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Preface

We live in an age of science and technology. Science has allowed us to understand 
our place in the universe and our relationship to all life on Earth. Technology has 
provided a sophisticated computer on which to compose this book and allowed us 
to reshape our world to make life safer, more productive, and more comfortable. This 
has never been clearer than during this time of plague, as the COVID- 19 pandemic 
enters its fourth year and finally shows signs of receding. The advanced technology 
of COVID- 19 vaccines has greatly reduced the mortality of severe acute respiratory 
syndrome coronavirus 2 (SARS- CoV- 2) infection and provided a vivid demonstra-
tion of the tangible benefits of science for society. As harrowing as the last few years 
have been, just think of what they would have been like if we didn’t have science.

And yet, there are signs that not all is well with the scientific enterprise. The pace 
of transformative biomedical innovation appears to be slowing (1, 2). Fraud, slop-
piness, and error have required the retraction of publications from the literature. 
Record numbers of research trainees are opting out of academic career pathways. 
Surveys report declining public confidence in scientists. With looming challenges 
from future pandemics, climate change, and shortages of food, water, and energy, 
it is vital for the world’s scientific enterprise to be firing on all cylinders, to use an 
automotive metaphor (which will happily become anachronistic as electric vehi-
cles displace those with internal combustion engines). This volume is a collection 
of essays exploring the nature of science and the way that it is performed today. 
In thinking about science, both good and bad, we will cast a light on contempo-
rary scientific culture and practice, provide guideposts for young scientists, and 
 propose a blueprint for reforming the way that science is done.
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This book is written for scientists and science students, but also for technolo-
gists, engineers, mathematicians, teachers, journalists, administrators, policymak-
ers, and anyone with an interest in science and how scientists think. The project 
began 15 years ago when we were editors at the journal Infection and Immunity. 
Our initial collaborative essay, called “Descriptive Science,” was prompted by 
the tendency of many reviewers to dismiss work with the adjective “descriptive,” 
despite the fact that description is the foundation of much of science (3). Encour-
aged by the positive responses from our colleagues, we subsequently collaborated 
on more than 40 articles, editorials, or commentaries. Many of the essays in this 
collection had their genesis in conversations or email exchanges, which eventually 
developed into editorials or commentaries. Each has been recently updated and 
supplemented with additional material for publication in this book. Nine of the 
chapters are completely new and have not been published elsewhere.

Our goal has been to create a volume that can be read either sequentially or 
as individual chapters, each constituting a freestanding essay that can be read 
and understood independently, although we have connected the themes through 
cross- referencing. Anyone reading the book from cover to cover will note some 
repetition, as certain issues arise again and again in various contexts. This is inten-
tional and was necessary for the chapters to be able to stand on their own. We hope 
that this will help to reinforce these points.

Over the years, we have often commented to each other how writing these essays 
has improved our understanding of science and made us better scientists. We hope 
the same will be true for our readers. You will find that much of the material is 
slanted toward issues in the biomedical sciences, with a particular preference for the 
subdisciplines of microbiology and immunology. This reflects the fact that we are 
both active scientists with research programs focused on microbial pathogenesis. 
We make no apologies for writing about what we know best and note that other 
 science essayists, such as Thomas Kuhn (4) and Eugene Wigner (5) writing about 
scientific revolutions and the unreasonable effectiveness of mathematics, have 
focused largely on examples from the physical sciences. In fact, we think that our 
biomedical emphasis makes sense since the 21st century is heralded to be the bio-
logical century. We subscribe to the view that science is a continuous discipline and 
observations made in one domain can apply to other domains as well. Nevertheless, 
we have attempted whenever possible to bring the physical sciences into the context 
of our essays, and readers will find numerous references to Newtonian physics, plate 
tectonics, and particle physics. We purposefully refer to some of the same scientific 
discoveries in multiple chapters in order to illustrate the continuity of themes across 
different aspects of science using familiar examples. Hence, some scientists, such 
as Alfred Wegener, Oswald Avery, and Rosalind Franklin, appear in more than one 
chapter, and we hope you will enjoy becoming more acquainted with them.
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In many ways, Thinking about Science is a commentary on the current state 
of science in the early 21st century, with a particular emphasis on biomedical 
research. Although both of us are unabashed admirers of science and the scientific 
process, the reader may note a critical tone in many of these chapters. This, too, 
is intentional and reflects the fact that many chapters are written to highlight a 
problem in science in the hope of correcting it. The “Historical Science” chapter 
laments how often science ignores and neglects its history. In fact, we hope that 
the book provides an accurate snapshot, from the perspective of scientists working 
in the present day, for future historians of science. Similarly, we hope that chapters 
such as “Descriptive Science,” “Mechanistic Science,” “Reductionistic and Holistic 
Science,” and “Important Science” have captured the tension of our time regard-
ing preferred scientific approaches. “Impacted Science” describes a contemporary 
sociological malady that we hope will become obsolete in future years as science 
reforms its value system. “Dismal Science” delves into the economics of science, 
and we hope that more economists will take an interest in this important topic 
that remains largely unexplored. “Plague Science” feels unfinished, as every week 
brings a new development in the COVID- 19 pandemic, and yet we hope that the 
words therein capture a sense of this moment in early 2023 by documenting suc-
cesses and failures in confronting a novel viral scourge. In updating the early chap-
ters of our collaboration, we have been both pleasantly surprised at the progress in 
certain areas, such as prepublication review, efforts to improve reproducibility, and 
efforts to improve equality and diversity in science, and dismayed by how little has 
been done in others, such as persistent problems with peer review and funding.

For us, this book has provided an opportunity to reflect and to gather and update 
our thoughts after 15 years of friendship and collaboration. This is, of course, a 
work in progress, and we will continue our work as practitioners, observers, and 
commentators of contemporary science who want to improve the scientific enter-
prise. We encourage readers to write to us with their comments, criticisms, and 
suggestions so that we can continue to think about science together.

January 2023
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Science is not inevitable; this question is very fruitful indeed.

Edgar Zilsel (1)

Science is humanity’s greatest invention. When difficult decisions are to be made, 
everyone says that they want to “follow the science.” But what is science? The 
Merriam- Webster online dictionary defines science as “knowledge about the 
 natural world based on facts learned through experiments and observation” (2). 
The word itself is derived from the Latin word scientia, which means “knowledge.” 
However, as Carl Sagan observed, “Science is more than a body of knowledge. It is 
a way of thinking” (3). Thus, Great Britain’s Science Council has defined science as 
“the pursuit and application of knowledge and understanding of the natural and 
social world following a systematic methodology based on evidence” (4). This is 
an improvement, but perhaps goes too far in emphasizing the process over  scientific 
knowledge itself.

Thomas Huxley suggested that science is merely “common sense clarified” (5), 
although common sense tells us many things that science has shown to be untrue, 
such as that the Sun travels around the Earth (6). Science rises beyond mere 
 observation, intuition, and association. Science is a way of acquiring knowledge 
that is progressive, cumulative, testable, and predictive. Fields that call themselves 
sciences share certain elements in common, including facts, theories, methods, 
practices, and predictions. The most persuasive characteristic of science is that it 

1What Is Science?
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works. Science underlies all technology, from the light- emitting diode illuminating 
this room to the laptop on which this chapter is being composed, or the cellphone 
giving a reminder about an imminent meeting. Yet science is much more than 
technology, and its relationship to technology is complex (Box 1.1). Science allows 
the recognition of principles that make the natural world comprehensible. That 
doesn’t mean that science is always right, not by a long shot. Scientific knowledge 
is always tentative and subject to change. But evidence of the power of the scien-
tific method is all around us, and even when science leads to errors, the method 
itself embodies the means to correct its mistakes.

The scientific method was not invented all at once, but rather evolved over time 
with refinement from a range of sources. The scientific method has not arisen in 
every civilization. In fact, most scientific knowledge has been acquired only during 
the past 400 years, less than one- quarter of 1% of the time that our species has 

Box 1.1 Science and technology

Science and technology are often mistakenly viewed as synonymous. 
Whereas a definition of science is elusive, the definition of technology is 
easier. Technology is “the application of scientific knowledge for practical 
purposes” (24). Hence, while science and technology are intimately associ-
ated, the two can exist independently. For example, the ancient world had 
the technology to construct majestic buildings and structures such as pyra-
mids and the Great Wall of China without a formal understanding of the 
laws of physics. The Industrial Revolution was catalyzed by the invention of 
the steam engine, which was created by tinkering without any knowledge of 
thermodynamics. In fact, the field of thermodynamics emerged afterwards 
to explain phenomena observed in steam engines and in efforts to optimize 
their efficiency. On the other hand, major advancements in science often 
find no immediate technological applications. Einstein’s theory of general 
relativity, formulated in 1916, did not find a clear technological application 
until the development of a geopositioning system in the 1970s required 
 synchronization of clocks on Earth and in orbit, which run differently 
depending on the gravitational field that they experience. In 2016, gravita-
tional waves were first detected using remarkable technology in the form of 
paired interferometers, constructed by highly exacting tolerances prescribed 
by physical laws, but these have yet to find a technological application. 
Today, much scientific research is dependent on technology made possible 
by our scientific knowledge.
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inhabited the earth. In their books The Unnatural Nature of Science and Uncommon 
Sense, the embryologist Lewis Wolpert and the physicist Alan Cromer, despite 
their different perspectives, both trace the origins of science to ancient Greece (6, 7). 
Plato regarded reason as the most powerful capacity of human beings, Thales of 
Miletus attempted to describe the nature of the world, and Aristotle defined 
humans as rational animals. Aristotle distinguished induction, the inference of 
 universal principles from particular observations, from deduction, in which general 
principles are used to make predictions in specific situations. Most of what  Aristotle 
had deduced turned out to be incorrect, but his mode of thinking laid a foundation 
for others to follow. Modern scientists use induction to develop theories and 
hypotheses, which can then be tested experimentally to arrive at deductions 
(Fig. 1.1). Greek mathematicians developed the concept of mathematical proof, 
which allowed the systematic application of logic to deduce a level of knowledge 
that is regarded as the truth (Box  1.2). Another tradition that arose in ancient 
Greece was rhetoric, in which oratory was used for the purpose of persuasion. 
When modern scientists perform experiments and interpret results, they are carry-
ing on the great ancient Greek traditions of reason (logos) and persuasion (rhetor).

During the so- called Dark Ages in Europe, Islamic scholars helped to preserve 
and further develop these concepts. Science and mathematics flourished in the 
Arab world in the Middle Ages (8), building upon earlier intellectual traditions to 

THEORY

INDUCTION DEDUCTION
Hypothesis

Prediction

Experiment

ConclusionConclusion

Prediction

FIGURE 1.1 Inductive versus deductive reasoning. In inductive reasoning, particular  observations 
are used to infer universal principles or theories. In deductive reasoning, hypotheses lead to 
predictions that are tested experimentally. The results of experiments in turn may be used to revise 
hypotheses and theories.
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create a body of knowledge that was communicated to Europeans through trade 
and contacts in the Iberian Peninsula. This eventually blossomed into what is rec-
ognizable as modern science during the Scientific Revolution in Western Europe. 
Two influential publications were Francis Bacon’s Novum Organum, published in 
1620 (9), and Rene Descartes’ Discourse on the Method, published in 1637 (10). 
Novum Organum proposed an inductive method for understanding natural phe-
nomena in which relevant facts were systematically assembled and categorized 
according to their association with a phenomenon of interest to generate axioms 
based on empirical data. Discourse on the Method proposed that problems be 
divided into smaller parts so that the simpler parts might be solved first and urged 
scientists to begin any inquiry from a skeptical perspective. Scholars continue to 
debate why the Scientific Revolution occurred in Western Europe rather than 
 elsewhere. Contributing factors include the continuum with classical Greek 

Box 1.2 Mathematics and science

In 1960, the physicist Eugene Wigner penned an influential essay titled 
“The Unreasonable Effectiveness of Mathematics in the Natural Sciences” 
(25), in which he noted how mathematical relationships pervade the natural 
sciences and, once identified, are predictive of new relationships and 
 findings in nature. The relationship between science and mathematics may 
be viewed as essential, dependent, intricate, synergistic, and even symbiotic. 
Science depends on mathematics, and advances in science and technology 
further the development of mathematics, as evidenced by the ever- increasing 
reliance of mathematics on computers to probe its secrets, such as finding 
ever- larger prime numbers. At the heart of the matter is the fundamental 
question of whether the essence of the natural world is mathematical. The 
ancient cult of Pythagoras viewed the world as mathematical and promoted 
its understanding through mathematics, a world view with echoes in Plato’s 
allegory of the cave, in which a perfect world lies just beyond the senses. The 
ability to express a scientific finding in the precise notation of mathematics 
is considered an apotheosis in modern science. The increasing recognition 
that we live in a probabilistic universe has reinforced the notion that both 
discovered and as yet undiscovered mathematical relationships underlie 
everything in the natural world, something that Pythagoreans would have 
embraced and appreciated. Although a detailed treatment of the relation-
ship between mathematics and science is beyond the scope of this book, we 
encourage budding scientists to learn as much mathematics as they can.
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 philosophy, the increasing prominence of academic institutions, the development 
of printing and the increasing availability of books, a growing crisis between 
 religious and humanistic world views, and the rise of capitalism, which lessened 
deference to authority and brought scholars and craftsmen together. The result was 
the emergence of a critical mass of practitioners of the scientific method who gave 
the revolution an unstoppable momentum (Box 1.3).

Box 1.3 Was science inevitable?

This chapter has emphasized the Western roots of modern science. That the 
Scientific Revolution occurred in 17th- century Europe in unquestioned, 
but contributions from many civilizations and cultures made this revolution 
possible (26). We have already mentioned the critically important contribu-
tions of Islamic scholarship. In addition, Chinese civilization developed 
science- enabling technologies such as the magnetic compass, the printing 
press, and papermaking, which allowed global exploration and efficient 
communication. As Bacon recognized, “Printing, gunpowder, and the com-
pass … changed the appearance and state of the world” (9). Chinese astron-
omy was also highly developed and precisely recorded a supernova in the 
year 1054, which created the Crab Nebula. It is noteworthy that there is no 
record of this event in Western records despite what must have been the 
spectacular event in the night sky, with the appearance of a new, very bright 
star that was visible during daytime. This curious and mystifying omission 
from European records may reflect that it conflicted with philosophical- 
religious consensus at the time, which held that the heavens were eternal and 
constant. Indian contributions to mathematics, such as the concept of zero, 
the decimal system, and advanced notation systems, were essential for later 
advances in theoretical physics (27). In the Americas, the Mayan civiliza-
tion developed highly advanced astronomy and mathematics, along with the 
sophisticated engineering expertise to build magnificent cities. Ancient 
Africans developed advanced astronomy and metallurgy (28). In Oceania, 
ancient Polynesians mastered navigational skills that allowed them to travel 
to remote, isolated islands. Hence, the impulse to develop mathematics and 
science may be seen everywhere that humans settled and built civilizations 
and reflects the indomitable human curiosity. The will to do science, like the 
will to make music, can be viewed as a universal human trait. However, in 
contrast to the development of scientific concepts and mathematics in other 

(Continued)
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In the 1920s, a school of philosophy known as logical positivism, with centers in 
the European capitals of Vienna and Berlin, asserted that truth must be demon-
strated by direct observation or logical proof. Thus, scientific knowledge was 
favored over other forms of knowledge. In the classic formulation of the scientific 
method, science consists of careful observation and description, formulation of a 
hypothesis, and experimental testing of predictions. An implicit assumption is that 
experimental results can be replicated by others (chapter  7). Although this so- 
called “hypothetico- deductive” approach is not the only way of doing science, it is 
what many people think of when referring to the scientific method.

Logical positivism ultimately fell out of favor among philosophers of science, 
although its influence on 20th- century philosophy of science is undeniable. One 
reason for the decline of logical positivism is an inability to provide a clear demar-
cation between science and nonscience. Any definition of science must be able to 
distinguish it from pseudoscience, such as astrology, alchemy, creationism, and 
homeopathy. In fact, separating pseudoscience from science can be difficult since 
those disciplines have many of the trappings of science, including theory, method, 
and practice (see chapter 16). For the Austrian philosopher Karl Popper, the issue 

societies, the Scientific Revolution gave rise to unique new insights, 
 formalisms, and ways to investigate the world— the creation of the modern 
scientific method and scientific disciplines and institutions. The Scientific 
Revolution allowed humanity to overcome the limits of intuitive thinking, 
which serves us well in many situations but can lead us astray when trying to 
understand natural phenomena.

To return to Edgar Zilsel’s question at the beginning of this chapter, we 
must consider the uniqueness of the Scientific Revolution. While there is 
abundant evidence of curiosity, ingenuity, creativity, and mathematics in 
many human civilizations, what we call modern science has arisen only 
once. This alone suggests that science was not an inevitable consequence of 
the evolution of human thought. Accordingly, science should not be taken 
for granted. Why it arose in 17th- century Europe, rather than in other scien-
tifically and mathematically sophisticated societies, remains a fascinating 
and open question. It is probably not a coincidence that Europe during this 
period also witnessed new technologies like the printing press and telescope, 
brutal wars of religion, and the upheaval of medieval theology by the 
 Protestant Reformation. Modern science may owe its existence to an 
 unusual confluence of technological, historical, and sociological events.

Box 1.3 (Continued)


