrete 
probability space) below:
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library(R6) 
# 
dps=R6Class("dps", 

public=list( 
m = NULL, 
names = NULL, 
size = NULL, 
initialize=function(n,mu,nams){ 

if (missing(n) == TRUE){ 
self$size = 2 

}else{self$size <<- n} 
if (missing(mu) == TRUE){ 
self$m <<- rep(1/self$size,self$size) 

}else{self$m <<- mu} 
if (missing(nams) == TRUE){ 
self$names <<- as.character(seq(1:self$siz 

e)) 
}else{self$names <<- nams} 

}, 
prob= function(ev,ps){ 

if (length(ev) == 0){p = 0} 
else{ 
ev1 = unique(ev) 
p = 0 
if (missing(ps) == TRUE){ 

for (i in ev1){p = p + self$m[[i]]} 
}else{ 

for (i in ev1){p = p + ps$m[[i]]} 
} 
return(p) 

} 
}, 
print_events_values = function(events,values,v 

mp = matrix(nrow = nev, ncol = 2) 
for (i in 1:nev){ 
aux = events[[i]] 
ele = length(aux) 
nam = paste("{",varnames[[aux[[1]]]]) 
if (ele > 1){ 

for (j in 2:ele) 
nam = paste(nam,",",varnames[[aux[[j]] 

]]) 

arnames, valname){ 
nev = length(events)
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} 
nam = paste(nam,"}") 
mp[ i,1] = nam 
mp[ , 2] = values[[i]] 

} 
colnames(mp) = c("event",valname) 
mpd = as.data.frame(mp) 
print(mpd) 

}, 
show = function(ps){ 

if (missing(ps) == TRUE){ 
events= seq(1:self$size) 
values = self$m 
varnames = self$names 

}else{ 
events= seq(1:ps$size) 
values = ps$m 
varnames = ps$names 

} 
valname = "prob" 
self$print_events_values(events,values,varna 

mes, valname) 
} 

) 
) 

These contents must be saved to a file dps.R, to be sourced before use. For this 
class,Ω = {1, 2, . . ., n}, but you can give names to the elements. If the mass function 
mu is not given, the mass is uniformly distributed on the elements of Ω. If the names 
are not given, they are set to “1,” “2,” . . .  R proposes intrinsic functions inter-
sect, union, setdiff which can be used to determine the probabilities associ-
ated with intersections, unions, etc. 

Example 1.1 Let us consider the result when a coin is tossed once, which can 
be Head (H) or Tail (T). Then, Ω = {H,T}. Let μ be a mass function on Ω and 
p = μ(H ), q = μ(T ). Then: p ≥ 0, q ≥ 0, p + q = 1. The coin is fair when p = q, 
i.e., when p= q= 1=2. 

We can create a probability space for a fair coin as follows: 

source("dps.R") 
ps = dps$new(2) 
ps$names = c("H","T")

(continued)
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Example 1.1 (continued)

We can see the probabilities of the elements of Ω as follows: 

ps$show() 
##   event prob 
## 1 { H }  0.5 
## 2 { T }  0.5 
T = 2 
ps$prob(T) 
## [1] 0.5 

a = c(1,2) 
ps$prob(a) 
## [1] 1 

## [1] 1 

ps$prob(intersect(a,T)) 
## [1] 0.5 
ps$prob(union(a,T)) 

Example 1.2 Let us consider the result when a dice having n faces is rolled in 
a single  die.  Here,  Ω = {1, 2, . . ., n}. Let μ be a mass function on Ω and 
pi = μ(i), 1 ≤ i ≤ n. Then: pi ≥ 0, 1 ≤ i ≤ n; p1 + . . .  + pn = 1. The dice is 
balanced when all the sides have the same probability – all the pi are equal, i.e., 
when pi = 1=n, 1≤ i≤ n. An example of determination of probabilities using R is: 

source("dps.R") 
n = 16 # number of faces 
ps = dps$new(n) 

A = c(1,6, 12) 
pA = ps$prob(A) 
B = c(1, 3, 5, 7) 
pB = ps$prob(B) 

The results are 

print(paste("P(A) = ",pA," ; P(B) = ", pB)) 

## [1] "P(A) =  0.1875  ; P(B) =  0.25" 

Alternative representations of probability spaces are the binary and hexadecimal 
representations. 

In the binary representation, the events E ⊂ Ω correspond to binary vectors of 
dimension n having all the components equal to zero, except those corresponding to 
the elements of E. For instance, let n = 5: the event {ω1,ω3} is represented by the 
binary vector (1, 0, 1, 0, 0), the event {ω2,ω3,ω5} is represented by the binary vector 
(0, 1, 1, 0, 1), and so on. The universeΩ is represented by a vector entirely formed by 
ones and the empty set ∅ by a vector of zeros. Under the binary representation, the 
intersection of two events corresponds to the product term by term of the binary 
vectors or the logical operation “AND.” The union of two subsets can be achieved by 
considering the term-by-term maximum of the vectors or the logical operator “OR.”



The difference A - B can be evaluated by subtracting A \ B from A – the 
complementary set Ω - A can be evaluated by subtracting A from the universe 
vector formed by ones. These operations can be implemented in a class bds (binary 
discrete set), defined as follows: 
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library(R6) 
# 
bds=R6Class("bds", 
public=list( 
initialize=function(){ 
}, 
binter= function(ev1,ev2){ 
result = pmin(ev1,ev2) 
return(result) 

}, 
bunion= function(ev1,ev2){ 
result = pmax(ev1,ev2) 
return(result) 

}, 
bdiff= function(ev1,ev2){ 
result = ev1 - pmin(ev1, ev2) 
return(result) 

}, 
bcomplement = function(ev1){ 
result = rep(1,length(ev1)) - ev1 
return(result) 

}, 
bflip = function(ev){ 
ind = (length(ev) + 1) - seq(1:length(ev)) 
aux = ev[ind] 
return(aux) 

}, 
isequal = function(ev1,ev2){ 

# TRUE if ev1 is equal to ev2 
aux = sum(abs(ev1-ev2)) 
if (aux > 0){r = FALSE} 
else{r = TRUE} 
return(r) 

}, 
iscontained = function(ev1,ev2){ 

# TRUE if ev1 is part of ev2 
ev = self$binter(ev1,ev2) 
r = self$isequal(ev,ev1) 
return(r) 

}, 
contains = function(ev1,ev2){ 

# TRUE if ev1 contains ev2 
ev = self$bunion(ev1,ev2) 
r = self$isequal(ev,ev1) 
return(r) 

} 
) 

)
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Example 1.3 Let us consider n = 5 and the events 

A= ω1,ω3f g,B= ω2,ω3,ω5f g,C= ω1,ω3,ω4f g, 

Their binary representation is 

A = c(1,0,1,0,0) 
B = c(0,1,1,0,0) 

C = c(1,0,1,1,0) 

Let us evaluate A \ B, A [ B, A - B, B - A, Ω - A, Ω - B, and verify the 
inclusions in C. 

source("bds.R") 

bs = bds$new() 
A 
## [1] 1 0 1 0 0 

bs$bflip(A) 
## [1] 0 0 1 0 1 

B 
## [1] 0 1 1 0 0 

bs$bflip(B) 
## [1] 0 0 1 1 0 

bs$binter(A,B) 
## [1] 0 0 1 0 0 

bs$bunion(A,B) 
## [1] 1 1 1 0 0 

bs$bdiff(A,B) 

## [1] 1 0 0 0 0 

bs$bdiff(B,A) 
## [1] 0 1 0 0 0 

bs$bcomplement(A) 
## [1] 0 1 0 1 1 

bs$bcomplement(B) 
## [1] 1 0 0 1 1 

bs$contains(C,A) 
## [1] TRUE 

bs$contains(C,B) 
## [1] FALSE 

bs$iscontained(A,C) 
## [1] TRUE 

bs$iscontained(B,C) 
## [1] FALSE 

In the binary representation, each ωi 2Ω is represented by a one-hot vector, i.e., a 
binary vector having a single element equal to one. Thus, we can bring the mass 
function to an Identity Matrix: each line represents one element ofΩ. The probability 
space corresponding to the binary representation is implemented in a class bps 
(binary probability space), defined as follows – notice that class bps inherits from 
class bds:
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library(R6) 
source("bds.R") 
# 
bps=R6Class("bps", 

inherit=bds, 
public=list( 
m = NULL, names = NULL, 
size = NULL,frame = NULL, 
initialize=function(n,mu,nams){ 
super$initialize() 
if (missing(n) == TRUE){ 
self$size = 2 

}else{self$size <- n} 
if (missing(mu) == TRUE){ 
self$m <- rep(1/self$size,self$size) 

}else{self$m <- mu} 
if (missing(nams) == TRUE){ 

self$names <- as.character(seq(1:self$size)) 
}else{self$names <- nams} 

self$frame <- diag(self$size) 
}, 

bprob= function(ev,ps){ 
# evaluates the probability of ev 
# in the binary probability space ps 
if (missing(ps) == TRUE){ps = self} 
ind = which(ev > 0) 
if (length(ind) == 0){p = 0} 
else{ 
p = 0 
for (i in ind){p = p + ps$m[[i]]} 

} 
return(p) 

}, 
bevent = function(nbs,ps){ 
# creates an event in the binary probability 
# space ps using the positions given in nbs 
if (missing(ps) == TRUE){ps = self} 
res = rep(0,ps$size) 
if (length(nbs) > 0){res[nbs] = 1} 
return(res) 

},


